JPH07118414A - Prepreg excellent in tack retentivity - Google Patents

Prepreg excellent in tack retentivity

Info

Publication number
JPH07118414A
JPH07118414A JP28781793A JP28781793A JPH07118414A JP H07118414 A JPH07118414 A JP H07118414A JP 28781793 A JP28781793 A JP 28781793A JP 28781793 A JP28781793 A JP 28781793A JP H07118414 A JPH07118414 A JP H07118414A
Authority
JP
Japan
Prior art keywords
prepreg
resin
component
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28781793A
Other languages
Japanese (ja)
Inventor
Mikio Shima
美樹男 島
Sakanori Ito
栄記 伊藤
Tomohiro Nakanishi
朋宏 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP28781793A priority Critical patent/JPH07118414A/en
Publication of JPH07118414A publication Critical patent/JPH07118414A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a prepreg excellent in workability, heat resistance, extensibility and resin flow resistance by impregnating reinforcing fibers with, as matrix resin, a resin composition essentially comprising three kinds of resin, rubber powder and a curing agent. CONSTITUTION:The objective prepreg can be obtained by impregnating (I) as matrix resin, a resin composition essentially comprising (A) pref. 1-70 pts.wt. of a novolak-type epoxy resin, (B) pref. 1-70 pts.wt. of a bisphenol-type epoxy resin, (C) pref. 3-40 pts.wt., based on a total of 100 pts.wt. of the components A and B, of a phenoxy resin, (D) pref. 2-25 pts.wt., based on a total of 100 pts.wt. of the components A, B and C, of rubber powder and (E) pref. 1-10 pts.wt., based on a total of 100 pts.wt. of the components A and B, of a curing agent (pref. dicyandiamide) in (F) carbon fibers (pref. pitch-based carbon fibers) <=40tonf/mm<2> in tensile modulus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は引張弾性率が40tonf/m
m2以上の炭素繊維を使用したプリプレグに係わり、さら
に詳しくは作業性が良好で耐熱性と伸度のバランスがと
れ、かつ成形硬化時の耐レジンフロー特性に優れたプリ
プレグに関するものである。
FIELD OF THE INVENTION The present invention has a tensile elastic modulus of 40 tonf / m.
The present invention relates to a prepreg using a carbon fiber of m 2 or more, more specifically to a prepreg having good workability, a good balance between heat resistance and elongation, and excellent resin flow resistance during molding and curing.

【0002】[0002]

【従来の技術】炭素繊維は比強度、比弾性率に優れてい
る為、樹脂との複合材として、いわゆるプリプレグの形
で、例えば釣竿、ゴルフクラブ等のスポーツ・レジャー
用品や板バネ、ロール類やハニカム構造材等の工業材
料、さらには自動車用、航空機用、或いは医療材料等の
素材として成形材料の分野で広く利用されており、近年
これらの用途に用いられる。炭素繊維はより高い比強
度、比弾性率が求められるようになってきているのが現
状である。これらのプリプレグには優れた機械的な特性
を有するエポキシ樹脂が使用されてきているが、前述し
たようにより高い比強度、比弾性率の炭素繊維を使用す
るようになるにつれ、使用されるエポキシ樹脂にも新し
い特性が要求されるようになってきている。
2. Description of the Related Art Since carbon fiber is excellent in specific strength and specific elastic modulus, it is used as a composite material with a resin in the form of a so-called prepreg, for example, fishing rods, golf clubs and other sports / leisure products, leaf springs, rolls and the like. It has been widely used in the field of molding materials as an industrial material such as a honeycomb structure material, an automobile material, an aircraft material, a medical material material, and the like, and has recently been used for these applications. At present, carbon fibers are required to have higher specific strength and specific elastic modulus. Epoxy resins having excellent mechanical properties have been used for these prepregs, but as described above, as the carbon fibers with higher specific strength and specific elastic modulus are used, the epoxy resin used In particular, new characteristics are required.

【0003】しかし、従来のエポキシ樹脂組成ではまだ
不満足な点があり、使用方法や用途に制限があった。特
に、引張弾性率が40tonf/mm2以上の炭素繊維を強化繊
維としたプリプレグの場合、炭素繊維の弾性回復による
炭素繊維の浮き(プリプレグ中で炭素繊維の一部が離型
紙面からはがれ浮き上がる状態)や、プリプレグの積層
作業時でのプリプレグ同士のはりあわせ面のはがれ等の
問題があった。すなわち、プリプレグは通常製造時に円
筒状の紙管に巻き取られるが、成形時にはこの紙管から
巻きだし、平面状に適当な大きさに切り、次の工程まで
の間保管される。この保管時において、引張弾性率が4
0tonf/mm2以上の炭素繊維を強化繊維に用いたプリプレ
グの場合、平面状に切ったプリプレグに、製造時の曲面
状に戻ろうとする復元(弾性回復)力が働き、時間の経
過に従い、炭素繊維がプリプレグ上から起き上がる、い
わゆる浮きという現象が起こる。
However, the conventional epoxy resin composition still has some unsatisfactory points, and its use method and application are limited. Particularly, in the case of a prepreg using a carbon fiber having a tensile elastic modulus of 40 tonf / mm 2 or more as a reinforcing fiber, the carbon fiber floats due to the elastic recovery of the carbon fiber (a part of the carbon fiber peels off from the release paper surface in the prepreg. ), And peeling of the bonding surface between the prepregs during the prepreg laminating work. That is, the prepreg is usually wound around a cylindrical paper tube at the time of manufacturing, but is unwound from this paper tube at the time of molding, cut into an appropriate size in a plane, and stored until the next step. In this storage, the tensile modulus is 4
In the case of a prepreg that uses carbon fiber of 0 tonf / mm 2 or more as a reinforcing fiber, the prepreg cut into a flat surface has a restoring (elastic recovery) force that tries to return to the curved shape at the time of production, and the carbon A phenomenon called so-called floating occurs in which the fibers rise from above the prepreg.

【0004】また、プリプレグ中の炭素繊維は極めて異
方性の強い材料であるため、一般に炭素繊維の配向角度
を目的にあわせて変えて積層される。この積層時におい
て、引張弾性率が40tonf/mm2以上の炭素繊維を使用し
たプリプレグは、時間の経過とともに、一度はりあわせ
たプリプレグ同士がはがれてくるという問題があった。
一度浮きや、プリプレグ同士のはがれが生じたプリプレ
グを元の状態にするには、再度、加熱や加圧といった作
業が必要であるという問題点があり、又、これら浮き
や、プリプレグ同士のはがれの生じたプリプレグをその
まま使用した成形品は炭素繊維の配向の乱れや、空洞が
生じ、成形品の欠陥となる。この浮きはプリプレグと離
型紙とのタック(粘着)力が時間経過とともに低下す
る、すなわち、タックの保持性が低い場合に生じ、また
プリプレグ同士のはがれもプリプレグ同士のタックの保
持性が低い場合に生じる。
Since the carbon fiber in the prepreg is a material having extremely strong anisotropy, it is generally laminated by changing the orientation angle of the carbon fiber according to the purpose. At the time of this lamination, the prepreg using the carbon fiber having a tensile elastic modulus of 40 tonf / mm 2 or more had a problem that the prepregs, which were once bonded together, were peeled off with the passage of time.
There is a problem that work such as heating and pressurization is required again in order to return the prepreg to the original state in which the prepreg has once floated or peeled between the prepregs. A molded product using the resulting prepreg as it is causes defects in the molded product due to disordered orientation of carbon fibers and voids. This floating occurs when the tack (adhesion) force between the prepreg and the release paper decreases with time, that is, when the tack retention is low, and when the prepreg peels off and the prepreg tack retention is low. Occurs.

