JPH07139842A - Absorption freezer - Google Patents

Absorption freezer

Info

Publication number
JPH07139842A
JPH07139842A JP5288992A JP28899293A JPH07139842A JP H07139842 A JPH07139842 A JP H07139842A JP 5288992 A JP5288992 A JP 5288992A JP 28899293 A JP28899293 A JP 28899293A JP H07139842 A JPH07139842 A JP H07139842A
Authority
JP
Japan
Prior art keywords
cooling water
line
flow
valve
switched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5288992A
Other languages
Japanese (ja)
Other versions
JP3322463B2 (en
Inventor
Hiroshi Kojima
弘 小島
Masaru Edera
勝 江寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP28899293A priority Critical patent/JP3322463B2/en
Publication of JPH07139842A publication Critical patent/JPH07139842A/en
Application granted granted Critical
Publication of JP3322463B2 publication Critical patent/JP3322463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PURPOSE:To provide an absorption freezer wherein advantages of a series flow type and a parallel flow type are efficiently employed, waste heat is effectually used, and auxilary machine power is saved. CONSTITUTION:There are provided a cooling water line 14C extending through an absorber 2, cooling water lines 14E, 14D including an on/off valve 19 and extending to a condenser 3, a cooling water flow passage changeover valve 18 for selectively changing over the cooling water line 14C to the cooling water line 14D, a two stage switching cooling water pump 12A, a temperature sensor S1 for driving hot water or a vapor line 15A, and a control unit for switching the changeover valve 18, the on/off valve 19, and the cooling water pump 12A using a signal from the temperature sensor S1, wherein when driving waste heat temperature is high, the operation is switched to a series flow while when the same is low, the operation is switched to a parallel flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収冷凍機に関する。FIELD OF THE INVENTION The present invention relates to an absorption refrigerator.

【0002】[0002]

【従来の技術】従来の単効用吸収冷凍機の冷却水のフロ
ーには、シリーズフロー型と、パラレルフロー型とがあ
る。
2. Description of the Related Art There are a series flow type and a parallel flow type in the flow of cooling water of a conventional single-effect absorption refrigerator.

【0003】そのシリーズフロー型には、図21に示す
ように、冷却水ポンプ12から吸収器2と凝縮器3とを
シリーズに経る冷却水ライン14が設けられている。な
お、図中の符号1は蒸発器、4は再生器、5は溶液熱交
換器、6は冷媒蒸気ライン、7は冷媒液ライン、8は希
溶液ライン、9は濃溶液ライン、10は冷媒ポンプ、1
1は溶液ポンプ、13は冷水ライン、15は駆動温水又
は蒸気ラインである。
As shown in FIG. 21, the series flow type is provided with a cooling water line 14 from the cooling water pump 12 through the absorber 2 and the condenser 3 in series. In the figure, reference numeral 1 is an evaporator, 4 is a regenerator, 5 is a solution heat exchanger, 6 is a refrigerant vapor line, 7 is a refrigerant liquid line, 8 is a dilute solution line, 9 is a concentrated solution line, and 10 is a refrigerant. Pump, 1
1 is a solution pump, 13 is a cold water line, and 15 is a driving hot water or steam line.

【0004】また、パラレルフロー型には図22に示す
ように、冷却水ヘッダ16から吸収器2を経て冷却水ヘ
ッダ17に至る冷却水ライン14Aと、凝縮器3から冷
却水ヘッダ17に至る冷却水ライン14Bとがパラレル
に設けられている。
In the parallel flow type, as shown in FIG. 22, a cooling water line 14A from the cooling water header 16 to the cooling water header 17 via the absorber 2 and cooling from the condenser 3 to the cooling water header 17 are provided. The water line 14B is provided in parallel.

【0005】同様に、二重効用吸収冷凍機にも、図23
に示すシリーズフロー型と、図24に示すパラレルフロ
ー型とがあり、二段吸収サイクル吸収冷凍機にも、図2
5に示すシリーズフロー型と、図26に示すパラレルフ
ロー型とがある。なお、図23及び図24において、3
1は蒸発器、32は吸収器、33は凝縮器、33Aは減
圧弁、34は低温再生器、35は高温再生器、36は低
温溶液熱交換器、37は高温溶液熱交換器、38は蒸気
ドレン熱回収装置、39は冷媒蒸気ライン、40は冷媒
液ライン、41は希溶液ライン、42は濃溶液ライン、
43は中間濃度溶液ライン、44は冷媒ポンプ、45は
溶液ポンプ、46は冷却水ポンプ、47は冷水ライン、
48は冷却水ライン、49は駆動温水又は蒸気ライン、
50、51は冷却水ヘッダである。また、図25及び図
26において、61は蒸発器、62は低段側吸収器、6
3は高段側吸収器、64は低段側再生器、65は凝縮
器、66は高段側再生器、67は低段側溶液熱交換器、
68は高段側溶液熱交換器、69は冷媒蒸気ライン、7
0は冷媒液ライン、71〜74は溶液ライン、75は冷
媒ポンプ、76、77は溶液ポンプ、78は冷却水ポン
プ、79は冷水ライン、80は冷却水ライン、81は駆
動温水又は蒸気ライン、82、83は冷却水ヘッダであ
る。
Similarly, a double-effect absorption refrigerator also has a structure shown in FIG.
2 and the parallel flow type shown in FIG. 24. The two-stage absorption cycle absorption refrigerator also has a series flow type shown in FIG.
There are a series flow type shown in FIG. 5 and a parallel flow type shown in FIG. Note that in FIGS. 23 and 24, 3
1 is an evaporator, 32 is an absorber, 33 is a condenser, 33A is a pressure reducing valve, 34 is a low temperature regenerator, 35 is a high temperature regenerator, 36 is a low temperature solution heat exchanger, 37 is a high temperature solution heat exchanger, 38 is Vapor drain heat recovery device, 39 is a refrigerant vapor line, 40 is a refrigerant liquid line, 41 is a dilute solution line, 42 is a concentrated solution line,
43 is an intermediate concentration solution line, 44 is a refrigerant pump, 45 is a solution pump, 46 is a cooling water pump, 47 is a cold water line,
48 is a cooling water line, 49 is a driving hot water or steam line,
50 and 51 are cooling water headers. 25 and 26, 61 is an evaporator, 62 is a low-stage absorber, and 6
3 is a high-stage absorber, 64 is a low-stage regenerator, 65 is a condenser, 66 is a high-stage regenerator, 67 is a low-stage solution heat exchanger,
68 is a high-stage solution heat exchanger, 69 is a refrigerant vapor line, 7
0 is a refrigerant liquid line, 71-74 is a solution line, 75 is a refrigerant pump, 76 and 77 are solution pumps, 78 is a cooling water pump, 79 is a cold water line, 80 is a cooling water line, 81 is driving hot water or a steam line, Reference numerals 82 and 83 are cooling water headers.

