JPH07120704B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH07120704B2
JPH07120704B2 JP62125202A JP12520287A JPH07120704B2 JP H07120704 B2 JPH07120704 B2 JP H07120704B2 JP 62125202 A JP62125202 A JP 62125202A JP 12520287 A JP12520287 A JP 12520287A JP H07120704 B2 JPH07120704 B2 JP H07120704B2
Authority
JP
Japan
Prior art keywords
groove
forming
type
layer
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62125202A
Other languages
Japanese (ja)
Other versions
JPS63289830A (en
Inventor
宏明 沖崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62125202A priority Critical patent/JPH07120704B2/en
Publication of JPS63289830A publication Critical patent/JPS63289830A/en
Publication of JPH07120704B2 publication Critical patent/JPH07120704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘電体分離を用いた半導体装置の製造方法に関
し、特にトレンチアイソレーション法に関する。
The present invention relates to a method for manufacturing a semiconductor device using dielectric isolation, and more particularly to a trench isolation method.

〔従来の技術〕[Conventional technology]

従来、トレンチアイソレーション工程は、第3図(a)
〜(c)に示す様に、P型Si基板1にN+型梅込層2,N型
エピタキシャル層3を形成し、その後、分離用の溝5を
形成し、この溝内部に酸化膜4を形成した後イオン注入
法を用い、溝底部のP型Si基板1に、P+型チャネルスト
ッパ7を形成する。
Conventionally, the trench isolation process is shown in FIG.
As shown in (c), an N + type Umegome layer 2 and an N type epitaxial layer 3 are formed on a P type Si substrate 1, and then a groove 5 for isolation is formed, and an oxide film 4 is formed inside the groove. Then, a P + type channel stopper 7 is formed on the P type Si substrate 1 at the bottom of the groove by using the ion implantation method.

さらに、この溝内部をポリシリコン8で埋めた後、この
ポリシリコンの表面に酸化膜9を形成し、P型ベース層
10,N+型エミッタ層11,電極12を形成することにより、半
導体素子を形成する方法をとっていた。
Further, after filling the inside of this groove with polysilicon 8, an oxide film 9 is formed on the surface of this polysilicon to form a P-type base layer.
A method of forming a semiconductor element by forming the 10, N + type emitter layer 11 and the electrode 12 has been adopted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来のアイソレーション工程では、溝5の底部
のP型Si基板1にイオン注入法によりP+型チャネルスト
ッパ7を形成するとき、イオン注入の角度がSi基板1の
全面にわたり、Si基板に対して完全に垂直に打ち込みこ
とは困難であり、N型エピタキシャル層にP型領域21が
形成される。このP型領域21はN+型埋込層2とぶつか
り、耐圧不良を生じたり、ベース・コレクタ間容量を増
大して、NPNトランジスタの高速化に対し、大きな問題
となっていた。
In the conventional isolation process described above, when the P + type channel stopper 7 is formed in the P type Si substrate 1 at the bottom of the groove 5 by the ion implantation method, the angle of ion implantation is over the entire surface of the Si substrate 1 and the Si substrate 1 is formed. On the other hand, it is difficult to implant completely vertically, and the P-type region 21 is formed in the N-type epitaxial layer. The P-type region 21 collides with the N + -type buried layer 2 to cause a withstand voltage failure and increase the base-collector capacitance, which has been a serious problem for speeding up the NPN transistor.