【0005】タックの保持性はプリプレグに使用する炭
素繊維の形状や種類、樹脂の特性に関係している。炭素
繊維の引張弾性率が40tonf/mm2未満の場合は炭素繊維
の弾性回復力が低く比較的問題にならなかったが、40
tonf/mm2以上になると、浮きやプリプレグ同士のはがれ
がの問題が顕著になる。炭素繊維の径を細くすること
は、弾性回復を低下させる点でタックの保持性を向上さ
せることに有効であるが、技術的な難しさや生産歩留り
の低下等の問題があり、好ましくない。そこで樹脂での
検討が必要になるが、従来の技術ではプリプレグの初期
のタック性や、ドレープ性(しなやかさ)等の作業性に
ついては検討がなされているが、タックの保持性につい
ては検討されていなかった。
The tack retaining property is related to the shape and type of carbon fiber used in the prepreg and the characteristics of the resin. When the tensile modulus of the carbon fiber was less than 40 tonf / mm 2 , the elastic recovery of the carbon fiber was low and it was not a problem.
At tonf / mm 2 and above, problems such as floating and peeling between prepregs become significant. Although making the diameter of the carbon fibers thin is effective in improving the tack retention in terms of reducing elastic recovery, it is not preferable because of problems such as technical difficulty and reduction in production yield. Therefore, it is necessary to study with resin.In the conventional technology, workability such as initial tackiness and drapeability (suppleness) of the prepreg has been studied, but tackiness has been studied. Didn't.

【0006】[0006]

【発明が解決しようとする課題】このように、引張弾性
率が40tonf/mm2以上の炭素繊維を強化繊維としたプリ
プレグにおいては、引張弾性率が40tonf/mm2未満の炭
素繊維を強化繊維としたプリプレグよりも炭素繊維の弾
性回復による浮きや、プリプレグ同士の張り合わせ部分
の経時変化による剥がれを抑制する、すなわちタック性
の保持性に優れた樹脂組成を使用することが必要とな
る。但し、単に浮きを防ぐ為に、使用するエポキシ樹脂
の弾性率を上げると、炭素繊維の浮きは防ぐことができ
るが、プリプレグの初期のタック性が低下したり、ドレ
ープ性が低下し、作業性が悪化するという問題が生じて
しまう。
As described above, in the prepreg in which the carbon fiber having the tensile elastic modulus of 40 tonf / mm 2 or more is used as the reinforcing fiber, the carbon fiber having the tensile elastic modulus of less than 40 tonf / mm 2 is used as the reinforcing fiber. It is necessary to suppress the floating due to elastic recovery of the carbon fiber and the peeling due to the change with time of the pasted parts of the prepregs, that is, to use a resin composition having excellent tackiness retention property as compared with the above prepreg. However, if the elastic modulus of the epoxy resin used is increased just to prevent the floating, the floating of the carbon fiber can be prevented, but the initial tackiness of the prepreg is reduced, and the drapeability is reduced, resulting in poor workability. The problem of worsening will occur.

【0007】ここで、タック性やドレープ性を改良した
プリプレグ用樹脂組成の特許文献として、特開平3−3
5106、特開平3−62821、特開平3−1190
24、特開昭63−152644、特開昭54−991
61、特開昭63−308026、特開平1−2158
50、特開昭62−1717、特開平3−220225
等がある。しかし、これらは、初期のタック性やドレー
プ性に起因する作業性を検討したものでしかない。ま
た、その他特開平2−20546もあるが、これも、初
期のタック性やドレープ性に起因する作業性、ないしは
加熱硬化時に予めレイアップしたプリプレグの形状維持
性に関するものである。
Here, as a patent document of a resin composition for prepreg with improved tackiness and drapeability, Japanese Patent Laid-Open No. 3-3
5106, JP-A-3-62821, and JP-A3-1190.
24, JP-A-63-152644, JP-A-54-991.
61, JP-A-63-308026, JP-A 1-2158
50, JP-A-62-1717, JP-A-3-220225.
Etc. However, these are only studies of workability due to initial tackiness and drapeability. In addition, there is also Japanese Unexamined Patent Publication No. 2-20546, which also relates to workability due to initial tackiness and drapeability, or shape retention of a prepreg pre-laid up during heat curing.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、引張
弾性率が40tonf/mm2以上の炭素繊維を強化繊維として
使用した場合であっても、浮きを抑制でき、プリプレグ
同士のはりあわせ部の経時変化による剥がれが少ないと
いう良好な作業性を有し、耐熱性と伸度のバランスがと
れ、かつ成形硬化時の耐レジンフロー特性に優れたプリ
プレグを提供することにある。
The object of the present invention is to prevent floating even when carbon fiber having a tensile elastic modulus of 40 tonf / mm 2 or more is used as a reinforcing fiber, and a gluing portion between prepregs is used. Another object of the present invention is to provide a prepreg that has good workability in that it does not peel off due to changes over time, has a good balance of heat resistance and elongation, and is excellent in resin flow resistance during molding and curing.

【0009】すなわち、引張弾性率が40tonf/mm2以上
の炭素繊維を強化繊維としたプリプレグにおいては、引
張弾性率が40tonf/mm2未満の炭素繊維を強化繊維とし
たプリプレグよりも炭素繊維の弾性回復による浮きや、
プリプレグ同士の張り合わせ部分の経時変化による剥が
れを抑制する、すなわちタック性の保持性に優れた樹脂
組成を使用することが必要となる。
That is, in a prepreg using a carbon fiber having a tensile elastic modulus of 40 tonf / mm 2 or more as a reinforcing fiber, the elasticity of the carbon fiber is higher than that of a prepreg using a carbon fiber having a tensile elastic modulus of less than 40 tonf / mm 2 as a reinforcing fiber. Floating due to recovery,
It is necessary to use a resin composition that suppresses peeling of the pasted portions of the prepregs due to a change with time, that is, has excellent tack retention.

【0010】したがって、本発明は引張弾性率が40to
nf/mm2以上の炭素繊維を強化繊維として使用した場合に
おいても、従来から必要となっている耐熱性と伸度のバ
ランスがとれ、かつ成形硬化時の耐レジンフロー特性を
損なうことなく、浮きやプリプレグ同士のはりあわせ部
分の経時変化によるはがれを抑制し、良好な作業性を与
える樹脂組成物を引張弾性率が40tonf/mm2以上の炭素
繊維に含浸せしめてなるプリプレグを提供することを目
的とすものである。
Therefore, the present invention has a tensile modulus of 40 to
Even when carbon fiber of nf / mm 2 or more is used as a reinforcing fiber, the heat resistance and elongation, which have been conventionally required, are well balanced, and the resin flow resistance during molding and curing does not deteriorate, and it floats. An object of the present invention is to provide a prepreg obtained by impregnating a carbon fiber having a tensile elastic modulus of 40 tonf / mm 2 or more with a resin composition that suppresses peeling due to aged deterioration of a bonded portion between prepregs and prepregs and provides good workability. It is

【0011】[0011]

【課題を解決するための手段】本発明者等は先に特定の
樹脂を組み合わせることにより、耐熱性と伸度のバラン
スがとれ、かつ成形硬化時の耐レジンフロー特性が優れ
たプリプレグ用樹脂組成物を得られることを見出した
(特開平1−201321)。
Means for Solving the Problems The present inventors have previously combined a specific resin to obtain a resin composition for prepreg which has a good balance between heat resistance and elongation and is excellent in resin flow resistance during molding and curing. It was found that a product can be obtained (JP-A-1-201321).

