JPH07142299A - Semiconductor silicon wafer - Google Patents
Semiconductor silicon waferInfo
- Publication number
- JPH07142299A JPH07142299A JP31445593A JP31445593A JPH07142299A JP H07142299 A JPH07142299 A JP H07142299A JP 31445593 A JP31445593 A JP 31445593A JP 31445593 A JP31445593 A JP 31445593A JP H07142299 A JPH07142299 A JP H07142299A
- Authority
- JP
- Japan
- Prior art keywords
- density
- infrared
- silicon wafer
- osf
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、チョクラルスキー法
(CZ法)で製造した単結晶シリコンウェーハに係り、
特定の温度、時間の熱処理を施して観察するシリコンウ
ェーハの赤外散乱体密度を所定値以下とすることによ
り、酸化膜耐圧の良品率80%以上でかつOSF密度が
10ケcm-2以下の高品質シリコンウェーハであること
を保証した半導体シリコンウェーハに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal silicon wafer manufactured by the Czochralski method (CZ method),
By setting the infrared scatterer density of the silicon wafer to be observed after heat treatment at a specific temperature and time to a predetermined value or less, the yield rate of the oxide film is 80% or more and the OSF density is 10 cm -2 or less. The present invention relates to a semiconductor silicon wafer which is guaranteed to be a high quality silicon wafer.
【0002】[0002]
【従来の技術】半導体デバイスの製造に使用されるシリ
コンウェーハの品質は、半導体デバイスの歩留りや信頼
性に影響を及ぼすため、その品質に対して様々な規格が
定められている。特に、結晶欠陥は半導体デバイス特性
への影響が大きいため、様々な検査が出荷前にシリコン
ウェーハに対して行なわれている。通常よく行なわれて
いる検査方法は、BMD(Bulk Micro De
fect)・OSF(Oxidation−induc
ed Stacking Fault)等を1000
℃、16時間程度の熱処理をウェーハに施した後、選択
エッチを行ない、光学顕微鏡でエッチピットとして欠陥
密度を計測する方法が取られており、規格内のウェーハ
が出荷される。2. Description of the Related Art Since the quality of a silicon wafer used for manufacturing a semiconductor device affects the yield and reliability of the semiconductor device, various standards have been established for the quality. In particular, since crystal defects have a great influence on semiconductor device characteristics, various inspections are performed on silicon wafers before shipping. A commonly used inspection method is BMD (Bulk Micro De
OSF (Oxidation-induc)
ed Stacking Fault) etc. 1000
After performing a heat treatment on the wafer at 16 ° C. for about 16 hours, selective etching is performed, and the defect density is measured as an etch pit with an optical microscope.
【0003】年々高集積化する半導体デバイスの製造に
使用されるシリコンウェーハの品質に対する要求はます
ます厳しくなっており、BMD・OSFの項目以外にこ
れまではあまり問題とされなかった酸化膜耐圧特性など
も重要な項目になってきている。この酸化膜耐圧特性も
最近の研究でas−grownで存在する結晶欠陥が影
響していることが明かになった。しかしこれまでの結晶
欠陥の検査として行なわれてきたBMD・OSFの検査
では、酸化膜耐圧特性の評価は困難であり、従来の結晶
欠陥に対する検査方法及び規格では不十分な状況になっ
た。The demands on the quality of silicon wafers used in the manufacture of highly integrated semiconductor devices are becoming more and more stringent year by year, and oxide film withstand voltage characteristics, which have not been much problem until now, other than the items of BMD / OSF. Is becoming an important item. In recent studies, it has been revealed that the crystal defects existing in as-grown also affect the oxide film breakdown voltage characteristic. However, in the inspection of BMD / OSF which has been performed as a crystal defect inspection until now, it is difficult to evaluate the oxide film withstand voltage characteristics, and the conventional inspection method and standard for crystal defects are insufficient.
