JPS62193260A - Manufacture of composite semiconductor device - Google Patents

Manufacture of composite semiconductor device

Info

Publication number
JPS62193260A
JPS62193260A JP61033855A JP3385586A JPS62193260A JP S62193260 A JPS62193260 A JP S62193260A JP 61033855 A JP61033855 A JP 61033855A JP 3385586 A JP3385586 A JP 3385586A JP S62193260 A JPS62193260 A JP S62193260A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
layer
substrate
insulating layer
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61033855A
Other languages
Japanese (ja)
Inventor
Yoshiro Baba
馬場 嘉郎
Yutaka Etsuno
越野 裕
Tatsuo Akiyama
秋山 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61033855A priority Critical patent/JPS62193260A/en
Publication of JPS62193260A publication Critical patent/JPS62193260A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To monolithically integrate the functional element, utilizing the base semiconductor substrate, and other functional element to be formed on a laminated semiconductor substrate by a method wherein a semiconductor substrates, showing the same conductivity type but having a difference in density of impurities contained, are adhered. CONSTITUTION:The first and the second silicon oxide layers 3 and 4 are coated on the surface of an N<+> type silicon semiconductor substrate 1 and an N<-> type semiconductor substrate 2, they are polished and closely contacted in the clean atmospheric air leaving the moisture adsorbed on the mirror-faced surface of an insulator as it is. Then, an oxide layer is provided on the surface of a composite semiconductor substrate, an etching is performed only on the part where a power element is expected to be formed, and the first semiconductor substrate 1 is exposed. Grooves 7... to be used for trench isolation are formed on the second semiconductor substrate 1 provided on a recessed part 6 by performing an RIE (reactive ion etching) method, an oxide layer 8 is coated on the grooves 7..., and a polycrystalline silicon layer 9 is deposited thereon. Then, a flat surface is formed by performing an RIE method, a new layer is formed on the whole surface of the substrate, a power MOSFET (metal oxide semiconductor field effect transistor) is formed on said epitaxially grown layer, and besides, a C/MOS and a small signal are formed on the second substrate 2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複合半導体素子の製造方法に関し、特に複数の
半導体基板を接着(以俊接合と記載し、その技術内容は
後述する)して得られる複合半導体基板に素子間分離技
術を有効に利用して高耐圧Icならびにパワ素子からな
る複合半導体装置に好適する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a composite semiconductor device, and particularly to a method for manufacturing a composite semiconductor device, which is obtained by bonding a plurality of semiconductor substrates (referred to as Ishitoshi bonding, the technical content of which will be described later). It is suitable for a composite semiconductor device that effectively utilizes element isolation technology on a composite semiconductor substrate and includes a high breakdown voltage Ic and a power element.

(発明の技術的背景) 従来から、ダイオード、バイポーラトランジスタ等のコ
レクタ接合や、2重拡散型)103FETのドレイン接
合等はPN接合を逆バイアス状態にして使用するが、そ
の際発生する直列抵抗を減らすためにN十導電型半導体
基板を下地にしたN−型半導体基板との積層構造を利用
してあり、更にこのN−型半導体基板には、反対導電型
の不純物を導入して半導体素子を形成するのが一般的で
ある。
(Technical Background of the Invention) Conventionally, collector junctions of diodes, bipolar transistors, etc., and drain junctions of double-diffused (103) FETs, etc., are used with the PN junction in a reverse bias state, but the series resistance generated at that time is In order to reduce the number of conductivity, a laminated structure is used in which an N- type semiconductor substrate is formed using an N0 conductivity type semiconductor substrate as a base, and impurities of the opposite conductivity type are introduced into this N- type semiconductor substrate to form a semiconductor element. It is common to form

しかも、この下地のN+型半導体基板の厚さを充分とっ
て耐圧向上ならびに成域的強度を増している。
Furthermore, the underlying N+ type semiconductor substrate is made sufficiently thick to improve breakdown voltage and regional strength.

この不純物の導入によって得られるPN接合底部と前記
N十型半導体基板までの距離を充分とって、このPN接
合の動作時に発生する空乏層による“Reach Th
rough ”による降伏現象を防止するのが一般的で
ある。
By keeping a sufficient distance between the bottom of the PN junction obtained by introducing this impurity and the N0 type semiconductor substrate, "Reach Th
It is common to prevent the breakdown phenomenon caused by "rough".

前述の積層構造を得るにはいわゆるエピタキシセル成長
法が利用されているが、含有不純物に濃度差がある場合
には下地の半導体基板に含有する不純物の外方拡散(A
IJtOdiffusion)によってその境界部分に
止まらず厳格な濃度制御が得られないのが実情である。
The so-called epitaxy cell growth method is used to obtain the above-mentioned layered structure, but when there is a difference in the concentration of impurities contained in the underlying semiconductor substrate, outward diffusion (A) of the impurities contained in the underlying semiconductor substrate is used.
The reality is that strict concentration control cannot be achieved not only in the boundary area but also in the boundary area due to IJtOdiffusion.