【0006】[0006]

【発明が解決しようとする課題】前記のシリーズフロー
型は、駆動排熱温度がある温度以下に低下すると、吸収
冷凍機の性能が急激に低下する。これに対しパラレルフ
ロー型は、排熱温度が低いときに適している。しかし、
冷却水量が約2倍になるので、その分、ポンプ補機動力
が多くなる。また、高い駆動排熱温度が得られるとき
は、パラレルフロー型はシリーズフロー型に対し吸収冷
凍機の性能に関してメリットがあまりない。
In the above-mentioned series flow type, when the driving exhaust heat temperature falls below a certain temperature, the performance of the absorption refrigerator is rapidly lowered. On the other hand, the parallel flow type is suitable when the exhaust heat temperature is low. But,
Since the amount of cooling water is approximately doubled, the pump auxiliary machine power increases correspondingly. Further, when a high driving exhaust heat temperature is obtained, the parallel flow type does not have much merit in the performance of the absorption refrigerator as compared with the series flow type.

【0007】図27は、単効用吸収冷凍機において、冷
却水をシリーズフローで流すときとパラレルフローで流
すときの吸収冷凍機の吸収サイクルを、デューリング線
図上で比較したものである。なお、図中の符号は図2
1、図22の各機器を示す。鎖線で示すパラレルフロー
型が実線で示すシリーズフロー型に比べ、再生器加熱温
度が低くてすむことが判る。吸収冷凍機において、吸収
サイクルが構成できるギリギリの駆動排熱温度条件にお
いては、この温度差が吸収冷凍機の性能に非常に大きな
影響を及ぼすのである。
FIG. 27 is a comparison of the absorption cycles of the absorption refrigerator when the cooling water is flowed in the series flow and the parallel flow in the single-effect absorption refrigerator on the Dühring diagram. Note that the reference numerals in FIG.
1 shows each device of FIG. It can be seen that the parallel flow type shown by the chain line requires a lower regenerator heating temperature than the series flow type shown by the solid line. In the absorption refrigerating machine, this temperature difference has a very large influence on the performance of the absorption refrigerating machine under the driving exhaust heat temperature condition at which the absorption cycle can be constituted.

【0008】本発明は、シリーズフロー型及びパラレル
フロー型の長所を生かし、排熱の有効利用を図ると共
に、補機動力を節減する吸収冷凍機を提供することを目
的としている。
An object of the present invention is to provide an absorption refrigerating machine which utilizes the advantages of the series flow type and the parallel flow type, makes effective use of exhaust heat, and saves auxiliary machine power.

【0009】[0009]

【課題を解決するための手段】本発明によれば、吸収器
を経る第1の冷却水ラインと、オン・オフ弁を備え、凝
縮器に至る第2の冷却水ラインと、該第2の冷却水ライ
ンに前記第1の冷却水ラインを選択的に接続する冷却水
流路切換弁と、二段切換型の冷却水ポンプと、駆動温水
又は蒸気ラインの温度センサと、該温度センサからの信
号に基づき前記冷却水流路切換弁、オン・オフ弁及び冷
却水ポンプを切換制御する制御ユニットを設けている。
According to the present invention, there is provided a first cooling water line passing through the absorber, a second cooling water line including an on / off valve and reaching the condenser, and the second cooling water line. A cooling water flow path switching valve for selectively connecting the first cooling water line to the cooling water line, a two-stage switching type cooling water pump, a driving hot water or steam line temperature sensor, and a signal from the temperature sensor. Based on the above, a control unit for switching and controlling the cooling water flow path switching valve, the on / off valve, and the cooling water pump is provided.

【0010】[0010]

【作用】上記のように構成された吸収冷凍機において制
御ユニットは、駆動排熱温度が高い場合、冷却水ポンプ
を小流量側にすると共に、オン・オフ弁を閉じ、冷却水
流路切換弁を切換え第1の冷却水ラインを第2の冷却水
ラインに接続してシリーズフローに切換える。
In the absorption refrigerating machine configured as described above, when the driving exhaust heat temperature is high, the control unit sets the cooling water pump to the small flow rate side, closes the on / off valve, and turns on the cooling water flow path switching valve. Switching The first cooling water line is connected to the second cooling water line to switch to the series flow.