【0004】シリコンウェーハの初期酸化膜耐圧良品率
は、シリコンウェーハ上に所定の厚さの酸化膜と所定の
面積の電極を有する多数のMOSキャパシターを作製
し、各々のMOSキャパシターに所定の方法によって電
圧を印加した場合に、絶縁破壊しなかったMOSキャパ
シター数の全MOSキャパシター数に対する割合を初期
酸化膜耐圧良品としている。MOSキャパシターは一般
的に、熱酸化により形成した酸化膜上にLP−CVD法
によって、多結晶シリコン膜を形成した後、リンの拡散
を行い、多結晶シリコン膜を写真蝕刻法によりパターニ
ングするという工程を経て作製される。上記のように、
MOSキャパシターの作製には多くの手間がかかる。ま
た、MOSキャパシターを作製する従来の方法は、熱酸
化等を伴う破壊検査である。The yield rate of the initial breakdown voltage of a silicon wafer is determined by preparing a large number of MOS capacitors each having an oxide film having a predetermined thickness and an electrode having a predetermined area on the silicon wafer, and applying a predetermined method to each MOS capacitor. The ratio of the number of MOS capacitors that did not cause dielectric breakdown to the total number of MOS capacitors when a voltage was applied is defined as a good initial oxide film breakdown voltage product. In a MOS capacitor, generally, a step of forming a polycrystalline silicon film by an LP-CVD method on an oxide film formed by thermal oxidation, then diffusing phosphorus, and patterning the polycrystalline silicon film by a photo-etching method. It is produced through. as mentioned above,
It takes a lot of time and effort to manufacture a MOS capacitor. Further, the conventional method of manufacturing a MOS capacitor is a destructive inspection involving thermal oxidation and the like.
【0005】[0005]
【発明が解決しようとする課題】上述のごとく、シリコ
ンウェーハの品質に対する要求は厳しく、酸化膜耐圧の
良品率が高く、かつOSF密度が所定値以下であること
が要求されるが、酸化膜耐圧特性とOSF密度を被破壊
検査で簡単に測定でき、しかも検査したシリコンウェー
ハが所定の特性を保持していることを保証できる手段が
なく、高品質シリコンウェーハの安定的な供給が困難で
ある。As described above, the demands on the quality of the silicon wafer are strict, the rate of non-defective oxide film breakdown voltage is high, and the OSF density is required to be a predetermined value or less. The characteristics and the OSF density can be easily measured by a destructive inspection, and there is no means for guaranteeing that the inspected silicon wafer holds the predetermined characteristics, and it is difficult to stably supply a high-quality silicon wafer.
【0006】この発明は、高品質シリコンウェーハの安
定的な供給を目的とし、酸化膜耐圧特性とOSF密度を
被破壊検査で簡単に測定して、しかも所定の高特性を保
持していることを保証した半導体シリコンウェーハの提
供を目的としている。The present invention aims to stably supply a high-quality silicon wafer, and to easily measure the oxide film withstand voltage characteristic and the OSF density by a destructive inspection and to maintain a predetermined high characteristic. The purpose is to provide a guaranteed semiconductor silicon wafer.
【0007】[0007]
【課題を解決するための手段】発明者らは、図1に示す
ようにチョクラルスキー法で製造した結晶育成直後のa
s−grown状態のシリコンウェーハで赤外線を用い
た欠陥観察法、すなわち赤外線散乱トモグラフ法により
観察される赤外散乱体の密度とウェーハの酸化膜耐圧特
性の良品率が非常により相関があることを知見(特願平
4−266747号)した。また、このas−grow
nで観察される赤外散乱体は熱的に非常に安定で125
0℃の熱処理でも変化しないことを確認した。一方、図
2に示すようにシリコンウェーハに1100℃〜120
0℃の温度で30分〜60分の熱処理を行なった後に観
察される赤外散乱体の密度とOSFの密度とは非常に良
い相関があることも同様に知見(特願平5−55106
号)した。DISCLOSURE OF THE INVENTION The inventors of the present invention, as shown in FIG.
It was found that the density of infrared scatterers observed by a defect observation method using infrared rays in a s-grown silicon wafer, that is, the infrared scattering tomography method, and the non-defective rate of the oxide film withstand voltage characteristic of the wafer are much more correlated. (Japanese Patent Application No. 4-266747). Also, this as-grow
The infrared scatterers observed at n are thermally very stable and
It was confirmed that there was no change even by heat treatment at 0 ° C. On the other hand, as shown in FIG.