しかし、含有不純物の濃度に差がある半導体基板を一体
にする接合技術が開発され、出願人からすでに出願済み
である。すなわち多少湿り気のある半導体基板鏡面を密
着するとじ械的強度が充分にあり、恰も一枚の半導体基
板として取扱うことができる複合半導体基板が得られる
ものである。
However, a bonding technique for integrating semiconductor substrates with different concentrations of impurities has been developed, and the applicant has already filed an application for this technique. That is, by closely adhering the mirror surfaces of semiconductor substrates that are somewhat damp, a composite semiconductor substrate can be obtained which has sufficient mechanical strength and can be handled as a single semiconductor substrate.

この密着面には、元(BUに)の結晶と多少異なるもの
が形成されると想定されるが、熱ならびに電気的な障壁
にならず、しかもこの複合半導体基板に形成したPN接
合をもった機能素子は必要な電気的な特性を充分発揮し
得ることも確認されている。この接合技術は珪素半導体
基板同志に限らず、この珪素半導体基板表面に被着する
酸化珪素同志も可能である。
It is assumed that a crystal slightly different from the original crystal (on the BU) is formed on this adhesion surface, but it does not become a thermal or electrical barrier, and moreover, it has a PN junction formed on this composite semiconductor substrate. It has also been confirmed that the functional elements can sufficiently exhibit the necessary electrical characteristics. This bonding technique is not limited to bonding silicon semiconductor substrates together, but can also be applied to bonding silicon oxide bonds attached to the surface of this silicon semiconductor substrate.

(背景技術の問題点〕 近年半導体素子に要求される耐圧特性は大きくなる傾向
におり、最近ではその傾向が顕著であって、更に複数の
機能素子をモノリミックに集積することについても強い
要求がだされているのが現状である。
(Problems in the background art) In recent years, the breakdown voltage characteristics required of semiconductor devices have tended to increase, and this trend has become noticeable recently, and there is also a strong demand for monolithic integration of multiple functional devices. This is the current situation.

この耐圧特性については前述の積層@造中下地のN十型
半導体基板がこれに積層したN−型半導体基板により抵
抗が小さくかつ、この下地基板全体を電極として見做せ
る。しかも、N−型半導体基板に形成するPN接合では
その端部をこのN−型半導体基板表面に露出させるので
、この端部付近から形成する湾曲部への電界はこの湾曲
部から連続するN−型半導体基板表面にほぼ沿った平坦
部に対する電界より大きくなり半導体素子として要求さ
れる高耐圧を妨げる一因となっている。
With regard to this breakdown voltage characteristic, the resistance is small due to the N-type semiconductor substrate laminated on top of the N-type semiconductor substrate as the base during the above-described laminated structure, and the entire base substrate can be regarded as an electrode. Moreover, since the end of the PN junction formed on the N-type semiconductor substrate is exposed on the surface of the N-type semiconductor substrate, the electric field to the curved part formed from the vicinity of this end is applied to the N-junction that continues from this curved part. The electric field is larger than the electric field for a flat portion substantially along the surface of the type semiconductor substrate, and is one of the factors that prevents the high breakdown voltage required for semiconductor devices.

この積層構造を形成するには前述のようにエピタキシャ
ル法を採用せざるを得ず、しかもReachThrou
gh現象を避けるには堆積層の厚さを大きくしており、
空乏層を半導体基板表面に沿った方向に延ばすフィール
ドリミッティングタイプならびにPN接合端を保護する
絶縁物上にこの接合電極を延長するフィールドプレート
タイプもあるが集積度向上にとっては好ましくない。
In order to form this layered structure, the epitaxial method has to be adopted as mentioned above, and ReachThrough
To avoid the gh phenomenon, the thickness of the deposited layer is increased,
There is also a field limiting type in which the depletion layer extends in the direction along the surface of the semiconductor substrate and a field plate type in which the junction electrode is extended on an insulator that protects the PN junction end, but these are not preferred for improving the degree of integration.

ましてや、複数の機能素子をモノリミックに集積する複
合半導体装置にあっては有効な集積化が命題である以上
採用し難い手法である。この複合半導体装置では分離技
術が必要となるが、PN接合分離では逆バイアスを印加
するためにバイアス回路がいる外に、P十拡散溜を接地
して島領域の電位を高めこの島領域を電気的に浮かづの
で複雑な回路となり、更に奇生素子が生じ易い難点をも
っている。
Furthermore, this method is difficult to adopt in the case of a composite semiconductor device in which a plurality of functional elements are monolithically integrated, since effective integration is essential. This composite semiconductor device requires isolation technology, and in addition to requiring a bias circuit to apply a reverse bias in PN junction isolation, the P+ diffusion reservoir is grounded to increase the potential of the island region and electrically connect this island region. This creates a complicated circuit, and it also has the disadvantage that it is likely to generate unnatural elements.

