JPH0714000B2 - Composite semiconductor device and manufacturing method thereof - Google Patents

Composite semiconductor device and manufacturing method thereof

Info

Publication number
JPH0714000B2
JPH0714000B2 JP60004897A JP489785A JPH0714000B2 JP H0714000 B2 JPH0714000 B2 JP H0714000B2 JP 60004897 A JP60004897 A JP 60004897A JP 489785 A JP489785 A JP 489785A JP H0714000 B2 JPH0714000 B2 JP H0714000B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
layer
composite
composite semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60004897A
Other languages
Japanese (ja)
Other versions
JPS61164238A (en
Inventor
有 大畑
広一 北原
毅 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60004897A priority Critical patent/JPH0714000B2/en
Publication of JPS61164238A publication Critical patent/JPS61164238A/en
Publication of JPH0714000B2 publication Critical patent/JPH0714000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は素子間分離を必要とする複合半導体装置および
その製造方法に関し、特に複数の半導体基板を接合して
得られる複合半導体基板に素子間分離技術を有効に適用
して高集積化を可能とするものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a composite semiconductor device requiring element isolation and a method for manufacturing the same, and particularly to element isolation on a composite semiconductor substrate obtained by bonding a plurality of semiconductor substrates. The technology is effectively applied to enable high integration.

〔発明の背景技術〕[Background Art of the Invention]

半導体基板に複数の機能素子をモノリシツクに形成する
集積回路ではこの機能素子間を分離する手法として絶縁
物層,PN接合を使用する技術が知られている。第8図に
はPN接合分離例を示す。即ち、P型の半導体基板(2)
にN型の気相成長層(3)を堆積し、この気相成長層
(3)には局部的にP+型の拡散層(1)を前記半導体基
板(2)に達するように形成して、PN接合で囲まれた島
領域を得る。この島領域は前記PN接合に逆バイアスを印
加することによつて他の気相成長層部分とは電気的に分
離する。
In an integrated circuit in which a plurality of functional elements are monolithically formed on a semiconductor substrate, a technique of using an insulating layer and a PN junction is known as a method of separating the functional elements. Fig. 8 shows an example of PN junction separation. That is, a P type semiconductor substrate (2)
Then, an N type vapor phase growth layer (3) is deposited on the substrate, and a P + type diffusion layer (1) is locally formed on the vapor phase growth layer (3) so as to reach the semiconductor substrate (2). To obtain an island region surrounded by PN junctions. By applying a reverse bias to the PN junction, this island region is electrically separated from other vapor phase growth layer portions.

一方、第9図には絶縁体分離例を示す。製法は省くが、
複数のN型半導体領域は酸化シリコン膜(4)及び多結
晶シリコン層(5)によつて分離され島領域を形成して
いる。
On the other hand, FIG. 9 shows an example of insulator separation. I will omit the manufacturing method,
The plurality of N-type semiconductor regions are separated by the silicon oxide film (4) and the polycrystalline silicon layer (5) to form island regions.

〔背景技術の問題点〕[Problems of background technology]

前記PN接合による分離方式は安価であることが利点であ
る反面、前記P+拡散層(1)の形成時に深さ方向と同寸
法の横方向拡散が発生することは不可避であるため、所
要面積が増大する難点がある。又前述のPN接合分離では
逆バイアスを印加するが、この際前記P+拡散層を接地し
て前記島領域の電位を高める必要があるので、この島領
域内に形成する集積回路を電気的に浮かすことになる。
従つて前記バイアス回路は複雑になる。
The separation method by the PN junction is advantageous in that it is inexpensive, but it is unavoidable that lateral diffusion having the same dimension as the depth direction occurs at the time of forming the P + diffusion layer (1). There is a drawback that it increases. Further, in the PN junction isolation described above, a reverse bias is applied, but at this time, since it is necessary to ground the P + diffusion layer to increase the potential of the island region, the integrated circuit formed in this island region is electrically connected. It will come to mind.
Therefore, the bias circuit becomes complicated.

