JPS6316018B2 - - Google Patents

Info

Publication number
JPS6316018B2
JPS6316018B2 JP58044474A JP4447483A JPS6316018B2 JP S6316018 B2 JPS6316018 B2 JP S6316018B2 JP 58044474 A JP58044474 A JP 58044474A JP 4447483 A JP4447483 A JP 4447483A JP S6316018 B2 JPS6316018 B2 JP S6316018B2
Authority
JP
Japan
Prior art keywords
absorber
cooling water
solution
condenser
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58044474A
Other languages
Japanese (ja)
Other versions
JPS59170663A (en
Inventor
Masakazu Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP4447483A priority Critical patent/JPS59170663A/en
Publication of JPS59170663A publication Critical patent/JPS59170663A/en
Publication of JPS6316018B2 publication Critical patent/JPS6316018B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸収冷凍機における冷却水の通水に
ついての改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in cooling water passage in an absorption refrigerator.

〔従来技術〕[Prior art]

従来、冷却水が吸収器及び凝縮器に直列通水さ
れる吸収冷凍機においては、冷却水を吸収器に通
水して後、凝縮器に通水する形式の単効用及び二
重効用吸収冷凍機と、冷却水を凝縮器に通水して
後、吸収器に通水する形式の二重効用吸収冷凍機
が知られている。
Conventionally, in absorption refrigerators in which cooling water is passed through an absorber and a condenser in series, there are single-effect and double-effect absorption refrigeration systems in which cooling water is passed through an absorber and then a condenser. A dual-effect absorption refrigerator is known in which cooling water is passed through a condenser and then through an absorber.

これら従来例を添付図面に基づいて説明する。 These conventional examples will be explained based on the accompanying drawings.

第1図は、従来の単効用吸収冷凍機の1例を示
す装置の系統図である。また第2図は、従来の二
重効用吸収冷凍機の1例を示す装置の系統図であ
る。
FIG. 1 is a system diagram of an apparatus showing an example of a conventional single-effect absorption refrigerator. Further, FIG. 2 is a system diagram of an apparatus showing an example of a conventional dual-effect absorption refrigerator.

第1図において、1は吸収器、2は蒸発器、3
は発生器、4は凝縮器、5は溶液ポンプ、6は冷
媒ポンプ、7は熱交換器、8は熱源熱量調節弁、
9は冷却水装入ポンプを意味する。
In Figure 1, 1 is an absorber, 2 is an evaporator, and 3
is a generator, 4 is a condenser, 5 is a solution pump, 6 is a refrigerant pump, 7 is a heat exchanger, 8 is a heat source calorie adjustment valve,
9 means a cooling water charging pump.

第2図において、1,2,4〜6,8及び9は
第1図と同義であり、11は第1発生器、12は
第2発生器、13は第2熱交換器、14は第1熱
交換器、15は流量制御弁、16はドレン熱交換
器、17はドレントラツプを意味する。
In FIG. 2, 1, 2, 4 to 6, 8 and 9 have the same meaning as in FIG. 1, 11 is the first generator, 12 is the second generator, 13 is the second heat exchanger, and 14 is the second heat exchanger. 1 is a heat exchanger, 15 is a flow control valve, 16 is a drain heat exchanger, and 17 is a drain trap.

吸収器1で冷媒を吸収し薄くなつた吸収液を、
溶液ポンプ5で加圧し、熱交換器を通して発生器
へ送り、冷媒を分離し濃縮する。濃縮された吸収
液は吸収器に戻り、冷媒を吸収して薄くなり、再
びポンプアツプされる。
The absorption liquid that has absorbed the refrigerant in absorber 1 and has become thin,
The solution is pressurized with a pump 5 and sent through a heat exchanger to a generator, where the refrigerant is separated and concentrated. The concentrated absorption liquid returns to the absorber, absorbs refrigerant, becomes thinner, and is pumped up again.