これに対して絶縁体分離方式は、このバイアス回路が不
要となる利点がおる反面基板として厚い多結晶珪素を利
用するために、経済的に不利となる外、でき上った基板
の一面は絶縁物で構成されて電流経路としての利用が不
能になる。
On the other hand, the insulator separation method has the advantage of not requiring this bias circuit, but it is economically disadvantageous because it uses thick polycrystalline silicon as the substrate, and one side of the resulting substrate is insulated. It is made up of objects and cannot be used as a current path.

〔発明の目的〕[Purpose of the invention]

本発明は接合技術を利用した複合半導体基板に素子間分
離技術を巧みに応用し、この下地の半導体基板を利用す
る機能素子と積層した半導体基板に形成する他の機能素
子をモノリミックに集積した新規な複合半導体装置の製
造方法を提供するものでおる。
The present invention skillfully applies element isolation technology to a composite semiconductor substrate using bonding technology, and is a novel method that monolithically integrates functional elements using this underlying semiconductor substrate and other functional elements formed on the laminated semiconductor substrates. The present invention provides a method for manufacturing a complex semiconductor device.

[発明の概要] 上記目的を達成するために本発明では同一導電型を示す
が含有不純物濃度に差がある半導体基板表面に被着した
絶縁物層を鏡面加工し、この鏡面同志を多少湿らせて密
着し、得られる接合層によって両生導体基板が一体とな
った複合半導体基板を得る。この基板を構成する含有不
純物濃度の低い半導体基板を選択的に食刻して含有不純
物濃度が大きい下地の半導体基板を露出させる外にi〜
レンチrsOIatiOn用溝を設け、この露出した半
導体基板に設けるエピタキシセル層にパワ素子を更にト
レンチl5olation用溝ならびに前記絶縁物で得
られる島領域が機能素子を形成する手法を採用した。
[Summary of the Invention] In order to achieve the above object, in the present invention, an insulating layer deposited on the surface of a semiconductor substrate having the same conductivity type but different impurity concentrations is mirror-finished, and the mirror-finished surfaces are slightly moistened. A composite semiconductor substrate is obtained in which the bidirectional conductive substrates are integrated by the bonding layer. The semiconductor substrate constituting this substrate with a low concentration of impurities is selectively etched to expose the underlying semiconductor substrate with a high concentration of impurities.
A method was adopted in which a groove for trench rsOIatiOn was provided, and a power element was formed in the epitaxial cell layer provided on the exposed semiconductor substrate, and a functional element was formed by the groove for trench l5olation and the island region obtained from the insulator.

〔発明の実施例〕[Embodiments of the invention]

第1図a−e乃至第2図a−fにより本発明を詳述する
が、先ず接合技術について説明する。
The present invention will be described in detail with reference to FIGS. 1 a-e to 2 a-f. First, the joining technique will be explained.

被接合用の半導体基板として比抵抗5〜6,5Ω・cm
のN十型珪素半導体基板1と比抵抗2〜5Ω・cmを示
すN−型半導体基板2を用意し、これらの表面に厚さ1
0000人程度の第1及び第2の珪素酸化物層3,4を
被覆し、これを研磨して粗さ500Å以下の第1及び第
2鏡面を形成する。この研磨工程俊の表面状態によって
は油脂分等を前処理工程によって除去する。次いで清浄
な水で数分程度水洗いし、空温でスピンナ処理のような
脱水処理を行って、前記絶縁物層鏡面に吸着していると
想定される水分はそのまま残し、過剰な水分を除去する
が、この吸着水分が殆んど揮散する100℃以上の加熱
乾燥は避ける。
Specific resistance 5-6.5Ω・cm as a semiconductor substrate for bonding
An N-type silicon semiconductor substrate 1 having a resistivity of 2 to 5 Ω·cm and an N-type semiconductor substrate 2 having a resistivity of 2 to 5 Ω·cm are prepared.
The first and second silicon oxide layers 3 and 4 having a thickness of about 0,000 Å are coated and polished to form first and second mirror surfaces with a roughness of 500 Å or less. Depending on the surface condition of the polishing process, oils and fats may be removed in a pretreatment process. Next, it is washed with clean water for several minutes, and dehydration treatment such as spinner treatment is performed at air temperature to remove excess moisture while leaving the moisture assumed to have been adsorbed on the mirror surface of the insulating layer intact. However, avoid heating and drying at temperatures above 100°C, where most of this adsorbed moisture will evaporate.