It was also found that there is a very good correlation between the density of the infrared scatterer and the density of the OSF observed after heat treatment for 30 to 60 minutes at a temperature of 0 ° C. (Japanese Patent Application No. 55106/1993).
No.)
【0008】従って、1100℃〜1200℃の温度で
30分〜60分の熱処理後に観察される赤外散乱体を計
測すれば、as−grownで存在し、酸化膜耐圧特性
とよい相関のある赤外散乱体と熱処理により新たに発生
し、OSFとよい相関のある赤外散乱体の両方を一度に
計測することが可能であることを知見した。すなわち、
この方法で計測される赤外散乱体の密度がウェーハの任
意の場所で所定値以下であれば、図1及び図2の赤外散
乱体の密度と酸化膜耐圧特性及びOSF密度の関係から
明らかなように酸化膜耐圧特性良好でかつOSF密度が
低いシリコンウェーハであることを保証できる。Therefore, when the infrared scatterer observed after the heat treatment for 30 minutes to 60 minutes at the temperature of 1100 ° C. to 1200 ° C. is measured, it is present as-grown and has a red color which correlates well with the oxide film withstand voltage characteristic. It was found that both the outer scatterer and the infrared scatterer newly generated by heat treatment and having a good correlation with OSF can be measured at one time. That is,
If the density of the infrared scatterer measured by this method is equal to or lower than a predetermined value at an arbitrary position on the wafer, it is clear from the relationship between the density of the infrared scatterer of FIGS. 1 and 2 and the oxide film breakdown voltage characteristic and the OSF density. Thus, it can be guaranteed that the silicon wafer has a good oxide film withstand voltage characteristic and a low OSF density.
【0009】この発明は、時間30分〜60分、温度1
100℃〜1200℃の条件の熱処理を施した半導体シ
リコンウェーハに対して、波長0.8〜1.35μmの
範囲の赤外線を用いた赤外線散乱トモグラフ法により観
察される赤外散乱体密度が、該シリコンウェーハの任意
の領域で1×105cm-3以下であり、酸化膜耐圧の良
品率80%以上でかつOSF密度が10ケcm-2以下で
あることを特徴とする半導体シリコンウェーハである。The present invention has a time of 30 to 60 minutes and a temperature of 1
The infrared scatterer density observed by an infrared scattering tomography method using infrared rays in the wavelength range of 0.8 to 1.35 μm was measured for a semiconductor silicon wafer that had been subjected to heat treatment under the conditions of 100 ° C. to 1200 ° C. A semiconductor silicon wafer characterized in that it is 1 × 10 5 cm −3 or less in any area of the silicon wafer, the yield rate of the oxide film is 80% or more, and the OSF density is 10 cm −2 or less. .
【0010】この発明において、赤外線散乱トモグラフ
法は、赤外線光を細かく絞りこみ試料の側面より入射さ
せると、結晶内に含まれる欠陥により光が散乱されるの
で、これを垂直方向から観察するもので、該スリット状
の散乱像を合成してビームで走査した断面の断面像を作
成し、赤外散乱体密度分布を得ることができる。また、
上記の90°散乱法では測定に際しウェーハをへき開す
る必要があるが、ブルースター角入射(照明)法により
測定すればへき開も不要となる。In the present invention, the infrared scattering tomography method is to observe the infrared light from a vertical direction because when the infrared light is finely squeezed and made incident from the side surface of the sample, the light is scattered by defects contained in the crystal. The infrared scatterer density distribution can be obtained by synthesizing the slit-shaped scattered images and creating a cross-sectional image of the cross section scanned by the beam. Also,
In the above 90 ° scattering method, the wafer needs to be cleaved at the time of measurement, but if the measurement is performed by the Brewster's angle incidence (illumination) method, the cleaving is also unnecessary.