しかして、前記のように、第2図で示した二重
効用吸収冷凍機において、その冷却水の通水方向
が逆のものも知られている(特公昭47―19668号
公報参照)。
As mentioned above, there is also known a dual-effect absorption refrigerator shown in FIG. 2 in which the direction of cooling water is reversed (see Japanese Patent Publication No. 19668/1983).

しかしながら、これら公知の吸収冷凍機には、
以下に述べる問題点がある。
However, these known absorption refrigerators have
There are problems described below.

まず、第1図及び第2図に示した吸収冷凍機で
は、最大冷水負荷時、吸収溶液濃度を希溶液側に
最大限移行し、吸収能力を最大限利用して、結晶
限界から遠ざけることができる。しかし反面、部
分負荷時、並びに冷却水温度が設計温度よりも低
い場合には、過大吸収能力となつて、多量の冷媒
が溶液側に移行し、蒸発器の液レベル低下により
蒸発器冷媒ポンプのキヤビテーシヨン現象が生
じ、運転サイクルが非常に不安定となる問題点が
あつた。
First, in the absorption chiller shown in Figures 1 and 2, it is possible to shift the absorption solution concentration to the dilute solution side at maximum chilled water load, make maximum use of the absorption capacity, and keep it away from the crystal limit. can. However, on the other hand, at partial load or when the cooling water temperature is lower than the design temperature, excessive absorption capacity occurs and a large amount of refrigerant moves to the solution side, causing the evaporator refrigerant pump to drop due to the drop in the liquid level in the evaporator. There was a problem that cavitation phenomenon occurred and the driving cycle became extremely unstable.

他方、冷却水の通水方向が逆の場合、吸収器に
流入する冷却水の温度は、凝縮器で加熱され温度
上昇した冷却水によるため高くなつており、最大
冷水負荷時に、吸収能力が前記の場合に比較して
小さく、高濃度側に移行するため、結晶析出の危
険がある。特に気密不良等で、吸収能力が低下し
た場合には、入熱のほとんどが凝縮器で放熱され
るため、高温の冷却水が絶えず吸収器に流入し、
二重効用吸収冷凍機では、第1発生器内圧は比較
的低いが、溶液濃度は結晶域に入るという問題点
があつた。
On the other hand, if the cooling water flow direction is reversed, the temperature of the cooling water flowing into the absorber will be higher due to the cooling water that has been heated in the condenser and the temperature has risen, and at the maximum chilled water load, the absorption capacity will be lower than the above level. Since the concentration is smaller than in the case of , and the concentration shifts to the high concentration side, there is a risk of crystal precipitation. In particular, if the absorption capacity is reduced due to poor airtightness, most of the heat input is dissipated by the condenser, so high temperature cooling water constantly flows into the absorber.
In the dual-effect absorption refrigerator, the internal pressure of the first generator is relatively low, but the problem is that the solution concentration falls into the crystalline region.

これらの点を、添付の第3図で説明する。すな
わち第3図は、吸収溶液濃度(重量%)(横軸)
と飽和蒸気圧(mmHg)(縦軸)との関係を示すグ
ラフである。
These points will be explained in the attached FIG. 3. In other words, Figure 3 shows the absorption solution concentration (wt%) (horizontal axis)
It is a graph showing the relationship between and saturated vapor pressure (mmHg) (vertical axis).

しかして、前記した従来公知の吸収冷凍機で
は、その状態によりabcd点又はABCD点がサイ
クルポイントとなり、前記した問題点を包含して
いる。
However, in the conventionally known absorption refrigerator described above, the cycle point is the ABCD point or the ABCD point, depending on the state, and includes the above-mentioned problems.

〔発明の目的〕[Purpose of the invention]

本発明は、前記した従来技術の問題点を解決す
るためになされたものであり、その目的は、負荷
変化及び冷却水温度変化があつても、冷媒ポンプ
の連続運転が可能であり、常に冷却水を最適条件
で使用できる吸収冷凍機を提供することにある。
The present invention was made in order to solve the problems of the prior art described above, and its purpose is to enable continuous operation of the refrigerant pump even when there are load changes and cooling water temperature changes, so that cooling is always achieved. An object of the present invention is to provide an absorption refrigerator that can use water under optimal conditions.