【0012】さらに本発明者等は、前記の目的を達成す
べく鋭意検討をおこなった結果、引張弾性率が40tonf
/mm2以上の炭素繊維を強化繊維として使用した場合で
も、耐熱性と伸度のバランスがとれ、かつ成形硬化時の
耐レジンフロー特性を損なうことなく、浮きやプリプレ
グ同士のはりあわせ部分の経時変化による剥がれを抑制
し、良好な作業性を与えることにより、本発明を完成し
たものである。すなわち、本発明は、下記A、B、C、
D、及びE成分を必須成分としてなる樹脂組成物をマト
リックス樹脂とし、F成分の強化繊維に含浸させてなる
ことを特徴とするプリプレグである: A ノボラック型エポキシ樹脂 B ビスフェノールA型エポキシ樹脂 C フェノキシ樹脂 D 粉末ゴム E 硬化剤 F 引張弾性率が40tonf/mm2以上の炭素繊維。 ここで、A〜D成分の各割合は、 A ノボラック型エポキシ樹脂 1〜70重量部 B ビスフェノールA型エポキシ樹脂 1〜70重量部 C フェノキシ樹脂 3〜40重量部 D 粉末ゴム 2〜25重量部 (C成分の配合割合はA及びB成分の合計量100重量
部に対する量、D成分の配合割合はA、B及びC成分の
総量100重量部に対する量である)にすることが好適
である。
Further, the inventors of the present invention conducted extensive studies to achieve the above-mentioned object, and as a result, the tensile elastic modulus was 40 tonf.
Even when using carbon fiber of / mm 2 or more as a reinforcing fiber, the heat resistance and elongation are well balanced, and the float and prepreg-bonded parts are aged without impairing the resin flow resistance during molding and curing. The present invention is completed by suppressing peeling due to change and providing good workability. That is, the present invention provides the following A, B, C,
A prepreg characterized in that a resin composition comprising D and E components as essential components is used as a matrix resin and is impregnated with reinforcing fibers of F component: A novolac type epoxy resin B bisphenol A type epoxy resin C phenoxy Resin D Powder rubber E Curing agent F Carbon fiber with tensile modulus of 40 tonf / mm 2 or more. Here, the respective proportions of the components A to D are: A novolac type epoxy resin 1 to 70 parts by weight B bisphenol A type epoxy resin 1 to 70 parts by weight C phenoxy resin 3 to 40 parts by weight D powder rubber 2 to 25 parts by weight ( It is preferable that the mixing ratio of the C component is 100 parts by weight of the total amount of the A and B components, and the mixing ratio of the D component is 100 parts by weight of the total amount of the A, B and C components).

【0014】以下本発明を詳細に検討する。まず、本発
明においてノボラック型エポキシ樹脂(A成分)として
は、具体的にはエスポキシSCN−701P,エスポキ
シSCN−702P,エスポキシSCN−703P,エ
スポキシSCN−704P(新日鐵化学製),アラルダ
イトECN−1273,アラルダイトECN−1280
(日本チバガイギー製),或いは住友化学工業製のES
CN−220シリーズ、更にはこれらの相当品であるク
レゾールノボラック型エポキシ樹脂やエスポキシSPN
−638(新日鐵化学製),エピコート152、エピコ
ート154(油化シェルエポキシ製)、EPPN−20
1(日本化薬製)更にはこれらの相当品であるフェノー
ルノボラック型エポキシ樹脂を適宜選択して1種あるい
は2種以上を混合して用いることができる。
The present invention will be examined in detail below. First, as the novolac type epoxy resin (component A) in the present invention, specifically, Espoxy SCN-701P, Espoxy SCN-702P, Espoxy SCN-703P, Espoxy SCN-704P (manufactured by Nippon Steel Chemical Co., Ltd.), Araldite ECN-. 1273, Araldite ECN-1280
(Manufactured by Japan Ciba Geigy) or ES manufactured by Sumitomo Chemical
CN-220 series, and their equivalents such as cresol novolac type epoxy resin and Espoxy SPN
-638 (manufactured by Nippon Steel Chemical Co., Ltd.), Epicoat 152, Epicoat 154 (manufactured by Yuka Shell Epoxy), EPPN-20
1 (manufactured by Nippon Kayaku Co., Ltd.), or a phenol novolac type epoxy resin which is an equivalent product thereof can be appropriately selected and used alone or in combination of two or more.

【0015】これらエポキシ樹脂(A成分)はエポキシ
当量が小さく架橋密度が高くなるため、得られる硬化後
の成形体は、弾性率ならびに耐熱性に優れた成形品が得
られる反面、過剰に用いた場合はいずれも成形体の伸度
を低下させ、脆化の原因となる。そこでこのような特性
を考慮してA,BおよびC成分の総量のうち、10〜7
0重量部、望ましくは20〜50重量部添加するもので
ある。A成分の樹脂が10重量部より少ないと充分な弾
性率或いは耐熱性を硬化体に付与することができない。
一方70重量部より多くなると、夫々の硬化体の伸度が
低下し、材質が脆化する。
Since these epoxy resins (component A) have a small epoxy equivalent and a high crosslink density, the resulting cured molded article can be used as a molded article excellent in elastic modulus and heat resistance, but is used excessively. In either case, the elongation of the molded product is reduced, which causes embrittlement. Therefore, in consideration of such characteristics, 10 to 7 out of the total amount of the components A, B and C are considered.
0 parts by weight, preferably 20 to 50 parts by weight is added. If the amount of the component A resin is less than 10 parts by weight, it is impossible to impart a sufficient elastic modulus or heat resistance to the cured product.
On the other hand, if the amount is more than 70 parts by weight, the elongation of each cured product decreases and the material becomes brittle.

【0016】また、ビスフェノールA型エポキシ樹脂
(B成分)としては、具体的にはエスポキシSA−11
5,エスポキシSA−115CA,エスポキシSA−1
27,エスポキシSA−128,エスポキシSA−13
4,エスポキシSA−011,エスポキシSA−01
4,エスポキシSA−017,エスポキシSA−01
9,エスポキシSA−7020(新日鐵化学製),エピ
コート828、エピコート834、エピコート100
1、エピコート1004(油化シェルエポキシ製)、ア
ラルダイトGY−250,アラルダイトGY−260,
アラルダイト6071(日本チバガイギー製)などであ
り、さらにはこれらの相当品を適宜選択して1種あるい
は2種以上を混合して用いることができる。
The bisphenol A type epoxy resin (component B) is specifically Espoxy SA-11.
5, Espoxy SA-115CA, Espoxy SA-1
27, Espoxy SA-128, Espoxy SA-13
4, Espoxy SA-011, Espoxy SA-01
4, Espoxy SA-01, Espoxy SA-01
9, Espoxy SA-7020 (manufactured by Nippon Steel Chemical Co., Ltd.), Epicoat 828, Epicoat 834, Epicoat 100
1, Epicoat 1004 (made by Yuka Shell Epoxy), Araldite GY-250, Araldite GY-260,
Araldite 6071 (manufactured by Nippon Ciba Geigy) or the like, and further, one of these equivalent products can be appropriately selected and one or more can be mixed and used.