【0011】この発明において、測定対象となるウェー
ハに施す短時間熱処理は、大気中、O2中などの酸化雰
囲気、N2、Arなどの不活性ガス雰囲気等いずれの雰
囲気でもよく、1100℃未満では赤外線散乱トモグラ
フ法により観察される欠陥分布に、OSF密度分布との
相関関係が十分に顕在化せず、また1200℃を超える
と同様に該相関関係が十分に顕在化しないため、110
0℃〜1200℃の温度条件が必要である。また、熱処
理時間は赤外散乱体密度にOSF密度分布との相関関係
を十分に顕在化させるのに、30分以上は必要である
が、60分を超えると該顕在化効果が飽和し、熱処理に
時間を要するだけであるため、30分〜60分とする。In the present invention, the short-time heat treatment applied to the wafer to be measured may be any atmosphere such as air, an oxidizing atmosphere such as O 2 atmosphere, an inert gas atmosphere such as N 2 or Ar, and the temperature is lower than 1100 ° C. Then, the correlation with the OSF density distribution is not sufficiently manifested in the defect distribution observed by the infrared scattering tomography method, and when the temperature exceeds 1200 ° C., the correlation is not sufficiently manifested.
A temperature condition of 0 ° C to 1200 ° C is required. Further, the heat treatment time is required to be 30 minutes or longer to sufficiently manifest the correlation between the infrared scatterer density and the OSF density distribution, but if it exceeds 60 minutes, the manifestation effect is saturated and the heat treatment is performed. It takes 30 to 60 minutes because it only takes time.
【0012】この発明において、赤外線散乱トモグラフ
法の赤外線の波長はSi結晶への透過能の低下を考慮し
て加減は0.8μmとし、また欠陥による赤外線散乱能
の低下、自由電子による吸収の増大および赤外線に対す
る影像管の感度を考慮して上限は1.35μmとする。In the present invention, the wavelength of infrared rays in the infrared scattering tomography method is adjusted to 0.8 μm in consideration of the decrease in the transmittance to the Si crystal, and the infrared scattering ability is decreased due to defects and the absorption by free electrons is increased. Also, considering the sensitivity of the image tube to infrared rays, the upper limit is 1.35 μm.
【0013】また、この発明において、シリコンウェー
ハの任意の領域での赤外散乱体密度を1×105cm-3
以下とする理由は、1100℃〜1200℃の温度で3
0分〜60分の熱処理後に観察される赤外散乱体が、a
s−grownで存在し酸化膜耐圧特性とよい相関のあ
る赤外散乱体と、熱処理により新たに発生しOSFとよ
い相関のある赤外散乱体の両方を含むもので、この赤外
散乱体密度が1×105cm-3以下であれば、実施例で
明らかなように、酸化膜耐圧特性が80%以上でかつO
SFが10ケ/cm2のシリコンウェーハであることを
保証できるためである。In the present invention, the infrared scatterer density in any region of the silicon wafer is set to 1 × 10 5 cm -3.
The reason for the following is 3 at a temperature of 1100 ° C to 1200 ° C.
The infrared scatterer observed after the heat treatment for 0 to 60 minutes was a
This infrared scatterer density includes both an infrared scatterer that exists in s-grown and has a good correlation with the oxide film withstand voltage characteristic, and an infrared scatterer that is newly generated by heat treatment and has a good correlation with OSF. Is 1 × 10 5 cm −3 or less, the oxide film withstand voltage characteristic is 80% or more and O
This is because it can be guaranteed that the SF is a silicon wafer of 10 pieces / cm 2 .
【0014】[0014]
【作用】この発明は、時間30分〜60分、温度110
0℃〜1200℃の条件の熱処理を施した半導体シリコ
ンウェーハに対して、波長0.8〜1.35μmの範囲
の赤外線を用いた赤外線散乱トモグラフ法により観察さ
れる赤外散乱体密度がas−grownで存在し酸化膜
耐圧特性とよい相関のある赤外散乱体と、熱処理により
新たに発生しOSFとよい相関のある赤外散乱体の両方
を含むことに着目し、赤外散乱体密度を測定すること
で、酸化膜耐圧特性とOSFとの両方の欠陥を同時に計
測することが可能であり、この欠陥を低密度に抑えるこ
とにより高酸化膜耐圧特性を有し、かつ低OSF密度の
シリコンウェーハの製造が可能となる。すなわち、上記
方法で計測される赤外散乱体の密度が、シリコンウェー
ハの任意の場所で1×105cm-3以下であれば、図1
及び図2の赤外散乱体の密度と酸化膜耐圧特性及びOS
F密度の関係から明らかなように、酸化膜耐圧特性が8
0%以上でかつOSF密度が10ケ/cm2以下である
ことを保証できる。The present invention has a temperature of 30 to 60 minutes and a temperature of 110.