【0011】また、駆動排熱温度が低い場合、冷却水ポ
ンプを大流量側にすると共に、オン・オフ弁を開き、第
1の冷却水ラインを出口ヘッダに接続してパラレルフロ
ーに切換える。
When the driving exhaust heat temperature is low, the cooling water pump is set to the large flow rate side, the on / off valve is opened, and the first cooling water line is connected to the outlet header to switch to the parallel flow.

【0012】[0012]

【実施例】以下図面を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1において、二段切換型の冷却水ポンプ
12Aからの冷却水ヘッダ16において、冷却水の流路
は、冷却水ライン14C、14Eの2路に分けられてい
る。その冷却水ライン14Cには、吸収器2が設けら
れ、冷却水ライン14Eには、オン・オフ弁19が設け
られている。
In FIG. 1, in the cooling water header 16 from the two-stage switching type cooling water pump 12A, the cooling water flow passage is divided into two cooling water lines 14C and 14E. The cooling water line 14C is provided with the absorber 2, and the cooling water line 14E is provided with an on / off valve 19.

【0014】他方、ロータリ式の冷却水流路切換弁18
が設けられ、一位置において、冷却水ライン14Cを凝
縮器3Aを経て冷却水ヘッダ17に至る冷却水ライン1
4Dに接続し、冷却水ライン14Eを冷却水ヘッダ17
に至る冷却水ライン14Fに接続し、他の位置におい
て、冷却水ライン14Cを冷却水ライン14Fに接続
し、冷却水ライン14Eを冷却水ライン14Dに接続す
るようになっている。
On the other hand, the rotary type cooling water flow path switching valve 18
Is provided, and the cooling water line 14C reaches the cooling water header 17 via the condenser 3A at one position.
4D, and connect the cooling water line 14E to the cooling water header 17
Is connected to the cooling water line 14F, the cooling water line 14C is connected to the cooling water line 14F, and the cooling water line 14E is connected to the cooling water line 14D at other positions.

【0015】また、駆動温水又は蒸気ライン15A、冷
却水ライン14Cの温度(TH、TM)を検出する温度
センサS1、S2が設けられている。そして、両温度セ
ンサS1、S2、冷却水ポンプ12A、冷却水流路切換
弁18及びオン・オフ弁19は、それぞれ制御ユニット
CUに接続されており、他は図22と実質的に同様に構
成されている。
Further, temperature sensors S1 and S2 for detecting the temperatures (TH, TM) of the driving hot water or steam line 15A and the cooling water line 14C are provided. The two temperature sensors S1 and S2, the cooling water pump 12A, the cooling water flow path switching valve 18 and the on / off valve 19 are connected to the control unit CU, respectively, and the others are configured substantially the same as in FIG. ing.

【0016】次に、制御の態様を説明する。Next, the control mode will be described.

【0017】図2において、制御ユニットCUは、温度
センサS1により駆動温水又は蒸気ライン15Aの温度
THを検出し(ステップS1)、温度THが設定値より
高いか否かを判定する(ステップS2)。NOの場合、
すなわち温度THが設定温度より低い場合は、冷却水流
路切換弁18をパラレルフロー(図1に実線で示す)側
に切換え、オン・オフ弁19を開き、冷却水ポンプ12
Aを大流量側に切換えてパラレルフローに切換える(ス
テップS3)。また、ステップS2がYES、すなわち
温度THが設定温度より高い場合は、冷却水流路切換弁
18をシリーズフロー(図1に鎖線で示す)側に切換
え、オン・オン弁19を閉じ、冷却水ポンプ12Aを小
流量側に切換えてシリーズフローに切換える(ステップ
S4)。
In FIG. 2, the control unit CU detects the temperature TH of the driving hot water or steam line 15A by the temperature sensor S1 (step S1), and determines whether or not the temperature TH is higher than a set value (step S2). . If NO,
That is, when the temperature TH is lower than the set temperature, the cooling water passage switching valve 18 is switched to the parallel flow (shown by the solid line in FIG. 1) side, the on / off valve 19 is opened, and the cooling water pump 12 is opened.
A is switched to the large flow rate side to switch to the parallel flow (step S3). If YES in step S2, that is, if the temperature TH is higher than the set temperature, the cooling water flow path switching valve 18 is switched to the series flow (shown by the chain line in FIG. 1) side, the on / on valve 19 is closed, and the cooling water pump is closed. 12A is switched to the small flow rate side to switch to the series flow (step S4).

【0018】他方、図3において制御ユニットCUは、
温度センサS1により駆動温水又は蒸気ライン15Aの
温度THと、温度センサS2により冷却水ライン14C
の温度TMとを検出し(ステップS9)、F(TH、T
M)を計算する(ステップS6)。ここで、Fはフロー
を判定するためのTH及びTMの2変数関数であり、例
えば、F=a(TM+b)+cTM(a、b、cは実験
により決定する定数)、という様な形で示される。
On the other hand, the control unit CU in FIG.
The temperature TH of the driving hot water or steam line 15A is measured by the temperature sensor S1, and the cooling water line 14C is measured by the temperature sensor S2.
Of the temperature TM (step S9), and F (TH, T
M) is calculated (step S6). Here, F is a two-variable function of TH and TM for judging the flow, and is shown in the form of, for example, F = a (TM + b) + cTM (a, b, and c are constants determined by experiment). Be done.

【0019】次に、F(TH、TM)が設定値より高い
か否かを判定する(ステップS7)。NOの場合は、ス
テップS3と同様に、パラレルフローに切換え(ステッ
プS8)、YESだったら、ステップS4と同様に、シ
リーズフローに切換える(ステップS9)。
Next, it is determined whether F (TH, TM) is higher than the set value (step S7). If NO, as in step S3, the flow is switched to the parallel flow (step S8). If YES, the flow is switched to the series flow in the same way as step S4 (step S9).