【0017】これらB成分であるビスフェノールA型エ
ポキシ樹脂は分子量の差により、固形から液状までの種
々のグレードがあり、プリプレグ用マトリックス樹脂に
配合する場合、適宜これらを混合することにより粘度調
整を行うことができ、また硬化後の成形体の伸度もA成
分であるノボラック型エポキシ樹脂よりも高い。しかし
ながら耐熱性が劣る。そこでB成分はA、B,およびC
成分の総量のうち10重量部〜70重量部、望ましくは
20〜50重量部添加するものである。B成分の重量が
10重量部より少ないと充分な伸度が得られず、70重
量部より多いと充分な耐熱性を付与することができな
い。
The bisphenol A type epoxy resin as the B component is available in various grades from solid to liquid due to the difference in molecular weight. When blended with the matrix resin for prepreg, the viscosity is adjusted by appropriately mixing them. Further, the elongation of the molded product after curing is higher than that of the novolac type epoxy resin which is the A component. However, the heat resistance is poor. So the B component is A, B, and C
10 to 70 parts by weight, preferably 20 to 50 parts by weight of the total amount of the components are added. If the weight of component B is less than 10 parts by weight, sufficient elongation cannot be obtained, and if it exceeds 70 parts by weight, sufficient heat resistance cannot be imparted.

【0018】次に本発明に用いられるフェノキシ樹脂
(C成分)は、線状高分子であり、エポキシ樹脂とも相
溶性が良く又、分子量が高いことから粘度の温度依存性
が鈍く、先述したA+B成分に添加することにより、成
形硬化時の樹脂の最低粘度を上昇させることができると
いう特性をもっているためプリプレグ用マトリックスと
して良好な特性を与える。ここで用いられるフェノキシ
樹脂とは、平均分子量が10000〜100000程度
のものであり、具体的な市販品としてはエスポキシSP
−50(新日鐵化学製)、エピコートOL−53−B−
40,エピコートOL−55−B40(油化シェルエポ
キシ製)、DER684EK40(ダウケミカル製),
フェノトートYP50EX40(東都化成製)、PKH
H,PKHJ,PKHM−30(UCC製)等があり、
さらにはこれらの相当品を適宜選択して1種あるいは2
種以上を混合して用いることができる。
Next, the phenoxy resin (component C) used in the present invention is a linear polymer, has good compatibility with the epoxy resin, and has a high molecular weight so that the temperature dependence of viscosity is low. When added to the components, it has the property that the minimum viscosity of the resin at the time of molding and curing can be increased, so that it gives good properties as a matrix for prepreg. The phenoxy resin used here has an average molecular weight of about 10,000 to 100,000, and specific commercially available products include Espoxy SP.
-50 (Nippon Steel Chemical), Epicoat OL-53-B-
40, Epicoat OL-55-B40 (made by Yuka Shell Epoxy), DER684EK40 (made by Dow Chemical),
Phenothote YP50EX40 (Toto Kasei), PKH
H, PKHJ, PKHM-30 (made by UCC), etc.
In addition, select one of these equivalents as appropriate and use one or two.
A mixture of two or more species can be used.

【0019】また、C成分の添加量は、A及びB成分の
合計量100重量部に対して3〜40重量部、望ましく
は5〜20重量部が必要である。配合量が3重量部より
少ない場合、硬化時の最低粘度が低くなり、耐レジンフ
ロー特性が悪くなり、又40重量部を越えると、粘度が
高くなり、プリプレグ用マトリックス樹脂として使用不
可となる。
Further, the amount of the component C added is required to be 3 to 40 parts by weight, preferably 5 to 20 parts by weight, based on 100 parts by weight of the total amount of the components A and B. If the compounding amount is less than 3 parts by weight, the minimum viscosity at the time of curing will be low and the resin flow resistance will be poor, and if it exceeds 40 parts by weight, the viscosity will be too high to be used as a matrix resin for prepreg.

【0020】次に本発明に用いられる粉末ゴム(D成
分)は粉末であれば特に制限されるものではない。この
粉末ゴムとしては、平均粒子径が1mm以下のものであ
れば良い。こうした粉末ゴムでなく液状ゴムである場合
には、プリプレグの浮きの抑制と良好な作業性の維持を
両立することができない。すなわち、浮きを抑制するた
めにエポキシ樹脂組成物の弾性率を高くするとプリプレ
グのドレープ性や初期のタック性を低下させ作業性に支
障をきたす。また、作業性を重視してエポキシ樹脂の弾
性率を低くすると、プリプレグの浮きを抑制することが
できない。具体的には、ジエン系ゴム、ニトリルゴムな
ど種々の粉末ゴムを使用でき、例えばブタジエンとアク
リロニトリルの共重合体であって、平均分子量が500
0以上のもの、さらにはこのブタジエン・アクリロニト
リル共重合体がカルボン酸変性されたものや3元重合体
であっても良い。具体例としては、ニポールHF01、
ニポールHF21,ニポール1411(日本ゼオン製)
等が挙げられ、エポキシ樹脂との溶解性を考慮すると、
結合アクリロニトリル含有量は30%以上のものが好ま
しい。
Next, the powder rubber (component D) used in the present invention is not particularly limited as long as it is a powder. The powdered rubber may have an average particle diameter of 1 mm or less. When the liquid rubber is used instead of the powdered rubber, it is impossible to achieve both suppression of floating of the prepreg and maintenance of good workability. That is, if the elastic modulus of the epoxy resin composition is increased in order to suppress the floating, the drape property of the prepreg and the initial tack property are deteriorated and workability is impaired. Further, if the elastic modulus of the epoxy resin is lowered with an emphasis on workability, the floating of the prepreg cannot be suppressed. Specifically, various powder rubbers such as diene rubber and nitrile rubber can be used. For example, it is a copolymer of butadiene and acrylonitrile and has an average molecular weight of 500.
It may be 0 or more, and further, this butadiene / acrylonitrile copolymer may be a carboxylic acid-modified one or a terpolymer. As a specific example, Nipol HF01,
Nipol HF21, Nipol 1411 (manufactured by Zeon Corporation)
Etc., considering the solubility with epoxy resin,
The bound acrylonitrile content is preferably 30% or more.

【0021】又、D成分の添加量はA,B,およびC成
分の合計量100重量部に対して2〜25重量部、望ま
しくは5〜20重量部が必要である。配合量が2重量部
より少ない場合、プリプレグの浮きを充分に抑制するこ
とができず、又25重量部を越えると、粘度が高くな
り、プリプレグ用マトリックス樹脂として使用不可とな
る。
Further, the addition amount of the D component is required to be 2 to 25 parts by weight, preferably 5 to 20 parts by weight based on 100 parts by weight of the total amount of the A, B and C components. If the blending amount is less than 2 parts by weight, the prepreg cannot be sufficiently prevented from floating, and if it exceeds 25 parts by weight, the viscosity becomes high and it cannot be used as a matrix resin for prepreg.