本発明の目的は、このような問題を解決し、溝側面にポ
リシリコンを形成することにより、溝側面のエピタキシ
ャル層にボロンが注入されることを防ぐことができ、そ
のための耐圧不良およびベース・コレクタ間容量の増加
も防ぐことのできる半導体装置の製造方法を提供するこ
とにある。
An object of the present invention is to solve such a problem, and by forming polysilicon on the groove side surface, it is possible to prevent boron from being injected into the epitaxial layer on the groove side surface, and therefore, withstand voltage failure and base. It is an object of the present invention to provide a method of manufacturing a semiconductor device that can prevent an increase in collector-to-collector capacitance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、一導電型半導体基板
上に、他の導電型で高濃度層を形成し、さらに他の高濃
度不純物を導入して高濃度層を形成し、さらにこの高濃
度層上に他の導電型で低濃度不純物を含むエピタキシャ
ル層を形成する第1の工程と、前記エピタキシャル層表
面から前記半導体基板に到達するまで溝を形成し、この
溝によって前記エピタキシャル層を島情領域に分離する
第2の工程と、前記エピタキシャル層表面および前記溝
内部に絶縁膜を形成しさらにこの溝内部の絶縁膜上の溝
側面にのみ窒化膜を形成する第3の工程と、イオン注入
により前記溝の底部の前記半導体基板に一導電型の高濃
度層を形成する第4の工程と、前記溝内部を多結晶シリ
コンで充填し、この多結晶シリコン上に絶縁物を形成し
た後、島状領域に半導体素子を形成する第5の工程を含
むことを特徴とする。
According to the method of manufacturing a semiconductor device of the present invention, a high-concentration layer of another conductivity type is formed on a semiconductor substrate of one conductivity type, and another high-concentration impurity is introduced to form a high-concentration layer. A first step of forming an epitaxial layer containing a low concentration impurity of another conductivity type on the concentration layer, and forming a groove from the surface of the epitaxial layer to the semiconductor substrate, and forming a groove in the epitaxial layer by the groove. A second step of separating into an insulating region, a third step of forming an insulating film on the surface of the epitaxial layer and inside the groove, and a third step of forming a nitride film only on the side surface of the groove on the insulating film inside the groove; A fourth step of forming a high concentration layer of one conductivity type on the semiconductor substrate at the bottom of the groove by implantation, and filling the inside of the groove with polycrystalline silicon and forming an insulator on the polycrystalline silicon. , In the island area Characterized in that it comprises a fifth step of forming a conductive element.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図(a)〜(c)は本発明と関連する参考例を工程
順に説明する断面図である。
1A to 1C are cross-sectional views illustrating a reference example related to the present invention in the order of steps.

まず、P型Si基板1表面に、As,Sb等の不純物を拡散
し、不純物濃度1019〜1020cm-3程度、深さ1μm程度の
N+型埋込層2を形成する。次に、1Ω・cm程度のN型エ
ピタキシャル層3を1.5〜2μm程度形成する。絶縁分
離用の溝5をP型Si基板1に到達するまでエッチングに
より形成し、さらに、酸化膜4を熱酸化法もしくは化学
気相成長法等を用いて形成する(第1図(a))。
First, impurities such as As and Sb are diffused on the surface of the P-type Si substrate 1 to obtain an impurity concentration of about 10 19 to 10 20 cm −3 and a depth of about 1 μm.
The N + type buried layer 2 is formed. Next, the N-type epitaxial layer 3 having a thickness of about 1 Ω · cm is formed to have a thickness of about 1.5 to 2 μm. A groove 5 for insulation separation is formed by etching until it reaches the P-type Si substrate 1, and an oxide film 4 is further formed by a thermal oxidation method or a chemical vapor deposition method (FIG. 1 (a)). .

その後、ポリシリコンを気板表面に溝5が完全に埋まら
ない程度の厚さに形成し、異方性ドライエッチング法に
より溝の側面にのみポリシリコン6を形成し、11B+をイ
オン注入することにより溝底部のP型Si基板1にP+型チ
ャネルストッパ7を形成する(第1図(b))。
Then, polysilicon is formed on the surface of the air plate to a thickness not completely filling the groove 5, and polysilicon 6 is formed only on the side surface of the groove by anisotropic dry etching, and 11 B + is ion-implanted. As a result, the P + type channel stopper 7 is formed on the P type Si substrate 1 at the bottom of the groove (FIG. 1 (b)).

このとき、基板1に対して完全に垂直にイオン注入する
ことは困難なため、溝側面にも注入されるがポリシリコ
ンと酸化膜を適当な厚さにすることにより、N型エピタ
キシャル層3内にイオン注入されるのを防ぐことができ
る。
At this time, since it is difficult to implant ions completely perpendicularly to the substrate 1, the ions are also implanted into the side surfaces of the trench, but by making the polysilicon and the oxide film have appropriate thicknesses, it is possible to Can be prevented from being ion-implanted.