【0020】図4は本発明の別の実施例を示し、冷却水
回路14C、14Eにそれぞれ冷却水ポンプ12B、1
2Cを設けて制御ユニットCUに接続し、他を実質的に
図1と同様に構成した例である。
FIG. 4 shows another embodiment of the present invention, in which cooling water circuits 14C and 14E are provided with cooling water pumps 12B and 1B, respectively.
This is an example in which 2C is provided and connected to the control unit CU, and the others are configured substantially the same as in FIG.

【0021】この実施例では図5において、制御ユニッ
トCUは、温度THを検出して(ステップS10)、温
度THが設定値より高いか否かを判定する(ステップS
11)。NOの場合は、冷却水流路切換弁18を実線で
示すパラレルフロー側に切換え、冷却水ポンプ12Cを
作動してパラレルフローに切換える(ステップS1
2)。また、YESだったら、冷却水流路切換弁18を
鎖線で示すシリーズフロー側に切換え、冷却水ポンプ1
2Cを停止してシリーズフローに切換える(ステップS
13)。
In this embodiment, in FIG. 5, the control unit CU detects the temperature TH (step S10) and determines whether or not the temperature TH is higher than a set value (step S).
11). In the case of NO, the cooling water flow path switching valve 18 is switched to the parallel flow side indicated by the solid line, and the cooling water pump 12C is operated to switch to the parallel flow (step S1).
2). If YES, the cooling water passage switching valve 18 is switched to the series flow side indicated by the chain line, and the cooling water pump 1
Stop 2C and switch to series flow (step S
13).

【0022】他方、図6において制御ユニットCUは、
温度TH、TMを検出し(ステップS14)、F(T
H、TM)を計算して(ステップS15)、F(TH、
TM)が設定値より高いか否かを判定する(ステップS
16)。NOの場合は、ステップS12と同様にパラレ
ルフローに切換え(ステップS17)、YESだった
ら、ステップS13と同様にシリーズフローに切換える
(ステップS18)。
On the other hand, the control unit CU in FIG.
The temperatures TH and TM are detected (step S14), and F (T
H, TM) is calculated (step S15) and F (TH,
TM) is determined to be higher than the set value (step S
16). If NO, the flow is switched to the parallel flow as in step S12 (step S17). If YES, it is switched to the series flow in the same way as step S13 (step S18).

【0023】これらの制御により図27に示すデューリ
ング線図のように、駆動排熱温度が高いときは実線で示
すシリーズフローに切換え、駆動排熱温度が低いとき
は、鎖線で示すパラレルフローに切換え、ポンプ補機動
力を節減している。
As a result of these controls, as shown in the Duering diagram shown in FIG. 27, when the driving exhaust heat temperature is high, the series flow is switched to, and when the driving exhaust heat temperature is low, the parallel flow is shown by the chain line. Switching and saving pump auxiliary machine power.

【0024】図7は本発明の別の実施例(二重効用吸収
サイクルの実施例)を示し、二段切換型の冷却水ポンプ
46Aからの冷却水ヘッダ50において、冷却水ライン
48C、オン・オフ弁53を備えた冷却水ライン48E
を冷却水流路切換弁52により冷却水ライン48D、4
8F又は冷却水ライン48F、48Dに選択的に切換え
るようにし、また、温度センサS1、S2を設け、切換
弁52、オン・オフ弁53と共にそれぞれ制御ユニット
CUに接続し、他を図24と実質的に同様に構成した例
である。
FIG. 7 shows another embodiment of the present invention (an embodiment of a double-effect absorption cycle), in which a cooling water line 48C is turned on in a cooling water header 50 from a two-stage switching type cooling water pump 46A. Cooling water line 48E with off valve 53
Through the cooling water flow path switching valve 52 to the cooling water lines 48D, 4
8F or the cooling water lines 48F and 48D are selectively switched, and temperature sensors S1 and S2 are provided and connected to the control unit CU together with the switching valve 52 and the on / off valve 53. This is an example of a similar configuration.

【0025】この実施例では図8において、制御ユニッ
トCUは、温度THを検出して(ステップS20)、温
度THが設定値より高いか否かを判定する(ステップS
21)。NOの場合は、冷却水流路切換弁52を実線で
示すパラレルフロー側に切換え、オン・オフ弁53を開
き、冷却水ポンプ46Aを大流量側に切換えてパラレル
フローに切換える(ステップS22)。また、YESだ
ったら、冷却水流路切換弁52を鎖線で示すシリーズフ
ロー側に切換え、オン・オフ弁を閉じ、冷却水ポンプ4
6Aを小流量側に切換えてシリーズフローに切換える
(ステップS23)。
In this embodiment, in FIG. 8, the control unit CU detects the temperature TH (step S20) and determines whether the temperature TH is higher than the set value (step S).
21). In the case of NO, the cooling water flow path switching valve 52 is switched to the parallel flow side indicated by the solid line, the on / off valve 53 is opened, and the cooling water pump 46A is switched to the large flow rate side to switch to the parallel flow (step S22). If YES, the cooling water flow path switching valve 52 is switched to the series flow side indicated by the chain line, the on / off valve is closed, and the cooling water pump 4
6A is switched to the small flow rate side to switch to the series flow (step S23).