【0022】ここで本発明においては、A成分及びB成
分は主として樹脂混合物の粘度の調整と、かつ成形品の
耐熱性と伸度のバランスをとることであり、C成分は主
として成形硬化時の耐レジンフロー特性を優れたものと
することであり、D成分は主としてプリプレグ中の炭素
繊維の弾性回復を抑え、浮きの発生や、プリプレグ同士
をはりあわせた部分のはがれを抑制するという良好なタ
ックの保持性を付与するものである。
In the present invention, the components A and B are mainly for adjusting the viscosity of the resin mixture and for balancing the heat resistance and elongation of the molded product, and the component C is mainly for molding and curing. To improve the resin flow resistance, the D component mainly suppresses the elastic recovery of the carbon fibers in the prepreg, and prevents the occurrence of floating and the peeling of the part where the prepregs are bonded together. To retain the property.

【0023】E成分として使用される硬化剤としては、
ジシアンジアミドが好ましく、特に硬化促進剤を併用す
るとよい。こうした硬化剤を使用することによって、1
40℃以下の温度での硬化が可能となり、且つシェルラ
イフも20℃で2ヵ月以上を保つことができるようにな
る。また、硬化促進剤としては、イミタゾール誘導体、
例えば、四国化成工業製のキュアゾール2P4MHZ、
あるいはイミタゾールのカルボン酸塩や金属錯体塩等、
又は尿素化合物、例えば3−(3、4−ジクロロフェニ
ル)−1−1−Nジメチル尿素等が優れた効果を示すも
のである。
As the curing agent used as the E component,
Dicyandiamide is preferable, and a curing accelerator is particularly preferably used together. By using such a curing agent, 1
Curing is possible at a temperature of 40 ° C. or lower, and the shell life can be maintained at 20 ° C. for 2 months or longer. Further, as the curing accelerator, an imidazole derivative,
For example, Curesol 2P4MHZ manufactured by Shikoku Chemicals,
Alternatively, imidazole carboxylate or metal complex salt,
Alternatively, a urea compound, such as 3- (3,4-dichlorophenyl) -1-1-N dimethylurea, exhibits excellent effects.

【0024】この場合、E成分の硬化剤の配合量はA成
分及びB成分の総量100重量部に対し1〜10重量部
が好ましく、1重量部より少ないと硬化が不十分とな
り、また10重量部より多いと硬化成形体の強度が低下
する。また硬化促進剤の配合量はA成分及びB成分の総
量100重量部に対して1〜10重量部が好ましく、1
重量部より少ないと高い硬化温度が必要となり、また1
0重量部より多いとシェルフライフが短くなる。
In this case, the compounding amount of the E component curing agent is preferably 1 to 10 parts by weight per 100 parts by weight of the total amount of the A and B components, and if less than 1 part by weight, the curing becomes insufficient, If the amount is larger than the number of parts, the strength of the cured molded article will decrease. Moreover, the compounding amount of the curing accelerator is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the components A and B, and 1
If it is less than 1 part by weight, a high curing temperature is required, and 1
If it is more than 0 parts by weight, the shelf life becomes short.

【0025】本発明にあっては、こうしたA〜E成分を
使用すれば、炭素繊維(F成分)について引張弾性率が
40tonf/mm2以上であっても、浮きを抑制でき、プリプ
レグ同士のはりあわせ部の経時変化による剥がれが少な
いという良好な作業性を有し、耐熱性と伸度のバランス
がとれ、かつ成形硬化時の耐レジンフロー特性に優れた
プリプレグを提供できる。炭素繊維としては、こうした
引張弾性率が40tonf/mm2以上であれば、ポリアクリロ
ニトリル系(PAN系)、ピッチ系等のいずれであって
も差支えない。また、例えば特願開04-031888 に開示さ
れたようなポリアクリロニトリル系(PAN系)とピッ
チ系とを組み合わせたものであってもよい。もっとも、
ピッチ系炭素繊維において、こうしたタック保持性を改
良できることは、その利用可能性を高めることができ、
産業上非常に有益である。
In the present invention, by using the components A to E, even if the tensile modulus of the carbon fiber (F component) is 40 tonf / mm 2 or more, the floating can be suppressed and the beam between the prepregs can be prevented. It is possible to provide a prepreg that has good workability in that it does not peel off due to aging of the mating part, has a good balance of heat resistance and elongation, and is excellent in resin flow resistance during molding and curing. The carbon fiber may be polyacrylonitrile-based (PAN-based), pitch-based or the like as long as the tensile elastic modulus is 40 tonf / mm 2 or more. Further, it may be a combination of a polyacrylonitrile system (PAN system) and a pitch system as disclosed in Japanese Patent Application No. 04-031888. However,
In pitch-based carbon fiber, the ability to improve such tack retention can increase its availability,
It is very useful in industry.

【0026】本発明のプリプレグは以上で述べたA,
B,C,D,E及びF成分を必須とするものであるが、
必要により無水シリカ、顔料等を添加することもでき
る。
The prepreg of the present invention has the above-mentioned A,
B, C, D, E and F components are essential,
If necessary, anhydrous silica, a pigment and the like can be added.

【0027】[0027]

【実施例】以下実施例により本発明についてさらに詳細
に説明する。なお、この場合の試験方法は以下の通りで
ある。
The present invention will be described in more detail with reference to the following examples. The test method in this case is as follows.

【0028】〔浮きのテスト〕1m幅のプリプレグを製
造し、直径約30cmの紙管の巻取り、室温下で1日放置
したのち、1m角に切り、平な机の上に2時間静置し、
2時間後にプリプレグの浮きを目視にて観察する。
[Floating Test] A prepreg having a width of 1 m was produced, a paper tube having a diameter of about 30 cm was wound, left at room temperature for 1 day, cut into 1 m squares, and left standing on a flat desk for 2 hours. Then
After 2 hours, the floating of the prepreg is visually observed.

【0029】〔レジンフローの測定〕炭素繊維方向が0
°と45°方向になるように交互に積層して厚さ2mm,
内径10mmのパイプ状に巻き、4kgf のテンションがか
かるよう、ラッピングテープをプリプレグの上に巻きつ
け140℃で120分硬化を行い、(1)式でレジンフ
ロー量を計算した。
[Measurement of Resin Flow] Carbon fiber direction is 0
2mm thick by alternately laminating in the direction of ° and 45 °,
A wrapping tape was wrapped around a prepreg so that it was wound in a pipe shape with an inner diameter of 10 mm and a tension of 4 kgf was applied, and cured at 140 ° C. for 120 minutes, and the resin flow amount was calculated by the formula (1).

【0030】〔タック性、ドレープ性の評価〕レジンフ
ローを測定するためにプリプレグをパイプ状に巻きつけ
る際に、触感および目視にて判断した。
[Evaluation of Tackiness and Drapability] When the prepreg was wound in a pipe shape to measure the resin flow, it was judged visually and visually.