〔発明の構成〕[Structure of the invention]

本発明を概説すれば、本発明は吸収冷凍機に関
するものであつて、吸収器、発生器、凝縮器、蒸
発器、熱交換器、それらを接続する溶液径路及び
冷媒径路で冷凍サイクルを形成し、冷却水が該吸
収器及び凝縮器に直列通水される吸収冷凍機にお
いて、溶液濃度変動に関連する状態量を検出する
装置と、その検出された値に対応して該冷却水を
該吸収器から凝縮器、又は凝縮器から吸収器へ
と、その直列通水方向を切替える流路切替装置と
を装備したことを特徴とする。
To summarize the present invention, the present invention relates to an absorption refrigerator, and a refrigeration cycle is formed by an absorber, a generator, a condenser, an evaporator, a heat exchanger, and a solution path and a refrigerant path connecting them. , an absorption refrigerator in which cooling water is passed through the absorber and the condenser in series, a device for detecting a state quantity related to solution concentration fluctuation; It is characterized by being equipped with a flow path switching device that switches the direction of series water flow from the vessel to the condenser or from the condenser to the absorber.

本発明において、前記溶液濃度変動に関連する
状態量の例には、吸収器1内の溶液の温度、溶液
ポンプ5の吸込口における液温、冷却水温度、冷
水温度、熱源熱量調節弁8の開度、吸収器1内の
溶液の液レベル、蒸発器2内の冷媒の液レベル及
び溶液の密度等がある。
In the present invention, examples of the state quantities related to the solution concentration fluctuation include the temperature of the solution in the absorber 1, the liquid temperature at the suction port of the solution pump 5, the cooling water temperature, the cold water temperature, and the temperature of the heat source heat amount adjustment valve 8. These include the degree of opening, the liquid level of the solution in the absorber 1, the liquid level of the refrigerant in the evaporator 2, and the density of the solution.

他方、流路切替装置の例には、冷却水ポンプ9
の吐出部に連結した単数又は複数の切替弁があ
り、例えば、1つの4方弁又は複数の2方弁若し
くは3方弁がある。
On the other hand, an example of the flow path switching device includes a cooling water pump 9
There is one or more switching valves connected to the outlet, for example a four-way valve or a plurality of two-way or three-way valves.

次に、本発明の吸収冷凍機の作用について説明
する。
Next, the operation of the absorption refrigerator of the present invention will be explained.

運転中に負荷が低下したり、又は冷却水温度が
低下すると検出装置が作動して流路の切替えが行
われ、冷却水は凝縮器4から通水され吸収器1に
導かれる。このため、吸収器1に通水される冷却
水温度が上昇し、吸収能力が低下して吸収溶液の
濃度が濃くなる。こうして、蒸発器2内の冷媒の
液レベルが確保され、冷媒ポンプ6を、キヤビテ
ーシヨンの恐れなく、連続して運転することがで
きる。
When the load decreases or the cooling water temperature decreases during operation, the detection device is activated to switch the flow path, and the cooling water is passed from the condenser 4 and guided to the absorber 1. Therefore, the temperature of the cooling water passed through the absorber 1 increases, the absorption capacity decreases, and the concentration of the absorption solution increases. In this way, the liquid level of the refrigerant in the evaporator 2 is ensured, and the refrigerant pump 6 can be operated continuously without fear of cavitation.

他方、負荷が上昇し、冷却水温度が上昇してく
ると検出装置が作動し、流路の切替えが行われ、
冷却水は吸収器1に先に通水されるため、吸収溶
液の濃度を比較的低く保つことができ、結晶析出
の恐れがなく安全な吸収サイクルの形成を行うこ
とができる。
On the other hand, when the load increases and the cooling water temperature rises, the detection device is activated and the flow path is switched.
Since the cooling water is first passed through the absorber 1, the concentration of the absorption solution can be kept relatively low, and a safe absorption cycle can be formed without fear of crystal precipitation.