【0026】他方、図9において制御ユニットCUは、
温度TH、TMを検出し(ステップS24)、F(T
H、TM)を計算して(ステップS25)、F(TH、
TM)が設定値より高いか否かを判定する(ステップS
26)。NOの場合は、ステップS22と同様にパラレ
ルフローに切換え(ステップS27)、YESだった
ら、ステップS23と同様にシリーズフローに切換える
(ステップS28)。
On the other hand, in FIG. 9, the control unit CU is
The temperatures TH and TM are detected (step S24), and F (T
H, TM) is calculated (step S25), and F (TH,
TM) is determined to be higher than the set value (step S
26). If NO, the flow is switched to the parallel flow as in step S22 (step S27). If YES, it is switched to the series flow in the same way as step S23 (step S28).

【0027】図10は本発明の別の実施例を示し、冷却
水路48C、48Eにそれぞれ冷却水ポンプ46B、4
6Cを設けて制御ユニットCUに接続し、他を実質的に
図7と同様に構成した例である。
FIG. 10 shows another embodiment of the present invention, in which cooling water passages 48C and 48E are provided with cooling water pumps 46B and 4B, respectively.
6C is provided and connected to the control unit CU, and the others are configured substantially in the same manner as in FIG. 7.

【0028】この実施例では図11において、制御ユニ
ットCUは、温度THを検出して(ステップS30)、
温度THが設定値より高いか否かを判定する(ステップ
S31)。NOの場合は、冷却水流路切換弁52を実線
で示すパラレルフロー側に切換え、冷却水ポンプ46C
を作動してパラレルフローに切換え(ステップS3
2)、YESの場合は、冷却水流路切換弁52を鎖線で
示すシリーズフロー側に切換え、冷却水ポンプ46Cを
停止してシリーズフローに切換える(ステップS3
3)。
In this embodiment, in FIG. 11, the control unit CU detects the temperature TH (step S30),
It is determined whether the temperature TH is higher than the set value (step S31). In the case of NO, the cooling water flow path switching valve 52 is switched to the parallel flow side indicated by the solid line, and the cooling water pump 46C
To switch to parallel flow (step S3
2) If the answer is YES, the cooling water flow path switching valve 52 is switched to the series flow side indicated by the chain line, the cooling water pump 46C is stopped, and the series flow is switched (step S3).
3).

【0029】他方、図12において制御ユニットCU
は、温度TH、TMを検出し(ステップS34)、F
(TH、TM)を計算して(ステップS35)、F(T
H、TM)が設定値より高いか否かを判定する(ステッ
プS36)。NOの場合は、ステップS32と同様にパ
ラレルフローに切換える(ステップS37)。YESだ
ったら、ステップS33と同様にシリーズフローに切換
える(ステップS38)。
On the other hand, in FIG. 12, the control unit CU
Detects the temperatures TH and TM (step S34), and F
(TH, TM) is calculated (step S35), and F (T
It is determined whether (H, TM) is higher than the set value (step S36). If NO, the flow is switched to the parallel flow as in step S32 (step S37). If YES, the flow is switched to the series flow as in step S33 (step S38).

【0030】図13には、図7及び図10の二重効用吸
収冷凍機に対する本願の効果を表わすデューリング線図
が示されている。すなわち、駆動排熱温度が高いとき
は、実線に示すシリーズフローに切換え、駆動排熱温度
が低いときは、鎖線で示すパラレルフローに切換え、冷
却水のポンプ補機動力を節減している。
FIG. 13 shows a Duhring diagram showing the effect of the present application on the double-effect absorption refrigerator of FIGS. 7 and 10. That is, when the driving exhaust heat temperature is high, the series flow is switched to the solid line, and when the driving exhaust heat temperature is low, the parallel flow is switched to the chain flow to save the pump auxiliary power of the cooling water.

【0031】図14は本発明の別の実施例(二段吸収サ
イクルの実施例)を示し、二段切換型の冷却水ポンプ7
8Aからの冷却水ヘッダ82において、冷却水ライン8
0Dとオン・オフ弁86を介して冷却水ライン80E、
80Fとに分岐し、冷却水水路80D、80Eを冷却水
ライン80G、80H又は80H、80Gに選択的に切
換える冷却水流路切換弁84と、冷却水ライン80G、
80Fを冷却水ライン80J、80K又は80K、80
Jに選択する冷却水流路切換弁85とを設け、駆動温水
又は蒸気ライン81、冷却水ライン80Dにそれぞれ温
度センサS1、S2を設け、両温度センサS1、S2、
冷却水ポンプ78A、オン・オフ弁86及び冷却水流路
切換弁84、85を、それぞれ制御ユニットCUに接続
し、他を実質的に図26と同様に構成した例である。
FIG. 14 shows another embodiment of the present invention (an embodiment of a two-stage absorption cycle), which is a two-stage switching type cooling water pump 7.
In the cooling water header 82 from 8A, the cooling water line 8
Cooling water line 80E via 0D and on / off valve 86,
Cooling water flow passage switching valve 84 for branching to 80F and selectively switching the cooling water passages 80D, 80E to the cooling water lines 80G, 80H or 80H, 80G, and the cooling water line 80G,
80F for cooling water line 80J, 80K or 80K, 80
A cooling water flow path switching valve 85 to be selected for J is provided, temperature sensors S1 and S2 are provided to the driving hot water or steam line 81 and cooling water line 80D, respectively, and both temperature sensors S1 and S2 are provided.
This is an example in which the cooling water pump 78A, the on / off valve 86, and the cooling water flow path switching valves 84 and 85 are respectively connected to the control unit CU, and the others are configured substantially in the same manner as in FIG.