【0031】〔ガラス転移温度(Tg)の測定〕レジン
フローを測定したあとの成形品を約30mg切りだし、パ
ーキンエルマージャパン製の示差走査熱量系計(DSC
7)を用いて測定した。
[Measurement of glass transition temperature (Tg)] About 30 mg of the molded product after measuring the resin flow was cut out, and a differential scanning calorimeter (DSC) manufactured by Perkin Elmer Japan was cut out.
It measured using 7).

【0032】〔はがれのテスト(タック保持性)〕炭素
繊維方向が+45°と−45°になるようにプリプレグ
を外径10mmのパイプに巻きつけ、プリプレグ同士のは
りあわせ面のはがれる距離を時間経過とともに測定し
た。
[Peeling Test (Tack Retention)] A prepreg was wound around a pipe having an outer diameter of 10 mm so that the carbon fiber directions were + 45 ° and −45 °, and the peeling distance of the bonding surface between the prepregs was elapsed with time. It was measured with.

【0033】実施例1 A成分のノボラック型エポキシ樹脂として油化シェルエ
ポキシ製のエピコート154、B成分のビスフェノール
A型エポキシ樹脂として日本チバガイギー製のアラルダ
イト6071とアラルダイトGY250、C成分のフェ
ノキシ樹脂として新日鐵化学製のSP−50、D成分の
粉末ゴムとして日本ゼオン製のニポールHF01(アク
リロニトリル共重合ブタジエンゴム 分子量2〜100
万)、E成分の硬化剤としてジシアンジアミド(以下D
ICY)と3−(3、4−ジクロロフェニル)−1−1
−Nジメチル尿素(保土ヶ谷化学製:商品名DCMU9
9以下DCMU)との混合物、F成分の炭素繊維として
エスカイノスNT−40(新日本製鐵製ピッチ系炭素繊
維 引張強度370kgf/mm2 ;引張弾性率40tonf/m
m2)を使用し、炭素繊維目付け150g/m2、樹脂含有率
37wt%のプリプレグを製造し、評価を行った。
Example 1 Epicoat 154 made of oiled shell epoxy as the novolac type epoxy resin of the component A, Araldite 6071 and Araldite GY250 manufactured by Ciba-Geigy as the component bisphenol A type epoxy resin of the component B, and Shin-Nihon as the phenoxy resin of the component C As a powder rubber of SP-50 and D component manufactured by Nippon Kagaku Co., Ltd., Nipol HF01 (acrylonitrile copolymerized butadiene rubber, molecular weight 2 to 100) manufactured by Nippon Zeon Co., Ltd.
10,000), dicyandiamide (hereinafter D
ICY) and 3- (3,4-dichlorophenyl) -1-1
-N dimethyl urea (Hodogaya Chemical Co., Ltd .: trade name DCMU9
9 or less DCMU), Eskinos NT-40 (Nippon Steel pitch-based carbon fiber, tensile strength 370 kgf / mm 2 ; tensile modulus 40 tonf / m as carbon fiber of F component)
m 2 ), a prepreg having a carbon fiber basis weight of 150 g / m 2 and a resin content of 37 wt% was produced and evaluated.

【0034】実施例2 A成分としてクレゾールノボラック型エポキシ(日本チ
バガイギー製 アラルダイトECN1273)を使用し
た以外は実施例1と同様にプリプレグを製造し、評価を
行った。
Example 2 A prepreg was prepared and evaluated in the same manner as in Example 1 except that cresol novolac type epoxy (Araldite ECN1273 manufactured by Nippon Ciba Geigy) was used as the component A.

【0035】実施例3 D成分として日本ゼオン製のニポール1411を使用し
た以外は実施例1と同様にプリプレグを製造し、評価を
行った。
Example 3 A prepreg was manufactured and evaluated in the same manner as in Example 1 except that Nipol 1411 manufactured by Nippon Zeon was used as the D component.

【0036】実施例4 F成分としてエスカイノスNT−80(新日本製鐵製
ピッチ系炭素繊維 引張強度310kgf/mm2 、引張弾性
率80tonf/mm2)を使用した以外は実施例1と同様にプ
リプレグを製造し、評価を行った。
Example 4 Eskyinos NT-80 (made by Nippon Steel) as the F component
A prepreg was manufactured and evaluated in the same manner as in Example 1 except that pitch-based carbon fiber having a tensile strength of 310 kgf / mm 2 and a tensile elastic modulus of 80 tonf / mm 2 ) was used.

【0037】実施例5 C成分のフェノキシ樹脂としてPKHM−30(UCC
社製)を、D成分の粉末ゴムとしてニポール1411
(日本ゼオン製)を使用した以外は実施例1と同様にプ
リプレグを製造し、評価を行った。
Example 5 PKHM-30 (UCC) was used as a C component phenoxy resin.
Nipol 1411 as a D component powder rubber
A prepreg was manufactured and evaluated in the same manner as in Example 1 except that (manufactured by Zeon Corporation) was used.

【0038】比較例1 D成分を除いた以外は実施例1と同様にプリプレグを製
造し、評価を行った。
Comparative Example 1 A prepreg was produced and evaluated in the same manner as in Example 1 except that the D component was omitted.

【0039】比較例2 C成分を除いた以外は実施例4と同様にプリプレグを製
造し、評価を行った。
Comparative Example 2 A prepreg was manufactured and evaluated in the same manner as in Example 4 except that the C component was omitted.

【0040】比較例3 F成分としてエスカイノスNT−30(新日本製鐵製
ピッチ系炭素繊維 引張強度360kgf/mm2 、引張弾性
率30tonf/mm2)を使用した以外は比較例1と同様にプ
リプレグを製造し、評価を行った。
Comparative Example 3 As the F component, Escainos NT-30 (manufactured by Nippon Steel Corporation)
A prepreg was manufactured and evaluated in the same manner as in Comparative Example 1 except that pitch-based carbon fiber having a tensile strength of 360 kgf / mm 2 and a tensile elastic modulus of 30 tonf / mm 2 ) was used.

【0041】比較例4 C成分としてSP−50の添加量を、D成分としてニポ
ールHF01の添加量をそれぞれ実施例1と比べて減ら
した以外は実施例1と同様にプリプレグを製造し、評価
を行った。
Comparative Example 4 A prepreg was produced and evaluated in the same manner as in Example 1 except that the addition amount of SP-50 as the C component and the addition amount of Nipol HF01 as the D component were decreased as compared with those in Example 1, respectively. went.

【0042】比較例5 C成分としてSP−50の添加量を、D成分としてニポ
ールHF01の添加量をそれぞれ実施例1と比べて増加
させた以外は実施例1と同様にプリプレグを製造しよう
としたが、粘度が高く製造できなかった。
Comparative Example 5 An attempt was made to produce a prepreg in the same manner as in Example 1 except that the addition amount of SP-50 as the C component and the addition amount of Nipol HF01 as the D component were increased as compared with those of the Example 1. However, it could not be manufactured due to its high viscosity.

【0043】比較例6 C成分としてSP−50の添加量を10wt%、D成分と
してニポールHF01の添加量を1wt%とした以外は、
実施例1と同様にプリプレグを製造し、評価を行った。
Comparative Example 6 Except that the addition amount of SP-50 as the C component was 10 wt% and the addition amount of Nipol HF01 as the D component was 1 wt%.
A prepreg was manufactured and evaluated in the same manner as in Example 1.