又、前記PN接合で囲まれた気相成長層(3)に前記半導
体基板(2)をコレクターとしたトランジスタを形成し
た場合、エミツタ層,ベース層及び前記P+拡散層(1)
による寄生素子が形成され易い欠点がある。
When a transistor having the semiconductor substrate (2) as a collector is formed in the vapor phase growth layer (3) surrounded by the PN junction, an emitter layer, a base layer and the P + diffusion layer (1) are formed.
Due to this, there is a drawback that a parasitic element is easily formed.

次に、前記絶縁体分離方式では前記PN接合分離に必要な
バイアス回路が不要である外、寄生素子に伴う制約が少
ない等の利点がある。しかし、この方式では基板を多結
晶シリコンで構成する形態となるので、非常に厚い基板
が要るので経済的には不利となる外、でき上つた基板の
一面は絶縁されているためこれを電流通路として使用不
能となる。
Next, the insulator isolation method has advantages that the bias circuit required for the PN junction isolation is not necessary and that there are few restrictions associated with parasitic elements. However, in this method, since the substrate is made of polycrystalline silicon, a very thick substrate is required, which is economically disadvantageous. It cannot be used as a passage.

〔発明の目的〕[Object of the Invention]

本発明は前記素子間分離法の難点を克服した新規な複合
半導体装置およびその製造方法を提供するもので、特に
複数の半導体基板を接合によつて一体化して得られる複
合半導体基板に充填物を埋め込み、これによつてこの複
合半導体基板露出表面とこの充填物層間の距離を調整す
ることを目的とする。
The present invention provides a novel composite semiconductor device that overcomes the drawbacks of the element isolation method and a method for manufacturing the same, and particularly, to fill a composite semiconductor substrate obtained by integrating a plurality of semiconductor substrates by bonding with a filling material. Embedding, and thereby adjusting the distance between the exposed surface of the composite semiconductor substrate and the fill layer.

〔発明の概要〕[Outline of Invention]

導電型を異にするか、含有不純物濃度に差がある複数の
半導体基板表面を鏡面とし、これらを清浄な大気雰囲気
中で相互に密着することによつて両半導体基板が接合す
る事実を出願人は確認しており、先に出願している。こ
の接合技術は半導体基板の厚さが調製可能となる利点を
持つているものの、素子間分離技術として最近賞用され
ている溝型分離法の難点を必ずしも満足できない。すな
わち、溝形成に採用されるいわゆるRIE(Reactive Ion
Etching)法では溝の深さを大きくするのには多大の時
間が要る外、その内面形状を真直ぐに形成することも仲
々困難である。換言すればRIE法にも限界があることは
否めない。
Applicant has applied the fact that both semiconductor substrates are joined by making the surfaces of multiple semiconductor substrates with different conductivity types or with different impurity concentrations contained as mirror surfaces and adhering them to each other in a clean air atmosphere. Has confirmed and applied for it first. Although this bonding technique has an advantage that the thickness of the semiconductor substrate can be adjusted, it cannot necessarily satisfy the drawbacks of the groove-type separation method which has recently been awarded as an element separation technique. That is, the so-called RIE (Reactive Ion) used for groove formation
In the Etching method, it takes a lot of time to increase the depth of the groove, and it is difficult to form the inner surface of the groove straight. In other words, it cannot be denied that the RIE method has its limits.