【0032】この実施例では図15に示すように、制御
ユニットCUは、温度THを検出して(ステップS4
0)、温度THが設定値より高いか否かを判定する(ス
テップS41)。NOの場合は、冷却水流路切換弁8
4、85は実線で示すパラレルフロー側に切換えオン・
オフ弁86を開き、冷却水ポンプ78Aを大流量側に切
換えてパラレルフローに切換え(ステップS42)。Y
ESだったら、冷却水流路切換弁84、85を鎖線で示
すシリーズフロー側に切換え、オン・オフ弁86を閉
じ、冷却水ポンプ78Aを小流量に切換えてシリーズフ
ローに切換える(ステップS43)。
In this embodiment, as shown in FIG. 15, the control unit CU detects the temperature TH (step S4).
0), it is determined whether or not the temperature TH is higher than the set value (step S41). If NO, cooling water flow path switching valve 8
4 and 85 are switched on to the parallel flow side indicated by the solid line
The off valve 86 is opened, the cooling water pump 78A is switched to the large flow rate side, and the parallel flow is switched (step S42). Y
If it is ES, the cooling water flow path switching valves 84 and 85 are switched to the series flow side indicated by the chain line, the on / off valve 86 is closed, and the cooling water pump 78A is switched to the small flow rate to switch to the series flow (step S43).

【0033】他方、図16において制御ユニットCU
は、温度TH、TMを検出し(ステップS44)、F
(TH、TM)を計算して(ステップS45)、F(T
H、TM)が設定値より高いか否かを判定する(ステッ
プS46)。NOの場合は、ステップS42と同様にパ
ラレルフローに切換え(ステップS47)、YESだっ
たら、ステップS43と同様にシリーズフローに切換え
る(ステップS48)。
On the other hand, in FIG. 16, the control unit CU
Detects the temperatures TH and TM (step S44), and F
(TH, TM) is calculated (step S45), and F (T
It is determined whether (H, TM) is higher than the set value (step S46). If NO, the flow is switched to the parallel flow as in step S42 (step S47), and if YES, it is switched to the series flow in the same way as step S43 (step S48).

【0034】図17は本発明の別の実施例を示し、冷却
水ライン80D、80E、80Fにそれぞれ冷却水ポン
プ78B、78C、78Dを設けて制御ユニットCUに
接続し、他を実質的に図14と同様に構成した例であ
る。
FIG. 17 shows another embodiment of the present invention, in which cooling water lines 80D, 80E and 80F are provided with cooling water pumps 78B, 78C and 78D, respectively, which are connected to the control unit CU, and the others are substantially shown. This is an example configured in the same manner as 14.

【0035】この実施例では図18に示すように、制御
ユニットCUは、温度THを検出して(ステップS5
0)、温度THが設定値より高いか否かを判定する(ス
テップS51)。NOの場合は、冷却水流路切換弁8
4、85は実線で示すパラレルフロー側に切換え、冷却
水ポンプ78C、78Dを作動してパラレルフローに切
換え(ステップS52)、YESだったら、冷却水流路
切換弁84、85は鎖線で示すシリーズフロー側に切換
え、冷却水ポンプ78C、78Dを停止してシリーズフ
ローに切換える(ステップS53)。
In this embodiment, as shown in FIG. 18, the control unit CU detects the temperature TH (step S5).
0), it is determined whether or not the temperature TH is higher than the set value (step S51). If NO, cooling water flow path switching valve 8
4, 85 is switched to the parallel flow side indicated by the solid line, and the cooling water pumps 78C, 78D are operated to switch to the parallel flow (step S52). If YES, the cooling water flow path switching valves 84, 85 are indicated by the chain flow. Then, the cooling water pumps 78C and 78D are stopped to switch to the series flow (step S53).

【0036】他方、図19において制御ユニットCU
は、温度TH、TMを検出し(ステップS54)、F
(TH、TM)を計算して(ステップS55)、F(T
H、TM)が設定値より高いか否かを判定する(ステッ
プS56)、NOの場合は、ステップS52と同様にパ
ラレルフローに切換え(ステップS57)、YESだっ
たら、ステップS53と同様にシリーズフローに切換え
る(ステップS58)。
On the other hand, in FIG. 19, the control unit CU
Detects the temperatures TH and TM (step S54), and F
(TH, TM) is calculated (step S55), and F (T
H, TM) is higher than the set value (step S56), if NO, switch to parallel flow as in step S52 (step S57), and if YES, series flow as in step S53. (Step S58).

【0037】図20には、図14及び図17の二段吸収
サイクル吸収冷凍機に対する本願の効果を表わすデュー
リング線図が示されている。すなわち、駆動排熱温度が
高いときは、実線に示すシリーズフローに切換え、駆動
排熱温度が低いときは、鎖線で示すパラレルフローに切
換え、冷却水のポンプ補機動力を節減している。
FIG. 20 shows a Duhring diagram showing the effect of the present invention on the two-stage absorption cycle absorption refrigerator of FIGS. 14 and 17. That is, when the driving exhaust heat temperature is high, the series flow is switched to the solid line, and when the driving exhaust heat temperature is low, the parallel flow is switched to the chain flow to save the pump auxiliary power of the cooling water.

【0038】[0038]

【発明の効果】本発明は、以上説明したように構成され
ているので、排熱の有効利用を図ると共に、補機動力を
節減することができる。これは、特に二段吸収サイクル
吸収冷凍機において期待できる。
Since the present invention is constructed as described above, it is possible to effectively use the exhaust heat and save the auxiliary machine power. This can be expected especially in a two-stage absorption cycle absorption refrigerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す全体構成図。FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention.

【図2】図1の一制御態様を示す制御フローチャート
図。
FIG. 2 is a control flowchart showing one control mode of FIG.

【図3】図1の他の制御態様を示す制御フローチャート
図。
FIG. 3 is a control flowchart showing another control mode of FIG.

【図4】本発明の第2実施例を示す全体構成図。FIG. 4 is an overall configuration diagram showing a second embodiment of the present invention.