すなわち本発明によれば、第3図において、
a′,b′,c′,d′点及びA′,B′,C′,D′点がサイ

ルポイントとなる。そこで、前記のように、蒸発
器2内の冷媒の液レベルを確保すると共に、全負
荷サイクルとの濃度の変化幅が小さく、結晶域か
ら遠ざかり、負荷変動及び冷却水温度変動などに
対して良好な応答性を得ることができる。第3図
の例では、単効用の場合のサイクル図で説明を行
つたが、二重効用サイクルでも同様な濃度変化が
行われ、同様な効果がある。
That is, according to the present invention, in FIG.
Points a', b', c', and d' and points A', B', C', and D' are cycle points. Therefore, as mentioned above, in addition to ensuring the liquid level of the refrigerant in the evaporator 2, the range of change in concentration with respect to the entire load cycle is small and it moves away from the crystalline region, making it suitable for load fluctuations and cooling water temperature fluctuations. It is possible to obtain excellent responsiveness. In the example shown in FIG. 3, the explanation was given using a cycle diagram for a single effect cycle, but a similar concentration change is performed in a double effect cycle, and the same effect is obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により更に具体的に説明
するが、本発明はこれら実施例に限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 本発明の1実施例を第4図に示す。すなわち第
4図は、本発明を単効用吸収冷凍機に適用した1
例を示す装置の系統図である。第4図において、
符号1〜9は第1図と同義であり、21は吸収器
1内の溶液温度検出器、22は流路切替装置の制
御器、23は溶液ポンプ5の吸込口における液温
検出器、30は流路切替4方弁を意味する。21
と23はいずれを使用してもよい。
Example 1 An example of the present invention is shown in FIG. In other words, FIG. 4 shows a case in which the present invention is applied to a single-effect absorption refrigerator.
FIG. 2 is a system diagram of an example device. In Figure 4,
Reference numerals 1 to 9 have the same meanings as in FIG. 1, 21 is a solution temperature detector in the absorber 1, 22 is a controller for the flow path switching device, 23 is a liquid temperature detector at the suction port of the solution pump 5, and 30 means a flow path switching four-way valve. 21
and 23 may be used.

運転中に負荷が低下したり、又は冷却水温度が
低下すると、吸収器1内の溶液の温度が低下し、
検出器21又は23が作動して流路の切替えが行
われ、冷却水は、凝縮器4から吸収器1に通水さ
れる。それによつて、既述のように蒸発器2内の
冷媒の液レベルが確保され、冷媒ポンプ6を連続
運転することができる。
When the load decreases or the cooling water temperature decreases during operation, the temperature of the solution in the absorber 1 decreases,
The detector 21 or 23 is activated to switch the flow path, and the cooling water is passed from the condenser 4 to the absorber 1. Thereby, as described above, the liquid level of the refrigerant in the evaporator 2 is ensured, and the refrigerant pump 6 can be operated continuously.

他方、負荷が上昇し、冷却水温度が上昇してく
ると、吸収器1内の溶液温度が高くなるため、再
び検出器21又は23が作動し、流路の切替えが
行われ、既述のように安全な吸収サイクルが形成
される。この場合のサイクル線図は、第3図にお
けるa′,b′,c′,d′点となり、従来の装置におけ
るサイクルポイントabcd点に比べ濃度が高い方
向に移行しているので既述の効果が奏せられる。
On the other hand, when the load increases and the cooling water temperature rises, the solution temperature in the absorber 1 increases, so the detector 21 or 23 is activated again, the flow path is switched, and the above-mentioned A safe absorption cycle is formed. The cycle diagram in this case is the points a', b', c', and d' in Figure 3, which have shifted to a higher concentration than the cycle points abcd in the conventional device, so the effects described above can be achieved. is played.