本発明にあつては、前記接合技術の特長を保持すると共
に、前記複合半導体基板の一部に充填物層及び絶縁物層
を埋め込み、これに連ながる分離層を前記複合半導体基
板の露出表面部分迄形成して島領域を形成する。する
と、この島領域と、隣接する前記複合半導体基板の他の
部分とはその厚さすなわち前記接合層と、前記複合半導
体の露出表面間の距離に差が生じる。そこでこの距離の
大きい領域には耐圧が大きい機能素子を、前記島領域に
は、耐圧がより小さい機能素子が形成できるし、前記機
能素子を形成していない一方の半導体基板を高耐圧機能
素子の電流経路として利用できる複合半導体装置が得ら
れる。
In the present invention, while maintaining the features of the bonding technique, a filling layer and an insulating layer are embedded in a part of the composite semiconductor substrate, and a separation layer connected to the filling layer and the insulating layer is exposed on the composite semiconductor substrate. The surface area is formed to form island regions. Then, there is a difference in thickness between the island region and the other portion of the adjacent composite semiconductor substrate, that is, the distance between the bonding layer and the exposed surface of the composite semiconductor. Therefore, a functional element having a large withstand voltage can be formed in a region having a large distance, a functional element having a small withstand voltage can be formed in the island region, and one semiconductor substrate on which the functional element is not formed is a high withstand voltage functional element. A composite semiconductor device that can be used as a current path is obtained.

〔発明の実施例〕Example of Invention

第1図に示すように、N型シリコン半導体基板(10)の
一主面に公知の写真食刻工程を施して深さ80μ位の凹部
(11)を形成してから、この凹面を含む前記半導体基板
(10)に熱酸化膜(12)を被着すると第1図が得られ、
更にこの熱酸化膜に多結晶シリコン層(13)を前記凹部
(11)の深さより厚く積層すると第2図の縦断面図が得
られる。次いで、下地の前記N-型シリコン半導体基板
(10)が露出する迄前記多結晶シリコン層を研摩し、最
終的には表面粗さ500Å以下の鏡面を得る。この構造を
第3図の断面図に示した。一方、N+型シリコン半導体基
板(14)を準備し、その一主面にも前記鏡面研摩工程を
行つて同様に表面粗さ500Å以下の鏡面を形成する。
As shown in FIG. 1, a known photo-etching process is performed on one main surface of the N-type silicon semiconductor substrate (10) to form a recess (11) having a depth of about 80 μ, and then the recess including this recess is formed. When the thermal oxide film (12) is deposited on the semiconductor substrate (10), Fig. 1 is obtained,
Further, when a polycrystalline silicon layer (13) is laminated on the thermal oxide film so as to be thicker than the depth of the recess (11), the vertical sectional view of FIG. 2 is obtained. Next, the polycrystalline silicon layer is polished until the underlying N type silicon semiconductor substrate (10) is exposed, and finally a mirror surface having a surface roughness of 500 Å or less is obtained. This structure is shown in the sectional view of FIG. On the other hand, an N + type silicon semiconductor substrate (14) is prepared, and a mirror surface having a surface roughness of 500Å or less is similarly formed on the main surface thereof by the mirror surface polishing step.

これらのN+及びN-型シリコン半導体基板の表面状態によ
つてはH2O2+H2SO4→HF→稀HFによる前処理工程を行つて
脱脂及び前記半導体基板表面に被着するステインフイル
ムを除去する。続いて、清浄な水によつて数分程度水洗
し、室温でスピンナー処理のような脱水処理を実施す
る。この処理工程では前記シリコン半導体基板鏡面に吸
着していると想定される水分をそのまゝ残し、過剰な水
分を除去するもので、この吸着部分が殆んど揮散する10
0℃以上の加熱乾燥は避ける。これらの処理を経た前記
シリコン半導体基板を例えば1クラス以下の清浄な大気
雰囲気に設置して、その鏡面間に異物(ゴミ)が実質的
に介在しない状態で相互に密着して接合して複合半導体
基板(15)を形成する。このようにして接合した前記複合
シリコン半導体基板を200℃以上好ましくは1000℃乃至1
200℃で加熱処理することにより接合強度を増大するこ
とができる。
Depending on the surface state of these N + and N type silicon semiconductor substrates, H 2 O 2 + H 2 SO 4 → HF → rare HF is used for degreasing and stains deposited on the semiconductor substrate surface. Remove the film. Then, it is washed with clean water for about several minutes, and dehydration treatment such as spinner treatment is carried out at room temperature. In this treatment step, the water supposed to be adsorbed on the mirror surface of the silicon semiconductor substrate is left as it is to remove excess water, and the adsorbed portion is almost volatilized.
Avoid heating and drying above 0 ° C. The silicon semiconductor substrate that has undergone these treatments is placed in a clean atmosphere of, for example, one class or less, and is adhered to and bonded to each other in a state in which foreign substances (dust) are not substantially present between the mirror surfaces thereof. A substrate (15) is formed. The composite silicon semiconductor substrate bonded in this manner is 200 ° C. or higher, preferably 1000 ° C. to 1
The heat treatment at 200 ° C. can increase the bonding strength.