その後、溝内部のみポリシリコン8で充填しポリシリコ
ン6の表面に酸化膜9を形成した後、N型エピタキシャ
ル層3にP型ベース層10,N+型エミッタ層11,電極12を形
成してNPNトランジスタを形成する(第1図(c))。
After that, the inside of the groove is filled with polysilicon 8 to form an oxide film 9 on the surface of the polysilicon 6, and then a P-type base layer 10, an N + -type emitter layer 11 and an electrode 12 are formed on the N-type epitaxial layer 3. An NPN transistor is formed (Fig. 1 (c)).

また、第1図では、NPNトランジスタについて説明した
が、その他の素子例えばPNPトランジスタ、抵抗,CMOS等
でも適用できることは明白である。
Further, although the NPN transistor has been described in FIG. 1, it is obvious that other elements such as a PNP transistor, a resistor, a CMOS, etc. can be applied.

第2図(a)〜(c)は本発明の一実施例を工程順に説
明した断面図である。本実施例は、第1図の参考例と同
様に、分離用の溝5を形成した後、基板1の表面に窒化
膜を形成し、異方性ドライエッチング法を用いて溝5の
側面にのみ窒化膜15を形成する。
2 (a) to (c) are cross-sectional views illustrating an embodiment of the present invention in the order of steps. In this embodiment, similarly to the reference example shown in FIG. 1, after forming the separation groove 5, a nitride film is formed on the surface of the substrate 1 and the side surface of the groove 5 is formed by anisotropic dry etching. Only the nitride film 15 is formed.

その後、参考例と同様に、11B+をイオン注入してP+型チ
ャネルストッパ7を形成、ポリシリコン8を溝内部に充
填し、N型エピタキシャル層3に半導体素子を形成す
る。
Thereafter, similarly to the reference example, 11 B + is ion-implanted to form a P + type channel stopper 7, polysilicon 8 is filled in the groove, and a semiconductor element is formed in the N type epitaxial layer 3.

この実施例では、溝内部の側面が酸化膜と窒化膜とから
なるため、寄生容量の低減の点で有利である。
In this embodiment, the side surface inside the groove is made of an oxide film and a nitride film, which is advantageous in reducing the parasitic capacitance.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、イオン注入でP+型チャネ
ルストッパを形成するときに、溝側面のN型エピタキシ
ャル層にボロンが注入されることを防ぐことにより、耐
圧不良を防ぎ、さらに寄生容量の増加を防ぐことによ
り、半導体素子を高速化できる効果がある。
As described above, according to the present invention, when the P + -type channel stopper is formed by ion implantation, boron is prevented from being implanted into the N-type epitaxial layer on the side surface of the groove, thereby preventing breakdown voltage and further improving parasitic capacitance. The effect of increasing the speed of the semiconductor element is obtained by preventing the increase of