The infrared scatterer density observed by an infrared scattering tomography method using infrared rays having a wavelength in the range of 0.8 to 1.35 μm is as − for a semiconductor silicon wafer that has been heat-treated under the conditions of 0 ° C. to 1200 ° C. Focusing on the inclusion of both an infrared scatterer that is present in a grown state and has a good correlation with the oxide film withstand voltage characteristic, and an infrared scatterer that is newly generated by heat treatment and has a good correlation with OSF, the infrared scatterer density is By performing the measurement, it is possible to measure defects of both the oxide film withstand voltage characteristic and the OSF at the same time. By suppressing these defects to a low density, the silicon oxide film has a high oxide film withstand voltage characteristic and a low OSF density. Wafers can be manufactured. That is, if the density of the infrared scatterer measured by the above method is 1 × 10 5 cm −3 or less at any place on the silicon wafer,
2 and the density of the infrared scatterer of FIG. 2 and oxide film withstand voltage characteristics and OS
As is clear from the relationship of F density, the oxide film withstand voltage characteristic is 8
It can be ensured that the OSF density is 0% or more and the OSF density is 10 cells / cm 2 or less.
【0015】[0015]
【実施例】初期酸化膜耐圧良品率が異なると予想される
23枚のCZ−シリコンウェーハを準備し、酸化膜厚2
50Å、電極面積8mm2のMOSキャパシターをウェ
ーハ面内に作製した。このMOSキャパシターにSV法
によって電圧を印加し、8MV/cm以下の電界で絶縁
破壊(12.5μA/cm2以上)したMOSキャパシ
ターを不良、それ以外を良品と判定し、良品数が全MO
Sキャパシター数に占める割合を初期酸化膜耐圧良品率
とした。次に、MOSキャパシターをエッチングによっ
て除去してへき開したウェーハの赤外散乱体密度を赤外
線散乱トモグラフ法によって測定した。上述のようにし
て測定した赤外散乱体密度と初期酸化膜耐圧良品率の関
係を示したのが図1である。図1から赤外散乱体密度を
測定することによって初期酸化膜耐圧良品率を推定でき
ることが明らかであり、赤外散乱体の密度が1×105
cm-3以下であれば80%以上の酸化膜耐圧良品率が得
られることがわかる。[Examples] 23 CZ-silicon wafers, which are expected to have different initial oxide film withstand rate, are prepared, and the oxide film thickness is 2
A MOS capacitor having a surface area of 50 mm and an electrode area of 8 mm 2 was produced in the wafer surface. A voltage was applied to this MOS capacitor by the SV method, and the MOS capacitor that had a dielectric breakdown (12.5 μA / cm 2 or more) at an electric field of 8 MV / cm or less was defective.
The ratio of the number of S capacitors to the initial oxide film withstand voltage non-defective rate. Next, the infrared scatterer density of the cleaved wafer after removing the MOS capacitor by etching was measured by the infrared scatter tomography method. FIG. 1 shows the relationship between the infrared scatterer density and the initial oxide film withstand voltage non-defective rate measured as described above. It is clear from FIG. 1 that the rate of non-defective initial oxide film breakdown voltage can be estimated by measuring the density of the infrared scatterers, and the density of the infrared scatterers is 1 × 10 5
It can be seen that a yield rate of the oxide film withstand voltage of 80% or more can be obtained if the density is cm −3 or less.