【0044】比較例7 C成分としてSP−50の添加量を2wt%、D成分とし
てニポールHF01の添加量を5wt%とした以外は、実
施例1と同様にプリプレグを製造し、評価を行った。
Comparative Example 7 A prepreg was manufactured and evaluated in the same manner as in Example 1 except that the addition amount of SP-50 as the C component was 2 wt% and the addition amount of Nipol HF01 as the D component was 5 wt%. .

【0045】なお、使用した成分は次の通り: 〔A成分〕 ノボラック型エポキシ樹脂 1)フェノールノボラック型 エピコート154 油化シェルエホ゜キシ 製 エポキシ当量
約180g/eq 2)クレゾールノボラック型 アラルダイトECN1273 日本チバガイギー製 エポキシ当量 約220g/eq 軟化点 約73℃
The components used were as follows: [A component] Novolak type epoxy resin 1) Phenol novolak type Epicoat 154 Epoxy equivalent of Yuka Shell Epoxy
180g / eq 2) Cresol novolac type Araldite ECN1273 manufactured by Nippon Ciba Geigy Epoxy equivalent 220g / eq Softening point 73 ° C

【0046】〔B成分〕 ビスフェノールA型エポキシ
樹脂 1)液状 SA−128 新日鐵化学製 エポキシ当量 184〜
194g/eq 粘度 120〜150ポイズ アラルダイトGY250 日本チバガイギー製 エポキシ当量 約190g/eq 2)固形 SA−014 新日鐵化学製 エポキシ当量 900
〜1000g/eq 軟化点 91〜102℃ アラルダイト6071 日本チバガイギー製 エポキシ当量 450〜500g/eq 軟化点 約64℃
[Component B] Bisphenol A type epoxy resin 1) Liquid SA-128 manufactured by Nippon Steel Chemical Epoxy equivalent 184-
194g / eq Viscosity 120-150 Poise Araldite GY250 Nippon Ciba Geigy epoxy equivalent 190g / eq 2) Solid SA-014 Nippon Steel Chemical epoxy equivalent 900
~ 1000g / eq softening point 91-102 ° C Araldite 6071 Nippon Ciba Geigy Epoxy equivalent 450-500g / eq softening point about 64 ° C

【0047】〔C成分〕 フェノキシ樹脂 1)SP−50 新日鐵化学製 エポキシ当量 約
数万〜10万g/eq 軟化点 約200℃ 2)PKHM−30 UCC製 エポキシ当量 約
数万〜10万g/eq ガラス転移温度 約35℃
[Component C] Phenoxy resin 1) SP-50 made by Nippon Steel Chemical Epoxy equivalent of about tens of thousands to 100,000 g / eq Softening point about 200 ° C. 2) PKHM-30 UCC made of epoxy equivalent of about tens of thousands to 100,000 g / eq glass transition temperature about 35 ℃

【0048】〔D成分〕 粉末ゴム 1)アクリロニトリル共重合ブタジエンゴム ニポールHF01 日本ゼオン製 分子量 2〜
100万 平均粒径 約0.5mm ニポール1411 日本ゼオン製 分子量 2〜
100万 平均粒径 約0.1mm
[Component D] Powder rubber 1) Acrylonitrile copolymer butadiene rubber Nipol HF01 manufactured by Nippon Zeon, molecular weight 2
1 million average particle diameter about 0.5 mm Nipol 1411 manufactured by Nippon Zeon, molecular weight 2
1 million average particle size about 0.1 mm

【0049】〔E成分〕 硬化剤 1)アミン系 ジシアンジアミド 3-(3,4-シ゛クロロフェニル)-1,1-N-シ゛メチル 尿素(硬化促進剤) 〔F成分〕 炭素繊維 1)エスカノイスNT−40 新日鐵製 ピッチ系 引張強度 370kgf/mm2 以上 引張弾性率 40tonf/mm2以上 2)エスカノイスNT−80 新日鐵製 ピッチ系 引張強度 310kgf/mm2 以上 引張弾性率 80tonf/mm2以上 3)エスカノイスNT−30 新日鐵製 ピッチ系 引張強度 360kgf/mm2 以上 引張弾性率 30tonf/mm2以上 これらの結果を下記表1に示す。[E component] Curing agent 1) Amine dicyandiamide 3- (3,4-dichlorophenyl) -1,1-N-dimethyl urea (curing accelerator) [F component] Carbon fiber 1) Escanoy NT-40 New Nittetsu made pitch system Tensile strength 370kgf / mm 2 or more Tensile elastic modulus 40tonf / mm 2 or more 2) Escanoy NT-80 Nippon Steel Pitch system Tensile strength 310kgf / mm 2 or more Tensile elastic modulus 80tonf / mm 2 or more 3) Escanoys NT-30 Nippon Steel pitch system Tensile strength 360kgf / mm 2 or more Tensile modulus 30tonf / mm 2 or more These results are shown in Table 1 below.

【0050】[0050]

【表1】 [Table 1]

【0051】表1から以下のことが明らかである。すな
わち、D成分が無かったり、その量が少ないと(比較例
1、比較例3、比較例6)、浮きが発生し、経過時間に
つれて剥がれが大きくなりタック保持性が低下する。C
成分が無かったり、その量が少ないと(比較例2、比較
例7)、耐レジンフロー性が非常に悪く、また浮きが発
生し、タック保持性も多少低下する。C成分及びD成分
の量が少ないと(比較例4)、耐レジンフロー性が非常
に悪く、また浮きの量も大きく、経過時間につれて剥が
れが大きくなりタック保持性が大きく低下し、15分後
には測定不能になった。なお、C成分及びD成分の量が
多すぎると(比較例5)、粘度が高く製造できなかっ
た。
The following are clear from Table 1. That is, when the D component is absent or the amount thereof is small (Comparative Example 1, Comparative Example 3, and Comparative Example 6), floating occurs, peeling increases with the passage of time, and tack holding property decreases. C
If there is no component or the amount thereof is small (Comparative Example 2 and Comparative Example 7), the resin flow resistance is very poor, floating occurs, and the tack holding property is somewhat deteriorated. When the amounts of the C component and the D component were small (Comparative Example 4), the resin flow resistance was very poor, and the amount of floating was also large, the peeling became large with the passage of time and the tack holding property greatly decreased, and after 15 minutes. Became unmeasurable. In addition, when the amounts of the C component and the D component were too large (Comparative Example 5), the viscosity was high and the production was impossible.

【0052】これに対して、実施例1〜実施例6は、耐
レジンフロー性に優れ、浮きの発生も殆ど無く、しかも
15分経過後であっても剥がれが小さくタック保持性が
極めて良好である。
On the other hand, in Examples 1 to 6, the resin flow resistance was excellent, the floating was hardly generated, the peeling was small even after 15 minutes, and the tack holding property was very good. is there.