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は本発明を工程順に説明した素子
断面図、第2図(a)〜(c)は本発明の一実施例の工
程順の断面図、第3図(a)〜(c)は従来の製造方法
を工程順に示した断面図である。 1……P型Si基板、2……N+型埋込層、3……N型エピ
タキシャル層、4……酸化膜、5……溝、6,8……ポリ
シリコン、7……P+型チャネルストッパ、9……酸化
膜、10……P型ベース層、11……N+型エミッタ層、12…
…電極、15…窒化膜、21……P型領域。
1 (a) to 1 (c) are cross-sectional views of an element for explaining the present invention in the order of steps, FIGS. 2 (a) to 2 (c) are cross-sectional views in the order of steps of one embodiment of the present invention, and FIG. (a)-(c) is sectional drawing which showed the conventional manufacturing method in order of process. 1 ... P-type Si substrate, 2 ... N + type buried layer, 3 ... N-type epitaxial layer, 4 ... Oxide film, 5 ... Groove, 6,8 ... Polysilicon, 7 ... P + Type channel stopper, 9 ... Oxide film, 10 ... P-type base layer, 11 ... N + type emitter layer, 12 ...
... electrode, 15 ... nitride film, 21 ... P-type region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電型半導体基板上に他の導電型の高濃
度不純物を導入して高濃度層を形成し、さらにこの高濃
度層上に他の導電型で低濃度不純物を含むエピタキシャ
ル層を形成する第1の工程と、前記エピタキシャル層表
面から前記半導体基板に到達するまで溝を形成し、この
溝によって前記エピタキシャル層を島情領域に分離する
第2の工程と、前記エピタキシャル層表面および前記溝
内部に絶縁膜を形成しさらにこの溝内部の絶縁膜上の溝
側面にのみ窒化膜を形成する第3の工程と、イオン注入
により前記溝の底部の前記半導体基板に一導電型の高濃
度層を形成する第4の工程と、前記溝内部を多結晶シリ
コンで充填し、この多結晶シリコン上に絶縁物を形成し
た後、前記島状領域に半導体素子を形成する第5の工程
とを含むことを特徴とする半導体装置の製造方法。
1. A high-concentration layer is formed by introducing a high-concentration impurity of another conductivity type onto a semiconductor substrate of one conductivity type, and an epitaxial layer containing a low-concentration impurity of another conductivity type on the high-concentration layer. Forming a groove from the surface of the epitaxial layer to reach the semiconductor substrate, and separating the epitaxial layer into island regions by the groove; A third step of forming an insulating film inside the groove and further forming a nitride film only on the side surface of the groove on the insulating film inside the groove, and a high conductivity of one conductivity type on the semiconductor substrate at the bottom of the groove by ion implantation. A fourth step of forming a concentration layer, and a fifth step of filling the inside of the groove with polycrystalline silicon, forming an insulator on the polycrystalline silicon, and then forming a semiconductor element in the island region. Specially including The method of manufacturing a semiconductor device according to.
JP62125202A 1987-05-21 1987-05-21 Method for manufacturing semiconductor device Expired - Lifetime JPH07120704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125202A JPH07120704B2 (en) 1987-05-21 1987-05-21 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125202A JPH07120704B2 (en) 1987-05-21 1987-05-21 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63289830A JPS63289830A (en) 1988-11-28
JPH07120704B2 true JPH07120704B2 (en) 1995-12-20

Family

ID=14904435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125202A Expired - Lifetime JPH07120704B2 (en) 1987-05-21 1987-05-21 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH07120704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653315A (en) * 1992-07-30 1994-02-25 Nec Corp Semiconductor device and manufacture thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897846A (en) * 1981-12-08 1983-06-10 Nec Corp Manufacture of semiconductor device
JPS60164335A (en) * 1984-02-06 1985-08-27 Nec Corp Manufacture of semiconductor device
JPS61293817A (en) * 1985-06-21 1986-12-24 Kobayashi:Kk Manufacture of slip-proof projections in doormat

Also Published As

Publication number Publication date
JPS63289830A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
US4819052A (en) Merged bipolar/CMOS technology using electrically active trench
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
JPH0355984B2 (en)
US4717682A (en) Method of manufacturing a semiconductor device with conductive trench sidewalls
JPH0548936B2 (en)
JPS625349B2 (en)
JPH0669431A (en) Method for manufacture of bipolar transistor and cmos transistor on soi substrate and these transistors
US4231057A (en) Semiconductor device and method for its preparation
KR950001146B1 (en) Poly silicon self-align bipolar device and manufacturing method thereof
JP3142336B2 (en) Semiconductor device and manufacturing method thereof
JPH07120704B2 (en) Method for manufacturing semiconductor device
JPH02283028A (en) Semiconductor device and its manufacture
US5065210A (en) Lateral transistor structure for bipolar semiconductor integrated circuits
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JPH0334656B2 (en)
JP2615652B2 (en) Manufacturing method of bipolar transistor
JP2538077B2 (en) Method for manufacturing semiconductor device
KR910001909B1 (en) Semiconductor device
JP2658027B2 (en) Method for manufacturing semiconductor device
JP3257523B2 (en) Method for manufacturing semiconductor device
JPH11233616A (en) Semiconductor device and its manufacturing method
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP2524035B2 (en) Semiconductor device and manufacturing method thereof
JP2674568B2 (en) Method for manufacturing semiconductor device
JP2565161B2 (en) Method for manufacturing semiconductor device