この処理を経た珪素半導体基板を例えばクラス1以下の
清浄な大気雰囲気に設置して、その鏡面間に異物(ゴミ
)が実質的に介在しない状態で相互に密着接合して複合
半導体基板を形成する。尚この複合半導体基板を200
℃以上、好ましくは1000’C乃至1200℃で加熱
処理して接合強度を増すこともできる。接合工程時の雰
囲気は大気の外に酸素もしくは両者の混合雰囲気も適用
可能であり、この接合強度を増す場合にも同様な雰囲気
を採用し17る。
The silicon semiconductor substrates that have undergone this treatment are placed in a clean atmosphere of class 1 or lower, for example, and are closely bonded to each other with substantially no foreign matter (dust) intervening between the mirror surfaces to form a composite semiconductor substrate. . Furthermore, this composite semiconductor substrate is
The bonding strength can also be increased by heat treatment at a temperature of 1000'C or higher, preferably 1000'C to 12000C. As the atmosphere during the bonding process, in addition to the air, oxygen or a mixed atmosphere of both can be used, and a similar atmosphere is also used to increase the bonding strength17.

ところで、この接合工程では前記鏡面に対する水洗工程
によって極性基が形成され、これによる結合によってB
ulk組織と多少異なる接合層5が得られるので両生導
体基板が一体化した複合半導体基板が得られると想定さ
れ、ここに形成する機能素子は所望の半導体特性が得ら
れることも検証済みで必る。
By the way, in this bonding process, polar groups are formed by the water washing process on the mirror surface, and the bonding caused by this causes B
Since a bonding layer 5 that is somewhat different from the ulk structure is obtained, it is assumed that a composite semiconductor substrate in which the amphiphilic conductive substrate is integrated can be obtained, and it is necessary that the functional element formed here has been verified to have the desired semiconductor characteristics. .

更に、この複合半導体基板に形成した接合層5は付加す
る熱負荷に応じてその境界が変動する事態も考えられる
ので、本発明における接合層は同一導電型を示し、かつ
含有不純物の濃度に差がある積層構造の半導体基板境界
を画然と区分することだけを意味するものでなく前述の
変動状態も含むものでおる。
Furthermore, since the boundary of the bonding layer 5 formed on this composite semiconductor substrate may change depending on the applied heat load, the bonding layer in the present invention has the same conductivity type and has a different concentration of impurities. This term does not only mean sharply dividing the boundaries of semiconductor substrates in a certain laminated structure, but also includes the above-mentioned fluctuation state.

前記接合工程完了後の複合半導体基板の断面図を第1図
aに示した。
A cross-sectional view of the composite semiconductor substrate after the bonding process is completed is shown in FIG. 1a.

この複合半導体基板ではN+型第1半導体基板1の厚さ
が530朗程度であり、これに積層したN−型半導体基
板2は接合工程後厚さ20即程度に研磨して成形する。
In this composite semiconductor substrate, the N+ type first semiconductor substrate 1 has a thickness of approximately 530 mm, and the N- type semiconductor substrate 2 laminated thereon is polished and formed to a thickness of approximately 20 mm after the bonding process.

次にこの複合半導体基板の表面に酸化物層を設けてから
、パワ素子の形成予定位置のみを公知のPEP(Pho
to Engraving Process)工程によ
って食刻する。即ちこの酸化膜の一部を除去してから更
に第2半導体基板を食刻し続は前記第2酸化物図に到達
して反応が停止するが、HFff1理によって第1及び
第2酸化物層ならびに接合層5を溶除して第1半導体基
板1を露出させる。この結果第1図す及びCに示すよう
に凹部6が得られる。
Next, an oxide layer is provided on the surface of this composite semiconductor substrate, and only the positions where the power elements are to be formed are covered with known PEP (Pho).
to Engraving Process). That is, after a part of this oxide film is removed, the second semiconductor substrate is further etched, and the reaction stops when the second oxide layer is reached, but due to the HFff1 principle, the first and second oxide layers are etched. Also, the bonding layer 5 is dissolved away to expose the first semiconductor substrate 1. As a result, a recessed portion 6 is obtained as shown in FIGS.

次にこの凹部6を設けた第2半導体基板2にトレンチl
5olation用溝7・・・を公知RIE法によって
形成するが、その用途から明らかなように第2酸化物層
4に到達させ、その断面を第11図すに示した。しかし
、第2半導体基板2に埋込層を持ったバイポーラトラン
ジスタを設置する例ではこの埋込層迄の溝を形成する。
Next, a trench l is formed in the second semiconductor substrate 2 provided with this recess 6.
The grooves 7 for 5olation are formed by a known RIE method, and as is clear from the purpose of this method, they reach the second oxide layer 4, and the cross section thereof is shown in FIG. However, in an example in which a bipolar transistor having a buried layer is installed in the second semiconductor substrate 2, a trench is formed up to the buried layer.