【0016】OSFが発生すると予想されるCZ−シリ
コンインゴットのほぼ同一の場所からウェーハを切りだ
し、1150℃で60分の熱処理後、赤外線散乱トモグ
ラフ法により観察された欠陥のウェーハ面内の欠陥密
度、すなわち赤外散乱体密度測定した。なお、欠陥の検
出下限:〜9×104ヶ/cm3である。また、従来法に
て、シリコンウェーハに1150℃、8時間の酸化処理
を施し、選択エッチ(Wrightエッチ)5分後に、
OSFによるエッチピットを光学顕微鏡により計測し
た。上述のようにして測定した赤外散乱体密度とOSF
密度との関係を示したのが図2である。図1から赤外散
乱体密度を測定することによってOSF密度を推定でき
ることが明らかであり、熱処理後に観察される赤外散乱
体の密度が×105cm-3以下であれば、OSFの密度
をほぼ平方cmあたり10ケ以下にすることができる。The wafer was cut out from the almost same place of the CZ-silicon ingot where the OSF is expected to occur, and after the heat treatment at 1150 ° C. for 60 minutes, the defect density of the defects observed by the infrared scattering tomography method in the wafer surface. That is, the infrared scatterer density was measured. The lower limit of defect detection is up to 9 × 10 4 defects / cm 3 . Further, according to the conventional method, the silicon wafer is subjected to an oxidation treatment at 1150 ° C. for 8 hours, and after 5 minutes of selective etching (Wright etching),
The etch pits due to OSF were measured with an optical microscope. Infrared scatterer density and OSF measured as described above
FIG. 2 shows the relationship with the density. It is clear from FIG. 1 that the OSF density can be estimated by measuring the density of the infrared scatterers, and if the density of the infrared scatterers observed after the heat treatment is 10 5 cm −3 or less, the density of the OSF is It can be 10 or less per square cm.
【0017】1100℃〜1200℃の温度での短時間
熱処理後に観察される赤外散乱体は、as−grown
で存在し、酸化膜耐圧に影響を及ぼすものと熱処理で新
たに顕在化され、OSFと関係しているものの総和を計
測しているが、上記の結果から短時間熱処理後に観察さ
れる赤外散乱体密度が1×105cm-3以下のシリコン
ウェーハであれば、酸化膜耐圧の良品率80%以上でか
つOSFが10ケcm-2以下の両方の条件を満足し非常
に良い結晶品質のウェーハが得られる。The infrared scatterers observed after a short heat treatment at a temperature of 1100 ° C. to 1200 ° C. are as-grown.
In addition, we have measured the sum of those that are present in the above, which influence the breakdown voltage of the oxide film and those which are newly revealed by the heat treatment and are related to the OSF. A silicon wafer having a body density of 1 × 10 5 cm -3 or less satisfies both conditions that the yield rate of the oxide film is 80% or more and the OSF is 10 cm -2 or less, and the crystal quality is very good. A wafer is obtained.
【0018】[0018]
【発明の効果】この発明は、高集積化に伴い要求される
シリコンウェーハの品質評価に対して、OSFと最近の
高集積化に伴いクローズアップされてきた酸化膜耐圧特
性に影響を及ぼす欠陥の両方の項目をこれまでより短時
間でしかも同時に検査することができ、しかも欠陥の密
度を所定範囲内に設定することにより、高酸化膜耐圧特
性を有しかつ低OSF密度の高品質シリコンウェーハで
あることを保証でき、高品質シリコンウェーハの安定的
な供給を実現できる。According to the present invention, for the quality evaluation of a silicon wafer required for high integration, OSF and the defect affecting oxide film withstand voltage characteristics, which has been highlighted in recent years with high integration, have been investigated. Both items can be inspected simultaneously in a shorter time than before, and by setting the defect density within a predetermined range, a high-quality silicon wafer with high oxide film breakdown voltage characteristics and low OSF density can be obtained. It can be guaranteed that there is a stable supply of high-quality silicon wafers.
【図1】as−grownで観察された赤外散乱体の密
度と酸化膜耐圧良品率の関係を示すグラフ。FIG. 1 is a graph showing the relationship between the density of infrared scatterers observed by as-grown and the yield rate of oxide film withstand voltage.