前記N+及びN-型のシリコン半導体基板鏡面には前記水洗
処理によつて何等かの極性基が形成され、この接合によ
つて粒界ができて、前記シリコン半導体のBulk組織と幾
分変化して接合層によつて両半導体基板を一体化して複
合半導体基板が得られると想定される。尚この複合半導
体基板を使用して機能素子を作成した際所望の半導体素
子特性が得られることはすでに検証済みである。第4図
に示したように前記複合半導体基板(15)は接合層(16)
に隣接して多結晶シリコン層(13)及び熱酸化シリコン
膜(12)が形成されており、結果的には埋め込まれてい
る。今後この多結晶シリコン層を充填物層,熱酸化シリ
コン膜を絶縁物層と呼称する。前記充填物層の形成によ
つて、前記複合半導体基板の厚さ、すなわち、前記接合
層(16)と前記複合半導体基板の露出一表面を結ぶ距離
bは前記絶縁物層(12)と前記複合半導体基板の露出一
表面を結ぶ距離aより大きいことになる。
Some polar groups are formed on the mirror surface of the N + and N type silicon semiconductor substrates by the water washing treatment, and grain boundaries are formed by this bonding, which changes somewhat from the bulk structure of the silicon semiconductor. Then, it is assumed that both semiconductor substrates are integrated by the bonding layer to obtain a composite semiconductor substrate. It has already been verified that desired semiconductor device characteristics can be obtained when a functional device is produced using this composite semiconductor substrate. As shown in FIG. 4, the composite semiconductor substrate (15) has a bonding layer (16).
A polycrystalline silicon layer (13) and a thermal silicon oxide film (12) are formed adjacent to, and as a result, they are buried. In the future, this polycrystalline silicon layer will be called the filling layer, and the thermal silicon oxide film will be called the insulating layer. Due to the formation of the filling layer, the thickness of the composite semiconductor substrate, that is, the distance b connecting the bonding layer (16) and the exposed one surface of the composite semiconductor substrate, is set to the composite layer and the composite layer. This is larger than the distance a connecting the exposed one surface of the semiconductor substrate.

次に素子分離技術を適用する。Next, element isolation technology is applied.

前記距離bとして20μを持つ、前記複合半導体基板の露
出一表面部分にRIE法によつて前記絶縁物層(12)に達
する巾4〜5μを持つ複数の溝(17)を形成し、この溝
内に酸化シリコン膜(18)を被着する。続いて、多結晶
シリコン層(19)を4〜5μこの溝に堆積すると平坦な
表面が得られる。この溝は前記複合半導体基板の特定部
分を区分する領域すなわち分離層として機能するので以
後分離層と呼称する。
A plurality of grooves (17) having a width of 4 to 5 μ reaching the insulating layer (12) are formed by an RIE method on the exposed one surface portion of the composite semiconductor substrate having the distance b of 20 μ. A silicon oxide film (18) is deposited inside. Subsequently, a polycrystalline silicon layer (19) having a thickness of 4 to 5 μm is deposited in this groove to obtain a flat surface. Since this groove functions as a region for separating a specific portion of the composite semiconductor substrate, that is, a separation layer, it is hereinafter referred to as a separation layer.