以上、単効用の特定の場合について例示した
が、本発明は、二重効用の場合、あるいは既述し
た他の個所の検出器又は他の形式の切替弁を設け
ても適用可能であることは明らかである。
Although the specific case of single effect has been exemplified above, the present invention can also be applied to the case of double effect, or even if a detector or other type of switching valve is provided at another location as described above. it is obvious.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、
冷却水を運転サイクル上の最適条件で使用するこ
とができ、 (a) 部分負荷時及び冷却水温度の低下時における
溶液の過希釈が抑えられ、冷媒ポンプの連続運
転が可能である。
As explained in detail above, according to the present invention,
Cooling water can be used under optimal operating cycle conditions, and (a) excessive dilution of the solution is suppressed during partial loads and when the temperature of the cooling water drops, allowing continuous operation of the refrigerant pump.

(b) 上記に関連し、冷却水入口許容温度が下げら
れる。
(b) In connection with the above, the allowable cooling water inlet temperature will be lowered.

(c) 最大負荷時には吸収能力を最大限利用でき、
結晶域から遠ざけることが可能である。
(c) Maximum absorption capacity can be used at maximum load;
It is possible to move it away from the crystalline region.

(d) 上記(a)及び(c)に関連し、溶液の濃度変化が小
さく、負荷変動に対する応答性が早いという顕
著な効果を奏することができた。
(d) In relation to (a) and (c) above, we were able to achieve the remarkable effects of small changes in solution concentration and quick response to load fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の単効用吸収冷凍機の1例を示
す装置の系統図、第2図は従来の二重効用吸収冷
凍機の1例を示す装置の系統図、第4図は、本発
明を単効用吸収冷凍機に適用した1例を示す装置
の系統図である。第3図は、従来技術及び本発明
における、吸収溶液濃度と飽和蒸気圧との関係を
示すグラフである。 1:吸収器、2:蒸発器、3:発生器、4:凝
縮器、5:溶液ポンプ、6:冷媒ポンプ、7:熱
交換器、8:蒸気圧力調節弁、11:第1発生
器、12:第2発生器、13:第2熱交換器、1
4:第1熱交換器、15:流量制御弁、21:吸
収器内の溶液温度検出器、22:流路切替装置の
制御器、23:溶液ポンプの吸込口における液温
検出器、30:流路切替4方弁。
Fig. 1 is a system diagram of an apparatus showing an example of a conventional single-effect absorption refrigerator, Fig. 2 is a system diagram of an apparatus showing an example of a conventional double-effect absorption refrigerator, and Fig. 4 is a system diagram of an apparatus showing an example of a conventional single-effect absorption refrigerator. FIG. 1 is a system diagram of an apparatus showing an example of applying the invention to a single-effect absorption refrigerator. FIG. 3 is a graph showing the relationship between absorption solution concentration and saturated vapor pressure in the prior art and the present invention. 1: Absorber, 2: Evaporator, 3: Generator, 4: Condenser, 5: Solution pump, 6: Refrigerant pump, 7: Heat exchanger, 8: Steam pressure control valve, 11: First generator, 12: Second generator, 13: Second heat exchanger, 1
4: first heat exchanger, 15: flow rate control valve, 21: solution temperature detector in absorber, 22: flow path switching device controller, 23: liquid temperature detector at suction port of solution pump, 30: Flow path switching 4-way valve.

Claims (1)