尚このバイポーラトランジスタを設置する例にあっては
接合工程以降前の第2半導体基板にイオン注入法によっ
てN+領領域設け、更に前述のような酸化物層被覆−鏡
面研磨工程を経て接合工程を実施する。
In the case of installing this bipolar transistor, an N+ region is provided in the second semiconductor substrate by ion implantation prior to the bonding process, and then the bonding process is performed through the oxide layer coating and mirror polishing process as described above. do.

引続いて酸化工程に移行する。前記凹部6にはパワ素子
を形成するのは前述の通りであるが、エビキタシャル成
長層を堆積するためにここは酸化マスクを設はトレンチ
l5olation用溝7・・・に酸化物層8を被覆し
この断面を第1図すに示した。この酸化物層を他のそれ
と判別するために今後第3酸化物層8と記載する。勿論
第2半導体基板2の表面の先に被着した酸化物層も総称
する。
Subsequently, the process moves to an oxidation step. As described above, a power element is formed in the recess 6, but an oxide mask is provided here in order to deposit an epitaxial growth layer, and an oxide layer 8 is coated in the trench l5olation groove 7. This cross section is shown in Figure 1. In order to distinguish this oxide layer from other oxide layers, it will be referred to as a third oxide layer 8 from now on. Of course, the oxide layer deposited on the surface of the second semiconductor substrate 2 is also generically referred to.

この凹部6ならびに溝7・・・を形成した複合半導体基
板表面に多結晶珪素層9を1 torrの減圧雰囲気で
厚さ25μ位堆積して、凹部6には比抵抗40〜50Ω
’ cm表面濃度1014 atom/CC程度(7)
エピタキシャル成長層を成長させると共に溝7・・・内
には酸化物を充填する。この溝は深さ約20JJI!!
であるが、この減圧雰囲気における珪素ガスの平均自由
工程が数百−となることによって充分埋設が可能である
。この堆積した予想図を第1図Cに、又エピタキシャル
層が成長した状態を第1図dに示した。
A polycrystalline silicon layer 9 is deposited to a thickness of about 25 μm in a reduced pressure atmosphere of 1 torr on the surface of the composite semiconductor substrate on which the recesses 6 and grooves 7 have been formed, and the recesses 6 have a specific resistance of 40 to 50Ω.
'cm surface concentration about 1014 atoms/CC (7)
While growing the epitaxial growth layer, the trenches 7 are filled with oxide. This groove is about 20JJI deep! !
However, since the mean free path of silicon gas in this reduced pressure atmosphere is several hundreds -, sufficient burial is possible. A diagram of this deposited state is shown in FIG. 1C, and a state in which the epitaxial layer has grown is shown in FIG. 1D.

次にこの複合半導体基板に0FPR800(東京応化製
ポジレジスト)を塗布後RIE法によっていわゆるエッ
チバックを実施して平坦な表面を形成する。このRIE
条件としてはBCA36SCCM  αし23SCCM
 Si Cf1q 18SCC14圧力15パス力ルP
ower 800W、電圧312Vで行い、次いで多結
晶珪素からなるエピタキシャル成長層の蓋となる新しい
酸化物層を複合半導体基板全面に形成する。これに先立
ちこの平坦化工程後先に被着した第3酸化物層8を溶除
する。
Next, after coating this composite semiconductor substrate with 0FPR800 (a positive resist manufactured by Tokyo Ohka Co., Ltd.), a so-called etch-back is performed by the RIE method to form a flat surface. This RIE
The conditions are BCA36SCCM α and 23SCCM
Si Cf1q 18SCC14 Pressure 15 Pass Force P
Then, a new oxide layer is formed over the entire surface of the composite semiconductor substrate, which will serve as a lid for the epitaxial growth layer made of polycrystalline silicon. Prior to this, the third oxide layer 8 previously deposited after this planarization step is dissolved away.

この新酸化物層を被着した状態を第2図aの断面図に示
した。以下にパワHO3FETをこのエピタキシャル成
長層に、更にC/MO3ならびに小信号下rを第2半導
体基板2に形成する工程を示す。
The state in which this new oxide layer has been deposited is shown in the cross-sectional view of FIG. 2a. The steps for forming a power HO3FET on this epitaxial growth layer, and further forming a C/MO3 and a small signal underlayer on the second semiconductor substrate 2 will be described below.

エピタキシャル成長層の蓋すなわちCapOxidat
ionによって平坦に形成した酸化膜10の一部を公知
のPEP工程によって除去して厚さを小ざくする。と言
うのはBをイオン注入してP−Wel1層11、パワH
O3FET用のガードリング11とベースコンタクトを
形成するでためにその注入深さを調整するのに取られる
手法であり、イオン注入後はSlumDinO工程を実
施するのは常法通りである。
Cap of epitaxial growth layer, ie CapOxidat
A part of the oxide film 10 formed flat by ion is removed by a known PEP process to reduce the thickness. This is because B is ion-implanted, P-Wel 1 layer 11, power H
This method is used to adjust the implantation depth in order to form the guard ring 11 and base contact for the O3FET, and it is the usual method to perform the SlumDinO process after ion implantation.

このイオン注入工程によって形成するP−Wel1層等
の表面濃度は1017 atoms/CIi程度である
The surface concentration of the P-Wel1 layer and the like formed by this ion implantation process is about 1017 atoms/CIi.

次にC/803素子のゲート作成予定位置ならびにパワ
HO3FETのゲート作成予定位置に存在する酸化膜1
0を公知のPEP工程によって除去してゲート酸化膜1
1.12.13を設けてからC/HO3素子のNチャン
ネル及びPチャンネルをvthをコントロールするため
ゲート酸化膜11.12を介してBを別々に注入する。
Next, there is an oxide film 1 existing at the planned position for forming the gate of the C/803 element and the planned position for forming the gate of the power HO3FET.
0 is removed by a known PEP process to form a gate oxide film 1.
After providing 1.12.13, B is separately implanted through the gate oxide film 11.12 in order to control vth of the N channel and P channel of the C/HO3 element.

その後多結晶珪素層14を被着後C,D、 E(Che
mical()ry Etching)法によってゲー
ト酸化膜11〜13上の電極14.15.16となる以
外を除去する。第2図すにはこのC,D、 Eパターニ
ング前の断面図を示すが、ここにはPo1y Si層1
4のパターニングに必要なレジスト層を記載した。
After that, after depositing the polycrystalline silicon layer 14, C, D, E (Che
The portions of the gate oxide films 11 to 13 other than those that will become the electrodes 14, 15, and 16 are removed by a mical ()ry etching) method. Figure 2 shows a cross-sectional view before C, D, and E patterning, and here the Po1ySi layer 1
The resist layer necessary for patterning No. 4 is described.

ここでパワ)IO3FETの最重要部とも吉えるP−b
ody部の形成に当ってはゲート電極16を積層するゲ
ート酸化膜13ならびに小信号トランジスタの形成予定
位置上の酸化膜を除いてインプラマスクとしてレジスト
を塗布してからBをイオン注入する。この場合p −b
ody部7の表面領域は約1016 atoms/Cl
1tPベース18のそれは1017 atoIIls/
CIi程度にするが、常法通リアニール工程を施す。
Here, the most important part of IO3FET is P-b.
In forming the ody part, a resist is applied as an implant mask except for the gate oxide film 13 on which the gate electrode 16 is laminated and the oxide film on the position where the small signal transistor is to be formed, and then B is ion-implanted. In this case p −b
The surface area of the ody part 7 is approximately 1016 atoms/Cl
That of 1tP base 18 is 1017 atoIIls/
A conventional reannealing process is performed to achieve a CIi level.

この工程後の断面図を第2図Gに示し、更に第2図dに
示すようにソース領域19の形成に移行する。このソー
ス領域19はPのイオン注入法によるために小信号NP
Nトランジスタのエミッタ20C/803 Nチャンネ
ルMO3に形成するソースならびにドレイン領域21.
22. PチャンネルMO3領域に設けるチャンネルス
トッパ23ならびにバックゲート24、更にNPNI−
ランジスタのコレクタコンタクト25、更に又パワHO
3FETのチャンネルストッパ26.27を同時に形成
する。このP表面濃度はほぼ1020 atoms/C
l11で必る。又第2酸化物層4に隣接するn領域には
N十領域28を設けて矢張りチャンネルストッパとして
機能させる。
A cross-sectional view after this step is shown in FIG. 2G, and the process proceeds to the formation of the source region 19 as shown in FIG. 2d. Since this source region 19 is formed by P ion implantation, a small signal NP
Emitter 20C/803 of N transistor Source and drain regions 21 formed in N channel MO3.
22. Channel stopper 23 and back gate 24 provided in the P-channel MO3 region, and further NPNI-
Collector contact 25 of transistor, and also power HO
3FET channel stoppers 26 and 27 are formed at the same time. This P surface concentration is approximately 1020 atoms/C
It is necessary in l11. Further, an N+ region 28 is provided in the n region adjacent to the second oxide layer 4 to function as a channel stopper.

次に第2図eにに示すようにBをレジストをマスクとし
てイオン注入して表面@度約101017ato/cm
のP十領域を形成する。即ちC/803のNチャンネル
に設けるチャンネルストッパ29、バックゲート30.
 PチャンネルMO3のソースならびにドレイン領域3
1.32、NPNトランジスタのベースコンタクト33
を設置する。
Next, as shown in FIG.
A P1 area is formed. That is, a channel stopper 29, a back gate 30 .
Source and drain regions 3 of P-channel MO3
1.32, NPN transistor base contact 33
Set up.

これらの各領域を形成した後、N2雰囲気1100℃で
アニール処理を繰返して実施する。これはNPNI−ラ
ンジスタにおけるエミッタ接地電流和jqを11定額と
して行うものでおる。
After forming each of these regions, annealing treatment is repeatedly performed at 1100° C. in an N2 atmosphere. This is done by assuming that the sum of emitter grounded currents jq in the NPNI transistor is 11 constants.

引続いてアンド−ブトCVI化膜5000人、BPSG
8000人、p3G1000人をこの順序で積層後オキ
シ塩化リンを900°Cでデポしてリンブックリングを
行い、公知のPEP工程により開口形成してAfl−3
i層のシンタリングを行う。最終的には表面安定化層と
してP(プラズマ)層32を1凱位被覆して、Nch、
MOS、PC聞OSからなる07MO3、NPN小信号
トランジスタ及びPower )iosFETからなる
複合半導体装置を得、これを第2図「に示した。
Subsequently, 5,000 and-button CVI membranes, BPSG
After laminating 8,000 people and 1,000 people of p3G in this order, phosphorus oxychloride was deposited at 900°C to perform phosphorus book ring, and openings were formed using a known PEP process to form Afl-3.
Perform sintering of the i layer. Finally, one level of P (plasma) layer 32 is coated as a surface stabilizing layer, and Nch,
A composite semiconductor device consisting of a 07MO3 consisting of a MOS, a PC/OS, an NPN small signal transistor, and a Power) iosFET was obtained, and this is shown in FIG.

(発明の効果〕 本発明に係る複合半導体装置では、半導体基板の横方向
を主に利用する小信号トランジスタやC/)!O3素子
と、縦方向を利用する素子としてパワ1−103FET
を七ノリミックに形成する。従って、同一導電型を示し
不純物′a度に差がある半導体基板表面を被覆する絶縁
物に形成した鏡面を接合して複合半導体基板を得る方式
を採用して必要な積層構造における外方拡散が少なく濃
度制御を確実にした。
(Effects of the Invention) In the composite semiconductor device according to the present invention, small signal transistors and C/)! O3 element and power 1-103FET as an element that utilizes the vertical direction
Form into seven norimics. Therefore, by adopting a method to obtain a composite semiconductor substrate by bonding mirror surfaces formed on insulators covering the surfaces of semiconductor substrates having the same conductivity type and different impurity levels, outward diffusion in the necessary stacked structure can be achieved. Ensured concentration control.

一方この絶縁物層を不可欠な島領域形成に利用しており
、更にトレンチl5olation用渦には絶縁物層を
設買りる。前)小の機能素子にはベース)農[宴か異な
るものが存在しているため複合半導体)基板の一部を除
去してエピタキシャル層を成長させると同時にトレンチ
l5olation用渦に絶縁物を埋没した。これには
減圧エピタキシャル法を採用して溝内への埋没を達成し
た。
On the other hand, this insulating layer is used to form an essential island region, and an insulating layer is also provided in the trench l5olation vortex. Previous) For small functional devices, base) A part of the substrate (composite semiconductor because there are different types) was removed, an epitaxial layer was grown, and at the same time an insulator was buried in the trench l5olation vortex. . For this purpose, we adopted a reduced pressure epitaxial method to achieve embedding in the groove.

このように、この発明にあっては殿能素子形成上高価な
工程であるエピタキシャル法及び研磨工程を極力押える
方式を採用して安価な製品コストとした。
In this way, the present invention employs a method that minimizes the epitaxial method and polishing step, which are expensive steps in forming the functional element, to reduce the product cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dは本発明の工程を示す断面図、第2図a−
fは同じく本発明による素子製造工程を示す断面図でお
る。
Figures 1 a to d are cross-sectional views showing the steps of the present invention, and Figures 2 a to d.
Similarly, f is a sectional view showing the device manufacturing process according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] ある不純物濃度をもつ第1半導体基板表面を被覆する第
1絶縁物層に第1鏡面を設け、この不純物濃度より低い
それをもち同一導電型の第2半導体基板表面を被覆する
第2絶縁物層に第2鏡面を形成し、この両鏡面を密着し
て形成する接合層により一体となつた複合半導体基板を
得、この第2半導体基板ならびに隣接する前記第1、第
2絶縁物層部分と接合層部分を除去して前記第1半導体
基板を露出すると同時に、前記第2半導体基板表面から
前記第2絶縁物層にかけて分離溝を形成し、この分離溝
壁面に第3絶縁物層を被着後、この分離溝ならびに露出
した前記第1半導体基板表面に多結晶珪素層を減圧下で
堆積して得られるエピタキシャル成長層に前記第1半導
体基板を利用するパワ素子を設け、前記分離溝、第1、
第2絶縁物層で得られる前記第2半導体基板の島領域に
機能素子を設けることを特徴とする複合半導体基板の製
造方法。
A first insulating layer covering the surface of a first semiconductor substrate having a certain impurity concentration is provided with a first mirror surface, and a second insulating layer having a lower impurity concentration and covering the surface of a second semiconductor substrate of the same conductivity type. A composite semiconductor substrate is obtained in which a second mirror surface is formed on and a bonding layer is formed by closely contacting both mirror surfaces, and the composite semiconductor substrate is bonded to the second semiconductor substrate and the adjacent first and second insulating layer portions. At the same time as removing the layer portion to expose the first semiconductor substrate, forming a separation groove from the surface of the second semiconductor substrate to the second insulating layer, and depositing a third insulating layer on the wall surface of the separation groove. , a power element utilizing the first semiconductor substrate is provided in an epitaxial growth layer obtained by depositing a polycrystalline silicon layer under reduced pressure on the separation trench and the exposed surface of the first semiconductor substrate;
A method for manufacturing a composite semiconductor substrate, characterized in that a functional element is provided in an island region of the second semiconductor substrate obtained by a second insulating layer.
JP61033855A 1986-02-20 1986-02-20 Manufacture of composite semiconductor device Pending JPS62193260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033855A JPS62193260A (en) 1986-02-20 1986-02-20 Manufacture of composite semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033855A JPS62193260A (en) 1986-02-20 1986-02-20 Manufacture of composite semiconductor device

Publications (1)

Publication Number Publication Date
JPS62193260A true JPS62193260A (en) 1987-08-25

Family

ID=12398119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033855A Pending JPS62193260A (en) 1986-02-20 1986-02-20 Manufacture of composite semiconductor device

Country Status (1)

Country Link
JP (1) JPS62193260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223769A (en) * 1988-03-03 1989-09-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture of the same
US4963505A (en) * 1987-10-27 1990-10-16 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
US5138422A (en) * 1987-10-27 1992-08-11 Nippondenso Co., Ltd. Semiconductor device which includes multiple isolated semiconductor segments on one chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963505A (en) * 1987-10-27 1990-10-16 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
US5138422A (en) * 1987-10-27 1992-08-11 Nippondenso Co., Ltd. Semiconductor device which includes multiple isolated semiconductor segments on one chip
JPH01223769A (en) * 1988-03-03 1989-09-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture of the same

Similar Documents

Publication Publication Date Title
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
US6559505B1 (en) Power integrated circuit with vertical current flow and related manufacturing process
US5204282A (en) Semiconductor circuit structure and method for making the same
US5449946A (en) Semiconductor device provided with isolation region
US4228450A (en) Buried high sheet resistance structure for high density integrated circuits with reach through contacts
JPH0834261B2 (en) SOI structure for BICMOS integrated circuit and method of manufacturing the same
JPH0783050B2 (en) Method for manufacturing semiconductor device
JPS61191043A (en) Semiconductor device
JP3582890B2 (en) Semiconductor device
JPH0824162B2 (en) Semiconductor device and manufacturing method thereof
JP2685244B2 (en) Method for manufacturing semiconductor device
JPS62193260A (en) Manufacture of composite semiconductor device
US6455391B1 (en) Method of forming structures with buried regions in a semiconductor device
JP3243071B2 (en) Dielectric separated type semiconductor device
US5847438A (en) Bonded IC substrate with a high breakdown voltage and large current capabilities
JPH0758785B2 (en) Method for manufacturing vertical field effect transistor
JPH05144930A (en) Semiconductor device
US5008724A (en) Semiconductor device
JP2674533B2 (en) SOI substrate, semiconductor device using the same, and manufacturing method thereof
JPS6252949B2 (en)
JPH01289124A (en) Manufacture of semiconductor device
JP3447592B2 (en) Semiconductor device and manufacturing method thereof
JP3089755B2 (en) Semiconductor integrated circuit device
JPS6334949A (en) Semiconductor device
JPS59178773A (en) Manufacture of semiconductor device