【図2】1150℃の1時間の熱処理後に観察された赤
外散乱体密度と1150℃、8時間の酸素雰囲気での熱
処理後に観察されたOSF密度の関係を示すグラフ。FIG. 2 is a graph showing the relationship between the infrared scatterer density observed after heat treatment at 1150 ° C. for 1 hour and the OSF density observed after heat treatment in an oxygen atmosphere at 1150 ° C. for 8 hours.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年12月6日[Submission date] December 6, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0005[Name of item to be corrected] 0005
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0005】[0005]
【発明が解決しようとする課題】上述のごとく、シリコ
ンウェーハの品質に対する要求は厳しく、酸化膜耐圧の
良品率が高く、かつOSF密度が所定値以下であること
が要求されるが、酸化膜耐圧特性とOSF密度を非破壊
検査で簡単に測定でき、しかも検査したシリコンウェー
ハが所定の特性を保持していることを保証できる手段が
なく、高品質シリコンウェーハの安定的な供給が困難で
ある。As described above, the demands on the quality of the silicon wafer are strict, the rate of non-defective oxide film breakdown voltage is high, and the OSF density is required to be a predetermined value or less. the characteristics and OSF density can be easily measured in a non-destructive inspection, yet there is no means which can ensure that the silicon wafers were examined holds the predetermined characteristic, it is difficult to stable supply of high quality silicon wafers.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0012[Correction target item name] 0012
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0012】この発明において、赤外線散乱トモグラフ
法の赤外線の波長はSi結晶への透過能の低下を考慮し
て下限は0.8μmとし、また欠陥による赤外線散乱能
の低下、自由電子による吸収の増大および赤外線に対す
る影像管の感度を考慮して上限は1.35μmとする。In the present invention, the lower limit of the wavelength of infrared rays in the infrared scattering tomography method is 0.8 μm in consideration of the decrease in the ability to penetrate into Si crystals, and the infrared ray scattering ability is reduced by defects and the absorption by free electrons is increased. Also, considering the sensitivity of the image tube to infrared rays, the upper limit is 1.35 μm.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0016[Correction target item name] 0016
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0016】OSFが発生すると予想されるCZ−シリ
コンインゴットのほぼ同一の場所からウェーハを切りだ
し、1150℃で60分の熱処理後、赤外線散乱トモグ
ラフ法により観察された欠陥のウェーハ面内の欠陥密
度、すなわち赤外散乱体密度測定した。なお、欠陥の検
出下限:〜9×104ヶ/cm3である。また、従来法に
て、シリコンウェーハに1150℃、8時間の酸化処理
を施し、選択エッチ(Wrightエッチ)5分後に、
OSFによるエッチピットを光学顕微鏡により計測し
た。上述のようにして測定した赤外散乱体密度とOSF
密度との関係を示したのが図2である。図2から赤外散
乱体密度を測定することによってOSF密度を推定でき
ることが明らかであり、熱処理後に観察される赤外散乱
体の密度が×105cm-3以下であれば、OSFの密度
をほぼ平方cmあたり10ケ以下にすることができる。The wafer was cut out from the almost same place of the CZ-silicon ingot where the OSF is expected to occur, and after the heat treatment at 1150 ° C. for 60 minutes, the defect density of the defects observed by the infrared scattering tomography method in the wafer surface. That is, the infrared scatterer density was measured. The lower limit of defect detection is up to 9 × 10 4 defects / cm 3 . Further, according to the conventional method, the silicon wafer is subjected to an oxidation treatment at 1150 ° C. for 8 hours, and after 5 minutes of selective etching (Wright etching),
The etch pits due to OSF were measured with an optical microscope. Infrared scatterer density and OSF measured as described above
FIG. 2 shows the relationship with the density. It is clear from FIG. 2 that the OSF density can be estimated by measuring the infrared scatterer density. If the density of the infrared scatterer observed after the heat treatment is 10 5 cm −3 or less, the OSF density is It can be 10 or less per square cm.
フロントページの続き (72)発明者 重松 達彦 佐賀県杵島郡江北町大字上小田2201番地 住友シチックス株式会社九州事業所内Continuation of the front page (72) Inventor Tatsuhiko Shigematsu 2201 Kamioda, Kohoku-cho, Kishima-gun, Saga Sumitomo Sitix Kyushu Office
Claims (2)
1200℃の条件の熱処理を施した半導体シリコンウェ
ーハに対して、波長0.8〜1.35μmの範囲の赤外
線を用いた赤外線散乱トモグラフ法により観察される赤
外散乱体密度が、該シリコンウェーハの任意の領域で1
×105cm-3以下であることを特徴とする半導体シリ
コンウェーハ。1. A time of 30 to 60 minutes and a temperature of 1100 ° C.
The infrared scatterer density observed by the infrared scattering tomography method using infrared rays in the wavelength range of 0.8 to 1.35 μm was measured for the semiconductor silicon wafer that had been subjected to the heat treatment under the condition of 1200 ° C. 1 in any area
A semiconductor silicon wafer having a size of × 10 5 cm -3 or less.
ウェーハであり、酸化膜耐圧の良品率80%以上でかつ
OSF密度が10ケcm-2以下であることを特徴とする
請求項1に記載の半導体シリコンウェーハ。2. The silicon wafer manufactured by the Czochralski method, wherein the yield rate of the oxide film is 80% or more and the OSF density is 10 cm −2 or less. Semiconductor silicon wafer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31445593A JPH07142299A (en) | 1993-11-18 | 1993-11-18 | Semiconductor silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31445593A JPH07142299A (en) | 1993-11-18 | 1993-11-18 | Semiconductor silicon wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07142299A true JPH07142299A (en) | 1995-06-02 |
Family
ID=18053559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31445593A Pending JPH07142299A (en) | 1993-11-18 | 1993-11-18 | Semiconductor silicon wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07142299A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100461893B1 (en) * | 2000-12-20 | 2004-12-16 | 미츠비시 스미토모 실리콘 주식회사 | Silicon wafer and method of producing silicon single crystal utilizing same |
JP2007311672A (en) * | 2006-05-22 | 2007-11-29 | Shin Etsu Handotai Co Ltd | Method of manufacturing soi substrate |
JP2017152544A (en) * | 2016-02-24 | 2017-08-31 | 信越半導体株式会社 | Single crystal wafer evaluation method |
-
1993
- 1993-11-18 JP JP31445593A patent/JPH07142299A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100461893B1 (en) * | 2000-12-20 | 2004-12-16 | 미츠비시 스미토모 실리콘 주식회사 | Silicon wafer and method of producing silicon single crystal utilizing same |
JP2007311672A (en) * | 2006-05-22 | 2007-11-29 | Shin Etsu Handotai Co Ltd | Method of manufacturing soi substrate |
JP2017152544A (en) * | 2016-02-24 | 2017-08-31 | 信越半導体株式会社 | Single crystal wafer evaluation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112011105735B4 (en) | Method for identifying crystal-related defects | |
JP3241296B2 (en) | Wafer defect analysis method | |
Sen et al. | Infrared absorption behavior in CdZnTe substrates | |
EP2423956B1 (en) | Method of analyzing iron concentration of boron-doped p-type silicon wafer and method of manufacturing silicon wafer | |
JP5682858B2 (en) | Silicon wafer evaluation method and manufacturing method | |
US20100019796A1 (en) | Method for evaluating silicon wafer | |
US5508800A (en) | Semiconductor substrate, method of manufacturing semiconductor substrate and semiconductor device, and method of inspecting and evaluating semiconductor substrate | |
EP2708846B1 (en) | Method for determining film thickness of soi layer of soi wafer | |
JPH07142299A (en) | Semiconductor silicon wafer | |
JP4784192B2 (en) | Evaluation method of silicon wafer | |
KR102038325B1 (en) | Method for measuring recombination lifetime of silicon substrate | |
JP3055594B2 (en) | Evaluation method of oxygen precipitation amount in silicon crystal | |
Wei et al. | Stress‐induced rearrangement of oxygen atoms in Si investigated by a monoenergetic positron beam | |
JPH11297779A (en) | Detection of fault in semiconductor device and its manufacture | |
JP2000031227A (en) | Wafer for heavy metal monitor and manufacture thereof | |
JP2011119528A (en) | Method for evaluating crystal defect of semiconductor single-crystal substrate | |
JPH1174493A (en) | Inspecting method for defect of soi wafer | |
JP2847228B2 (en) | Evaluation method of semiconductor jig material | |
EP3940124B1 (en) | Monocrystalline silicon crystal article | |
JP2007180266A (en) | Standard silicon wafer used for inspection made by defect inspection device, its manufacturing method, and inspection method using standard silicon wafer | |
RU2279154C1 (en) | Method for chemical etching of cadmium telluride | |
JPH02239642A (en) | Evaluation of compound semiconductor epitaxial film | |
JP2005061922A (en) | Method of measuring concentrations of impurities in silicon crystal | |
JPH0666695A (en) | Preparation of sample | |
JPH06242036A (en) | Evaluation method for silicon wafer |