前記複合半導体基板の特定領域はこの分離層と前記絶縁
物層(12)で他の前記複合半導体基板の他領域と電気的
に絶縁され、いわゆる島領域(20)となる。第6図は、
前記複合半導体基板に機能素子を形成した複合半導体装
置(21)の断面構造を示す。
The specific region of the composite semiconductor substrate is electrically insulated from the other regions of the other composite semiconductor substrate by the separation layer and the insulating layer (12), and becomes a so-called island region (20). Figure 6 shows
2 shows a cross-sectional structure of a composite semiconductor device (21) in which a functional element is formed on the composite semiconductor substrate.

前記島領域(20)には耐圧をそれほど必要としない機能
素子(22)としてエミツタ(23),ベース(24)及びコ
レクター(25)を持つ制御部を公知の手法で形成し、前
記距離bを持つ前記複合半導体基板領域にはパワー素子
として良く知られるD-MOS型FET即ち他の機能素子(26)
形成する。
In the island region (20), a control unit having an emitter (23), a base (24) and a collector (25) as a functional element (22) that does not require a high breakdown voltage is formed by a known method, and the distance b is A D-MOS type FET well known as a power element, that is, another functional element (26) is formed in the composite semiconductor substrate region.

前記複合半導体基板の露出一表面には絶縁物層(27)を
形成し、前記制御部のパッシベーション(Passivatio
n)膜としても機能される。一方この絶縁物層には、前
記D-MOS型FETのゲート(28)が埋め込まれ、これの投影
部に重複するようにソース領域(29)を形成する。この
ソース領域は公知の拡散法又はイオン注入法を駆使して
2重の不純物領域(29,30)を形成する。前記複合半導
体基板の露出する他表面に導電層(31)を形成して、前
記D-MOS型FETのドレイン電極として動作させる。
An insulating layer (27) is formed on the exposed one surface of the composite semiconductor substrate to passivate the control unit.
n) It also functions as a membrane. On the other hand, the gate (28) of the D-MOS type FET is embedded in this insulator layer, and the source region (29) is formed so as to overlap the projected portion thereof. This source region forms a double impurity region (29, 30) by making full use of a known diffusion method or ion implantation method. A conductive layer (31) is formed on the other exposed surface of the composite semiconductor substrate to operate as a drain electrode of the D-MOS type FET.

前記絶縁物層(27)には選択的に開口を公知の写真食刻
工程で形成し、こゝに導電物質を堆積して前記エミツタ
(23),ベース(24),コレクター(25),ソース(2
9),及びゲート(28)の電極を形成して複合半導体装
(21)を完成する。この装置(21)にあつては前記複合
半導体基板の一部を構成する前記N+型シリコン半導体基
板が前記D-MOS型FET即ち他の機能素子の電流通路として
動作する。
Openings are selectively formed in the insulator layer (27) by a known photo-etching process, and a conductive material is deposited on the openings to form the emitter (23), base (24), collector (25), source. (2
9) and the electrodes of the gate (28) are formed to complete the composite semiconductor device (21) . In this device (21), the N + type silicon semiconductor substrate forming a part of the composite semiconductor substrate operates as a current path of the D-MOS type FET, that is, another functional element.

前記充填物層(13)の適用材料としては多結晶珪素を例
示したが、珪素酸化物等の他の絶縁材料も適用可能であ
る。
Polycrystalline silicon has been illustrated as an applicable material of the filling layer (13), but other insulating materials such as silicon oxide can also be applied.

前記分離層としては絶縁物分層法を採用した実施例を示
したが、P+領域によるPN接合分離法も採用可能である。
Although an example in which the insulating layer method is adopted as the separation layer is shown, the PN junction separation method by the P + region can also be adopted.

更に、前記島領域は単一の場合を第6図に示したが、こ
こに形成する機能素子の必要性に応じて第7図のように
前記充填物層(13)を複数個形成して距離aに差がある
島領域を形成し得る。
Further, although a single island region is shown in FIG. 6, a plurality of the filler layers (13) are formed as shown in FIG. 7 according to the necessity of the functional element formed therein. Island regions having a difference in the distance a can be formed.

〔発明の効果〕〔The invention's effect〕

本発明に係る複合半導体装置は前述のように不純物濃度
が異なるシリコン半導体基板を接合して一体化している
が、気相成長法を採用するのに比較して所望の不純物表
面濃度を保有することができ、被接合半導体基板の厚さ
が調製可能である利点を持つており、この前提条件を基
にしている。
In the composite semiconductor device according to the present invention, the silicon semiconductor substrates having different impurity concentrations are bonded and integrated as described above, but the desired semiconductor surface concentration must be maintained as compared with the case where the vapor phase growth method is adopted. And has the advantage that the thickness of the semiconductor substrate to be bonded can be adjusted, and is based on this precondition.

ところで、本願にあつては前記充填物層の採用によつて
使用される半導体領域の厚さに差を持たせて、耐圧特性
が異なる機能素子を同一の半導体基板にモノリシツクに
形成可能としたものである。この機能素子としてパワー
素子を形成した際、前記複合半導体基板の一部をその電
流通路として利用でき、複合半導体装置としては好都合
である。
By the way, in the present application, by adopting the filling layer, it is possible to monolithically form functional elements having different withstand voltage characteristics on the same semiconductor substrate by making the thicknesses of the semiconductor regions different from each other. Is. When a power element is formed as this functional element, a part of the composite semiconductor substrate can be used as a current path thereof, which is convenient as a composite semiconductor device.

前記島領域形成に当つては何等かの分離技術が不可欠な
要件となるが、前記充填物層の形成によつて溝形成もし
くはPN接合を形成する被加工シリコン半導体領域の距離
が、従来手法に比べて小さくできたので、加工手段の精
度及びコストが大幅に向上できる。
In forming the island region, some isolation technique is indispensable, but the distance of the silicon semiconductor region to be processed in which the groove formation or the PN junction is formed by the formation of the filling layer is different from the conventional method. Since it can be made smaller than the conventional one, the accuracy and cost of the processing means can be greatly improved.

前記充填物層の高さはD-MOS型FET及び制御部に必要な前
記距離b−aとして決定される。
The height of the filling layer is determined as the distance b-a required for the D-MOS type FET and the control unit.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第5図は本発明の工程毎における断面図、第
6図は複合半導体装置の断面図、第7図は本発明に係る
他の実施例断面図、第8図及び第9図は従来の素子分離
を示した断面図である。 10……N-型シリコン半導体基板 14……N+型シリコン半導体基板15 ……複合半導体基板 13……充填物層 12……絶縁物層 17……分離層 16……接合層 22……機能素子26 ……他の機能素子21 ……複合半導体装置
1 to 5 are cross-sectional views of each step of the present invention, FIG. 6 is a cross-sectional view of a composite semiconductor device, and FIG. 7 is a cross-sectional view of another embodiment of the present invention, FIGS. 8 and 9. FIG. 6 is a cross-sectional view showing conventional element isolation. 10 …… N - type silicon semiconductor substrate 14 …… N + type silicon semiconductor substrate 15 …… Composite semiconductor substrate 13 …… Filling layer 12 …… Insulating layer 17 …… Separating layer 16 …… Joining layer 22 …… Function Element 26 …… Other functional elements 21 …… Composite semiconductor device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−5544(JP,A) 特公 昭39−17869(JP,B1) 特公 昭52−28638(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-5544 (JP, A) JP-B 39-17869 (JP, B1) JP-B 52-28638 (JP, B2)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】相対向する第1半導体基板鏡面と第2半導
体基板鏡面間に導電性の接合層を有する複合半導体基板
と、前記接合面に隣接して前記第1半導体基板と第2半
導体基板の少なくとも一方に埋め込み形成された充填物
層と、前記第1半導体基板と第2半導体基板の少なくと
も一方と前記充填物層との間に形成された絶縁物層と、
前記絶縁物層と前記複合半導体基板の露出表面部との間
に形成された複数の分離層と、前記分離層と絶縁物層で
囲まれた前記複合半導体基板に形成された機能素子と、
前記機能素子が設けられた領域外に形成された他の機能
素子とを具備した複合半導体装置。
1. A composite semiconductor substrate having a conductive bonding layer between mirror surfaces of a first semiconductor substrate and a mirror surface of a second semiconductor substrate, which face each other, and the first semiconductor substrate and the second semiconductor substrate adjacent to the bonding surface. A filler layer embedded in at least one of the above, and an insulator layer formed between at least one of the first semiconductor substrate and the second semiconductor substrate and the filler layer,
A plurality of separation layers formed between the insulating layer and the exposed surface portion of the composite semiconductor substrate, and a functional element formed on the composite semiconductor substrate surrounded by the separation layer and the insulating layer,
A composite semiconductor device comprising: another functional element formed outside the region where the functional element is provided.
【請求項2】第一半導体基板の一主面の一部に凹部を形
成し、少なくとも前記凹部表面に絶縁膜を形成する工程
と、前記絶縁膜上に充填物層を堆積し前記凹部内を埋め
る工程と、前記充填物層表面を含む前記半導体基板の一
主面を鏡面化する工程と、清浄雰囲気中で、吸着水分を
有する鏡面化された一主面を有する第二半導体基板及び
鏡面化された前記第一半導体基板の一主面どうしを相互
に接合させた後、加熱処理し、複合半導体基板を形成す
る工程と、前記第一半導体基板内に前記絶縁膜を底部と
する分離層を形成する工程と、前記分離層内、及び前記
第一半導体基板の前記分離層以外の領域にそれぞれ異な
る機能素子を形成する工程とを含むことを特徴とする複
合半導体装置の製造方法。
2. A step of forming a recess in a part of one main surface of a first semiconductor substrate, forming an insulating film on at least the surface of the recess, and depositing a filling layer on the insulating film to form a recess in the recess. Filling step, mirroring one main surface of the semiconductor substrate including the surface of the filling layer, second semiconductor substrate having one mirrored main surface having adsorbed water in a clean atmosphere, and mirroring After bonding the two main surfaces of the first semiconductor substrate to each other, a heat treatment is performed to form a composite semiconductor substrate, and a separation layer having the insulating film as a bottom portion is formed in the first semiconductor substrate. A method of manufacturing a composite semiconductor device, comprising: a forming step; and a step of forming different functional elements in the separation layer and in regions of the first semiconductor substrate other than the separation layer.
【請求項3】前記第一および第二半導体基板双方の鏡面
研磨された一主面の表面粗さは500Å以下とすることを
特徴とする特許請求の範囲第2項記載の複合半導体装置
の製造方法。
3. The manufacture of a composite semiconductor device according to claim 2, wherein the surface roughness of one main surface of both the first and second semiconductor substrates, which is mirror-polished, is not more than 500Å. Method.
【請求項4】前記加熱処理の温度は200℃以上であるこ
とを特徴とする特許請求の範囲第2項記載の複合半導体
装置の製造方法。
4. The method for manufacturing a composite semiconductor device according to claim 2, wherein the temperature of the heat treatment is 200 ° C. or higher.
【請求項5】前記加熱処理は1000℃乃至1200℃の間で行
うことを特徴とする特許請求の範囲第2項記載の複合半
導体装置の製造方法。
5. The method for manufacturing a composite semiconductor device according to claim 2, wherein the heat treatment is performed at a temperature of 1000 ° C. to 1200 ° C.
JP60004897A 1985-01-17 1985-01-17 Composite semiconductor device and manufacturing method thereof Expired - Lifetime JPH0714000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60004897A JPH0714000B2 (en) 1985-01-17 1985-01-17 Composite semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60004897A JPH0714000B2 (en) 1985-01-17 1985-01-17 Composite semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61164238A JPS61164238A (en) 1986-07-24
JPH0714000B2 true JPH0714000B2 (en) 1995-02-15