【特許請求の範囲】 1 吸収器、発生器、凝縮器、蒸発器、熱交換
器、それらを接続する溶液径路及び冷媒径路で冷
凍サイクルを形成し、冷却水が該吸収器及び凝縮
器に直列通水される吸収冷凍機において、溶液濃
度変動に関連する状態量を検出する装置と、その
検出された値に対応して該冷却水を該吸収器から
凝縮器、又は凝縮器から吸収器へと、その直列通
水方向を切替える流路切替装置とを装備したこと
を特徴とする吸収冷凍機。 2 前記溶液濃度変動に関連する状態量が、該蒸
発器又は吸収器の液レベルである特許請求の範囲
第1項記載の吸収冷凍機。 3 前記溶液濃度変動に関連する状態量が、該冷
却水の温度である特許請求の範囲第1項記載の吸
収冷凍機。 4 前記溶液濃度変動に関連する状態量が、溶液
の密度又は該吸収器の溶液の温度である特許請求
の範囲第1項記載の吸収冷凍機。 5 前記流路切替装置が、冷却水ポンプ吐出部に
連結した単数又は複数の切替弁である特許請求の
範囲第1項記載の吸収冷凍機。
[Claims] 1. A refrigeration cycle is formed by an absorber, a generator, a condenser, an evaporator, a heat exchanger, a solution path and a refrigerant path connecting them, and cooling water is connected in series to the absorber and condenser. In an absorption refrigerating machine through which water is passed, a device for detecting a state quantity related to a solution concentration fluctuation, and a device for detecting a state quantity related to a solution concentration fluctuation, and a device for directing the cooling water from the absorber to the condenser or from the condenser to the absorber in accordance with the detected value. and a flow path switching device that switches the direction of water flow in series. 2. The absorption refrigerator according to claim 1, wherein the state quantity related to the solution concentration fluctuation is a liquid level in the evaporator or absorber. 3. The absorption refrigerator according to claim 1, wherein the state quantity related to the solution concentration fluctuation is the temperature of the cooling water. 4. The absorption refrigerator according to claim 1, wherein the state quantity related to the solution concentration fluctuation is the density of the solution or the temperature of the solution in the absorber. 5. The absorption refrigerator according to claim 1, wherein the flow path switching device is one or more switching valves connected to a cooling water pump discharge section.
JP4447483A 1983-03-18 1983-03-18 Absorption refrigerator Granted JPS59170663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4447483A JPS59170663A (en) 1983-03-18 1983-03-18 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4447483A JPS59170663A (en) 1983-03-18 1983-03-18 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS59170663A JPS59170663A (en) 1984-09-26
JPS6316018B2 true JPS6316018B2 (en) 1988-04-07

Family

ID=12692518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4447483A Granted JPS59170663A (en) 1983-03-18 1983-03-18 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS59170663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161717U (en) * 1988-05-02 1989-11-10

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748324Y2 (en) * 1990-12-22 1995-11-08 大昭和精機株式会社 Dustproof seal for tool chuck
JPH0524214U (en) * 1991-08-06 1993-03-30 三菱マテリアル株式会社 Check for cutting tools
JPH0524206U (en) * 1991-09-11 1993-03-30 大昭和精機株式会社 Tool check
JP2012202589A (en) * 2011-03-24 2012-10-22 Hitachi Appliances Inc Absorption heat pump apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471757U (en) * 1978-11-02 1979-05-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161717U (en) * 1988-05-02 1989-11-10

Also Published As

Publication number Publication date
JPS59170663A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
JPS6316018B2 (en)
JP2985747B2 (en) Absorption refrigerator
JPS6248146B2 (en)
JPS62186178A (en) Absorption refrigerator
JP2529029B2 (en) Absorption refrigerator and control method thereof
JPH0384371A (en) Double effective absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
JP3434284B2 (en) Absorption refrigerator
JPH0275865A (en) Controlling method for absorption refrigerator
JP2002277091A (en) Absorption refrigerator and method for operating the same
JPH0359360A (en) Absorption type freezer
JP3182233B2 (en) Operation control method in absorption refrigerator
JPH0198865A (en) Absorption refrigerator
JP2002340429A (en) Absorption freezer
JPH01107065A (en) Absorption type refrigerator
JPH11132590A (en) Absorption refrigerating machine
JPS6170353A (en) Double effect absorption refrigerator
JPS6113551B2 (en)
JPH04151469A (en) Control device for absorption type freezer
JPS61159060A (en) Double effect absorption refrigerator
JPH0739894B2 (en) Absorption refrigerator
JPS6138786B2 (en)
JPH05296618A (en) Water cooler
JPH01306775A (en) Refrigerator with economizer
JPS63157212A (en) Control device for temperature of cold water