【図5】図4の一制御態様を示す制御フローチャート
図。
FIG. 5 is a control flowchart showing one control mode of FIG.

【図6】図4の他の制御態様を示す制御フローチャート
図。
6 is a control flowchart showing another control mode of FIG. 4. FIG.

【図7】本発明の第3実施例を示す全体構成図。FIG. 7 is an overall configuration diagram showing a third embodiment of the present invention.

【図8】図7の一制御態様を示す制御フローチャート
図。
8 is a control flowchart showing one control mode of FIG. 7. FIG.

【図9】図7の他の制御態様を示す制御フローチャート
図。
FIG. 9 is a control flowchart showing another control mode of FIG. 7.

【図10】本発明の第4実施例を示す全体構成図。FIG. 10 is an overall configuration diagram showing a fourth embodiment of the present invention.

【図11】図10の一制御態様を示す制御フローチャー
ト図。
FIG. 11 is a control flowchart showing one control mode of FIG.

【図12】図10の他の制御態様を示す制御フローチャ
ート図。
FIG. 12 is a control flowchart showing another control mode of FIG.

【図13】図7及び図10の効果を示すデューリング線
図。
13 is a Duhring diagram showing the effect of FIGS. 7 and 10. FIG.

【図14】本発明の第5実施例を示す全体構成図。FIG. 14 is an overall configuration diagram showing a fifth embodiment of the present invention.

【図15】図14の一制御態様を示す制御フローチャー
ト図。
FIG. 15 is a control flowchart showing one control mode of FIG.

【図16】図14の他の制御態様を示す制御フローチャ
ート図。
FIG. 16 is a control flowchart showing another control mode of FIG.

【図17】本発明の第6実施例を示す全体構成図。FIG. 17 is an overall configuration diagram showing a sixth embodiment of the present invention.

【図18】図17の一制御態様を示す制御フローチャー
ト図。
FIG. 18 is a control flowchart showing one control mode of FIG. 17;

【図19】図17の他の制御態様を示す制御フローチャ
ート図。
FIG. 19 is a control flowchart showing another control mode of FIG.

【図20】図14及び図17の効果を示すデューリング
線図。
FIG. 20 is a Duhring diagram showing the effect of FIGS. 14 and 17.

【図21】従来の単効用吸収冷凍機の一例を示す全体構
成図。
FIG. 21 is an overall configuration diagram showing an example of a conventional single-effect absorption refrigerator.

【図22】従来の単効用吸収冷凍機の他の例を示す全体
構成図。
FIG. 22 is an overall configuration diagram showing another example of a conventional single-effect absorption refrigerator.

【図23】従来の二重効用吸収冷凍機の一例を示す全体
構成図。
FIG. 23 is an overall configuration diagram showing an example of a conventional double-effect absorption refrigerator.

【図24】従来の二重効用吸収冷凍機の他の例を示す全
体構成図。
FIG. 24 is an overall configuration diagram showing another example of a conventional double-effect absorption refrigerator.

【図25】従来の二段吸収サイクル吸収冷凍機の一例を
示す全体構成図。
FIG. 25 is an overall configuration diagram showing an example of a conventional two-stage absorption cycle absorption refrigerator.

【図26】従来の二段吸収サイクル吸収冷凍機の他の例
を示す全体構成図。
FIG. 26 is an overall configuration diagram showing another example of a conventional two-stage absorption cycle absorption refrigerator.

【図27】パラレルフローとシリーズフローの性能の比
較を示すデューリング線図。
FIG. 27 is a Dühring diagram showing a comparison of performance between the parallel flow and the series flow.

【符号の説明】[Explanation of symbols]