【0053】[0053]

【発明の効果】以上の実施例からも明らかな通り、本発
明によれば、引張弾性率が40tonf/mm2以上の炭素繊維
を強化繊維とした場合においても、従来から必要となっ
ている作業性、耐熱性と伸度のバランス、かつ成形硬化
時の耐レジンフロー特性を損なうことなく、浮きの発生
を抑制するプリプレグを製造することが可能となるもの
であり、産業の発展に貢献する所、極めて大なるものが
ある。
As is apparent from the above examples, according to the present invention, even when the carbon fiber having the tensile elastic modulus of 40 tonf / mm 2 or more is used as the reinforcing fiber, the work conventionally required. It is possible to manufacture a prepreg that suppresses the occurrence of floating without impairing the resin flow resistance characteristics during molding and curing, and the balance of heat resistance, heat resistance and elongation, and contributing to the development of the industry. , There is an extremely large one.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記A、B、C、D、及びE成分を必須成
分としてなる樹脂組成物をマトリックス樹脂とし、F成
分の強化繊維に含浸させてなることを特徴とするタック
保持性に優れたプリプレグ: A ノボラック型エポキシ樹脂 B ビスフェノールA型エポキシ樹脂 C フェノキシ樹脂 D 粉末ゴム E 硬化剤 F 引張弾性率が40tonf/mm2以上の炭素繊維。
1. A resin composition having the following components A, B, C, D, and E as essential components is used as a matrix resin and is impregnated into reinforcing fibers of component F, which is excellent in tack retention. Prepreg: A novolac type epoxy resin B bisphenol A type epoxy resin C phenoxy resin D powder rubber E curing agent F carbon fiber having a tensile elastic modulus of 40 tonf / mm 2 or more.
【請求項2】前記樹脂組成物のA、B、C及びD成分に
ついて、その配合割合が、下記量であることを特徴とす
る請求項1記載のタック保持性に優れたプリプレグ。 A ノボラック型エポキシ樹脂 1〜70重量部 B ビスフェノールA型エポキシ樹脂 1〜70重量部 C フェノキシ樹脂 3〜40重量部 D 粉末ゴム 2〜25重量部 (C成分の配合割合はA及びB成分の合計量100重量
部に対する量、D成分の配合割合はA、B及びC成分の
総量100重量部に対する量である)。
2. The prepreg excellent in tack retention according to claim 1, wherein the mixing ratio of the components A, B, C and D of the resin composition is as follows. A novolac type epoxy resin 1 to 70 parts by weight B bisphenol A type epoxy resin 1 to 70 parts by weight C phenoxy resin 3 to 40 parts by weight D powder rubber 2 to 25 parts by weight (compounding ratio of C component is the sum of A and B components) The amount based on 100 parts by weight and the mixing ratio of the D component are based on 100 parts by weight of the total amount of the A, B and C components).
【請求項3】F成分がピッチ系炭素繊維であることを特
徴とする請求項1記載のタック保持性に優れたプリプレ
グ。
3. The prepreg excellent in tack retention according to claim 1, wherein the F component is pitch-based carbon fiber.
JP28781793A 1993-10-22 1993-10-22 Prepreg excellent in tack retentivity Withdrawn JPH07118414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28781793A JPH07118414A (en) 1993-10-22 1993-10-22 Prepreg excellent in tack retentivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28781793A JPH07118414A (en) 1993-10-22 1993-10-22 Prepreg excellent in tack retentivity

Publications (1)

Publication Number Publication Date
JPH07118414A true JPH07118414A (en) 1995-05-09

Family

ID=17722151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28781793A Withdrawn JPH07118414A (en) 1993-10-22 1993-10-22 Prepreg excellent in tack retentivity

Country Status (1)

Country Link
JP (1) JPH07118414A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028210A1 (en) * 1996-02-02 1997-08-07 Toray Industries, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
WO1998026912A1 (en) * 1996-12-18 1998-06-25 Toray Industries, Inc. Carbon fiber prepreg and method of production thereof
US6521706B1 (en) 1998-01-12 2003-02-18 Ppg Industries Ohio, Inc. Composition of epoxy polymer, thermoplastic polymer, rubber particles and curing agent
JP2006241402A (en) * 2005-03-07 2006-09-14 Yokohama Rubber Co Ltd:The Resin composition for self-adhesive prepreg, and method for producing the same
JP2006241401A (en) * 2005-03-07 2006-09-14 Yokohama Rubber Co Ltd:The Method for producing resin composition for self-adhesive prepreg
GB2510835A (en) * 2013-02-13 2014-08-20 Hexcel Composites Ltd Fire retardant epoxy resin formulations and their use
WO2014202593A1 (en) * 2013-06-19 2014-12-24 Hexcel Composites Limited Improvements in or relating to epoxy resin formulations

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028210A1 (en) * 1996-02-02 1997-08-07 Toray Industries, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
WO1998026912A1 (en) * 1996-12-18 1998-06-25 Toray Industries, Inc. Carbon fiber prepreg and method of production thereof
US6117551A (en) * 1996-12-18 2000-09-12 Toray Industries, Inc. Carbon fiber prepreg, and a production process thereof
US6521706B1 (en) 1998-01-12 2003-02-18 Ppg Industries Ohio, Inc. Composition of epoxy polymer, thermoplastic polymer, rubber particles and curing agent
JP2006241402A (en) * 2005-03-07 2006-09-14 Yokohama Rubber Co Ltd:The Resin composition for self-adhesive prepreg, and method for producing the same
JP2006241401A (en) * 2005-03-07 2006-09-14 Yokohama Rubber Co Ltd:The Method for producing resin composition for self-adhesive prepreg
GB2510835A (en) * 2013-02-13 2014-08-20 Hexcel Composites Ltd Fire retardant epoxy resin formulations and their use
WO2014202593A1 (en) * 2013-06-19 2014-12-24 Hexcel Composites Limited Improvements in or relating to epoxy resin formulations
US9969852B2 (en) 2013-06-19 2018-05-15 Hexcel Composites Limited Epoxy resin formulations

Similar Documents

Publication Publication Date Title
US6399199B1 (en) Prepeg and carbon fiber reinforced composite materials
JP5061813B2 (en) Prepreg and golf club shaft
US6287696B1 (en) Resin composition for a fiber reinforced composite, a prepreg and a fiber reinforced composite
JP2007537331A (en) Self-adhesive prepreg
JP5723505B2 (en) Resin composition, cured product, prepreg, and fiber reinforced composite material
JP3796953B2 (en) Resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH07118414A (en) Prepreg excellent in tack retentivity
JP2604778B2 (en) Matrix resin composition
JP2000355630A (en) Member made from fiber-reinforced plastic
JP5252869B2 (en) Epoxy resin composition for fiber reinforced composite material and prepreg
JPH0834864A (en) Impact-resistant prepreg
JP2003277471A (en) Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JPH068341B2 (en) Epoxy resin composition for prepreg
JPH08337707A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPH0820706A (en) Epoxy resin composition and prepreg prepared therefrom
JP2000336191A (en) Prepreg and fiber-reinforced composite material
JP5495285B2 (en) Prepreg and its manufacturing method
JP2004027043A (en) Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material
JPH07228716A (en) Prepreg
JP3986663B2 (en) Unidirectional fiber reinforced prepreg
JP4144136B2 (en) Prepreg and carbon fiber reinforced composite materials
JP2001049013A (en) Prepreg and carbon fiber reinforced composite material
JP2003041093A (en) Resin composition for composite material, intermediate material for composite material and composite material
JPH04153252A (en) Matrix resin composition
JPH0586425B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226