Family

ID=11596459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60004897A Expired - Lifetime JPH0714000B2 (en) 1985-01-17 1985-01-17 Composite semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0714000B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586422B2 (en) * 1987-10-20 1997-02-26 日本電装株式会社 Method of manufacturing dielectric integrated composite integrated circuit device
JP2794702B2 (en) * 1987-11-30 1998-09-10 株式会社デンソー Method for manufacturing semiconductor device
JPH01302739A (en) * 1988-05-30 1989-12-06 Toshiba Corp Dielectric isolation semiconductor device and manufacture thereof
JP3014012B2 (en) * 1992-03-19 2000-02-28 日本電気株式会社 Method for manufacturing semiconductor device
JP3116609B2 (en) * 1992-11-25 2000-12-11 日本電気株式会社 Method for manufacturing semiconductor device
JP2795107B2 (en) * 1992-11-26 1998-09-10 日本電気株式会社 Method for manufacturing semiconductor device
JP3006387B2 (en) * 1993-12-15 2000-02-07 日本電気株式会社 Semiconductor device and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148954B2 (en) * 1972-10-13 1976-12-23
JPS5013155A (en) * 1973-06-06 1975-02-12
JPS5228638A (en) * 1975-08-30 1977-03-03 Tokyo Electric Power Co Inc:The Relay with plural inputs
JPS5779633A (en) * 1980-11-05 1982-05-18 Fujitsu Ltd Manufacture of semiconductor device
JPS5831730A (en) * 1981-08-20 1983-02-24 Mitsubishi Heavy Ind Ltd Bladder operating apparatus of tire vulcanizing machine
JPS59208851A (en) * 1983-05-13 1984-11-27 Hitachi Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPS61164238A (en) 1986-07-24

Similar Documents

Publication Publication Date Title
US5488243A (en) SOI MOSFET with floating gate
US4963505A (en) Semiconductor device and method of manufacturing same
US5138422A (en) Semiconductor device which includes multiple isolated semiconductor segments on one chip
JPS6276645A (en) Structure of composite semiconductor crystal
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
JPH039631B2 (en)
US5204282A (en) Semiconductor circuit structure and method for making the same
JPS61292934A (en) Manufacture of semiconductor element
JPH1074921A (en) Semiconductor device and manufacturing method thereof
JPH0714000B2 (en) Composite semiconductor device and manufacturing method thereof
JP3864430B2 (en) Manufacturing method of semiconductor device
JPH0296350A (en) Manufacture of semiconductor device
US4881115A (en) Bipolar semiconductor device having a conductive recombination layer
JP2861120B2 (en) Method for manufacturing semiconductor device
JPS63246841A (en) Dielectric isolating method of silicon crystal body
JP3243071B2 (en) Dielectric separated type semiconductor device
JPS6358817A (en) Composite semiconductor crystal structure
JPS624338A (en) Manufacture of semiconductor device
JPH01112746A (en) Semiconductor device
JPH08274160A (en) Semiconductor device and its manufacture
JPH08162640A (en) Manufacture of semiconductor device
JPH04103146A (en) Semiconductor device and manufacture thereof
JPH11204541A (en) Manufacture of combined substrate and semiconductor device
JPH0645429A (en) Manufacture of semiconductor device
JPS62193260A (en) Manufacture of composite semiconductor device