CU・・・制御ユニット S1、S2・・・温度センサ 1、31、61・・・蒸発器 2、32・・・吸収器 3、3A、33、65・・・凝縮器 4、4A・・・再生器 5・・・溶液熱交換器 6、39、69・・・冷媒蒸気ライン 7、40、70・・・冷媒液ライン 8、41・・・希溶液ライン 9、42・・・濃溶液ライン 10、44、75・・・冷媒ポンプ 11、45、76、77・・・溶液ポンプ 12、12A〜12C、46、46A〜46C、78、
78A〜78D・・・冷却水ポンプ 13、47、79・・・冷水ライン 14、14A〜14F、48、48A〜48F、80、
80A〜80K・・・冷却水ライン 15、15A、49、81・・・駆動温水又は蒸気ライ
ン 16、17、50、51、82、83・・・冷却水ヘッ
ダ 18、52、84、85・・・冷却水流路切換弁 19、53、86・・・オン・オフ弁 33A・・・減圧弁 34・・・低温再生器 35・・・高温再生器 36・・・低温溶液熱交換器 37・・・高温溶液熱交換器 38・・・蒸気ドレン熱回収装置 43・・・中間濃度溶液ライン 62・・・低段側吸収器 63・・・高段側吸収器 64・・・低段側再生器 66・・・高段側再生器 67・・・低段側溶液熱交換器 68・・・高段側溶液熱交換器 71〜74・・・溶液ライン
CU ... Control unit S1, S2 ... Temperature sensor 1, 31, 61 ... Evaporator 2, 32 ... Absorber 3, 3A, 33, 65 ... Condenser 4, 4A ... Regenerator 5 ... Solution heat exchanger 6, 39, 69 ... Refrigerant vapor line 7, 40, 70 ... Refrigerant liquid line 8, 41 ... Dilute solution line 9, 42 ... Concentrated solution line 10, 44, 75 ... Refrigerant pump 11, 45, 76, 77 ... Solution pump 12, 12A to 12C, 46, 46A to 46C, 78,
78A-78D ... Cooling water pump 13, 47, 79 ... Cold water line 14, 14A-14F, 48, 48A-48F, 80,
80A-80K ... Cooling water line 15, 15A, 49, 81 ... Driving hot water or steam line 16, 17, 50, 51, 82, 83 ... Cooling water header 18, 52, 84, 85 ...・ Cooling water flow path switching valve 19, 53, 86 ... On / off valve 33A ... Pressure reducing valve 34 ... Low temperature regenerator 35 ... High temperature regenerator 36 ... Low temperature solution heat exchanger 37 ...・ High temperature solution heat exchanger 38 ・ ・ ・ Steam drain heat recovery device 43 ・ ・ ・ Intermediate concentration solution line 62 ・ ・ ・ Low stage side absorber 63 ・ ・ ・ High stage side absorber 64 ・ ・ ・ Low stage side regenerator 66 ... High-stage side regenerator 67 ... Low-stage solution heat exchanger 68 ... High-stage solution heat exchanger 71-74 ... Solution line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸収器を経る第1の冷却水ラインと、オ
ン・オフ弁を備え、凝縮器に至る第2の冷却水ライン
と、該第2の冷却水ラインに前記第1の冷却水ラインを
選択的に接続する冷却水流路切換弁と、二段切換型の冷
却水ポンプと、駆動温水又は蒸気ラインの温度センサ
と、該温度センサからの信号に基づき前記冷却水流路切
換弁、オン・オフ弁及び冷却水ポンプを切換制御する制
御ユニットを設けたことを特徴とする吸収冷凍機。
1. A first cooling water line passing through an absorber, a second cooling water line including an on / off valve, and reaching a condenser, and the first cooling water in the second cooling water line. A cooling water flow path switching valve for selectively connecting lines, a two-stage switching type cooling water pump, a temperature sensor for driving hot water or a steam line, and the cooling water flow path switching valve that is turned on based on a signal from the temperature sensor. An absorption refrigerator having a control unit for switching and controlling the off valve and the cooling water pump.
JP28899293A 1993-11-18 1993-11-18 Absorption refrigerator Expired - Fee Related JP3322463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28899293A JP3322463B2 (en) 1993-11-18 1993-11-18 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28899293A JP3322463B2 (en) 1993-11-18 1993-11-18 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH07139842A true JPH07139842A (en) 1995-06-02
JP3322463B2 JP3322463B2 (en) 2002-09-09

Family

ID=17737446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28899293A Expired - Fee Related JP3322463B2 (en) 1993-11-18 1993-11-18 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3322463B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071475A1 (en) * 2008-09-24 2010-03-25 Krones Ag Device for monitoring the flow of water vapor
CN103712364A (en) * 2012-12-06 2014-04-09 李华玉 Multiple-effect class-one absorption heat pump
CN106196718A (en) * 2016-08-16 2016-12-07 北京联力源科技有限公司 Absorption type heat pump system and round-robin method thereof
CN106196727A (en) * 2016-08-25 2016-12-07 北京联力源科技有限公司 A kind of heat pump and operation method thereof
CN109073288A (en) * 2016-05-11 2018-12-21 山石科技有限公司 Absorption heat pump and control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071475A1 (en) * 2008-09-24 2010-03-25 Krones Ag Device for monitoring the flow of water vapor
US8678645B2 (en) * 2008-09-24 2014-03-25 Krones Ag Device for monitoring the flow of water vapor
CN103712364A (en) * 2012-12-06 2014-04-09 李华玉 Multiple-effect class-one absorption heat pump
CN103712364B (en) * 2012-12-06 2015-11-25 李华玉 Multiple-effect class-one absorption heat pump
CN109073288A (en) * 2016-05-11 2018-12-21 山石科技有限公司 Absorption heat pump and control method
US10900700B2 (en) 2016-05-11 2021-01-26 Stone Mountain Technologies, Inc. Sorption heat pump and control method
CN109073288B (en) * 2016-05-11 2021-02-19 山石科技有限公司 Absorption heat pump and control method
CN106196718A (en) * 2016-08-16 2016-12-07 北京联力源科技有限公司 Absorption type heat pump system and round-robin method thereof
CN106196727A (en) * 2016-08-25 2016-12-07 北京联力源科技有限公司 A kind of heat pump and operation method thereof

Also Published As

Publication number Publication date
JP3322463B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
KR100309975B1 (en) Capacity control device
AU740700B2 (en) Refrigerator
JP2002156166A (en) Multi-chamber type air conditioner
JPH07139842A (en) Absorption freezer
JP2806491B2 (en) Absorption refrigerator and its operation control method
JP3363518B2 (en) Operation control method of single double effect absorption refrigerator
JP2000009369A (en) Air conditioner
JPS6316018B2 (en)
JP3738955B2 (en) Absorption chiller / heater and control method
KR100371366B1 (en) Method to decrease the noise of refrigerants for chest type kimchi jar refrigerator
JP3824441B2 (en) Absorption refrigeration equipment
JP2894601B2 (en) Absorption chiller / heater and operating method thereof
JP2000329443A (en) Refrigerator
JPH08136080A (en) Multi-cycle absorption freezer
JPH08145494A (en) Absorption type heat pump
JP2806780B2 (en) Absorption refrigerator and its operation control method
JPH0219392B2 (en)
JPH0222615Y2 (en)
JPH04263789A (en) Heat transfer device
JPH0219391B2 (en)
JPS6350629B2 (en)
JPH10176873A (en) Heat pump device and control method therefor
JP3224766B2 (en) Double effect absorption chiller / heater
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP3280261B2 (en) Absorption refrigeration equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees