JP3986663B2 - Unidirectional fiber reinforced prepreg - Google Patents

Unidirectional fiber reinforced prepreg Download PDF

Info

Publication number
JP3986663B2
JP3986663B2 JP13306698A JP13306698A JP3986663B2 JP 3986663 B2 JP3986663 B2 JP 3986663B2 JP 13306698 A JP13306698 A JP 13306698A JP 13306698 A JP13306698 A JP 13306698A JP 3986663 B2 JP3986663 B2 JP 3986663B2
Authority
JP
Japan
Prior art keywords
component
prepreg
resin
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13306698A
Other languages
Japanese (ja)
Other versions
JPH11322977A (en
Inventor
禎孝 梅元
秀明 富永
正人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP13306698A priority Critical patent/JP3986663B2/en
Publication of JPH11322977A publication Critical patent/JPH11322977A/en
Application granted granted Critical
Publication of JP3986663B2 publication Critical patent/JP3986663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化樹脂複合材料成形用プリプレグに関するものである。更に詳しくは、釣り竿、ゴルフシャフト、スキーストックのような直径が比較的細くしかもテーパーや段差のあるFRPパイプ成形に好適な、樹脂含有量の低い、繊維強化複合材料成形用プリプレグに関するものである
【0002】
【従来の技術】
強化繊維に未硬化のマトリックス樹脂を含浸してなるプリプレグはゴルフシャフト、釣竿、テニスラケット等の成形品の中間素材としてスポーツレジャー用途に幅広く使用されるようになってきている。
【0003】
このプリプレグは、従来樹脂含有量40重量%前後のものが主として用いられてきたが、近年は、ゴルフシャフト、釣竿を中心に、より軽量化、高性能化を図るために樹脂含有率(以下、RCと略すことがある)の低い、いわゆる低RCプリプレグの開発が進められている。
【0004】
プリプレグをゴルフシャフト、釣竿等のスポーツ用品に広く使用されている円筒形状のFRPに成形する場合、プリプレグを所定の形状にカットし、場合によっては数枚積層し、芯金に重ね巻きして目的の成形品を得る。
【0005】
ところが従来の比較的樹脂含有率の高いプリプレグに使用されているマトリックス樹脂を低RCプリプレグ用とした場合、表面の絶対樹脂量が少なくなるために粘着性が低くなってしまう。
【0006】
また、成形に際しては、予めカットされたプリプレグを芯金に巻き付ける前に繊維軸方向の異なる方向に積層し、次いで芯金に巻き付ける場合と、カットしたプリプレグを直接巻く場合とがある。
【0007】
またカット、積層されたプリプレグ又はカットされたままのプリプレグは芯金に巻き付けるまでにしばらく放置されるケースが多く、その間に樹脂含有率が低いプリプレグでは表面の樹脂がプリプレグの離型紙側に移行し、強化繊維が浮き上がり、更に表面のタックが著しく低下する。
【0008】
このような表面タック性の低いプリプレグを使用し、成形のために芯金に巻き付けた場合、プリプレグ相互の密着性が悪く、プリプレグ巻き端末部分が跳ね返り、次層の巻き付け工程に多大な支障をきたすことになる。
【0009】
特に、プリプレグを芯金に巻き付ける際、芯金の軸方向に対し繊維の軸方向に角度を付けてレイアップすることが多く、この場合、その角度が±45°の場合、プリプレグの端末より繊維軸方向にプリプレグが割れ、跳ね返り現象は最大となる。強化繊維材が、弾性の高い炭素繊維のような場合はこの傾向は顕著である。
【0010】
また、タックが低いプリプレグを使用した場合、成形品もボイドや層間剥離といった欠陥が発生し易く、強度低下、折損などのトラブルに繋がる。タックを高める手段を採ると耐熱性が低くなる傾向がある。管状体の製造段階では、成形後表面を研磨する工程を有し、このため成形物には耐熱性が要求される。成形物の耐熱性が低いと、乾式での研磨時に研磨具表面に脱落樹脂が粘着し、目詰まりを起こし、成形物の表面荒れが生じたり、また高速研磨が困難になる等の問題がある。
【0011】
更に、釣竿、ゴルフクラブ等のスポーツ用品にあっては、炎天下の車中に放置された場合、100℃以上の熱暴露を受ける事があり、成形物の耐熱性を高め、成形物の変形、曲がり等の変形を防止しなければならない。耐熱性の目安として、硬化物の耐熱性は少なくとも100℃有ることが高品位の成形材料には求められる。
【0012】
一般に、成形物の耐熱性を高める手段として、架橋密度を高める方法があるが、このような手段によって耐熱性を高めると、成形物が脆性化し、靭性を要求される分野での用途には不向きとなる。
【0013】
従来より、プリプレグのタックを改善するために、以下に示すような種々の方法が提案されている。
【0014】
例えば、特開昭60−28425号公報では汎用エポキシ樹脂にアルキルフェノール樹脂を添加するプリプレグ樹脂組成物が提案されている。しかしながら、アルキルフェノール樹脂添加エポキシ樹脂組成物を含浸したプリプレグは、樹脂含有率が30%前後までは、接着性が良好であるが、25%以下の低樹脂含有率領域では接着性が不足し、しかもタックの経時変化も抑えられない。
【0015】
また、特開平9−3158号公報では低粘度樹脂にビニルエステル樹脂、光重合開始剤を加え、特定波長の光を当てることによってタックを改良する方法が提示されている。しかしながら、光照射によるプリプレグのタック性を改良する方法においては反応の制御が困難であり、一定品質のタック性を持ったプリプレグを得ることは困難であり、工業生産には適していない。
【0016】
更に、特開昭59−146836号公報ではプリプレグの表面樹脂保持性を改善するため表面にポリエチレンシートを貼り付ける方法が提案されている。しかしながら、該プリプレグにおいてポリエチレンシートを剥がしてプリプレグが放置される場合は、プリプレグの表面樹脂保持性の効果はない。
【0017】
【発明が解決しようとする課題】
本発明の目的は、プリプレグ、特に低樹脂含有率のプリプレグの場合でも、良好なタック及びプリプレグ相互の密着性を有し、しかもFRPとしたときの耐熱性、物性を損なうことのないプリプレグを提供することにある。
【0018】
【課題を解決するための手段】
前記した目的を達成するために、本発明の円筒状成形物作製用一方向繊維強化プリプレグは、一方向配向繊維強化材にマトリックス樹脂を含浸した、樹脂含有量17〜25重量%の円筒状成形物作製用一方向繊維強化プリプレグであって、該一方向繊維強化材が炭素繊維、ボロン繊維、シリコンカーバイト繊維、ガラス繊維およびアラミド繊維よりなる群の中から選ばれたものであり、該マトリックス樹脂が次の〔A成分〕、〔B成分〕、〔C成分〕、及び〔D成分〕を含有し、
〔A成分〕エポキシ樹脂;
〔B成分〕フェノキシ樹脂;
〔C成分〕カルボキシル基またはエポキシ基を含有する微粒子状架橋ゴム;
〔D成分〕硬化剤
前記〔A成分〕が、多官能エポキシ樹脂と2官能エポキシ樹脂で構成され、しかも〔A成分〕におけるエポキシ樹脂100重量部中に多官能エポキシ樹脂が1〜80重量部含まれるものであり、前記マトリックス樹脂における〔B成分〕の配合量が〔A成分〕100重量部に対し1〜20重量部であり、前記マトリックス樹脂における〔C成分〕の配合量が〔A成分〕100重量部に対し1〜25重量部であり、該一方向繊維強化プリプレグが±45°ローリングテストにおいて巻き端末が剥離せず、しかもこのプリプレグ硬化物のガラス転移温度(Tg)が100℃以上であることを特徴とする円筒状成形物作製用一方向繊維強化プリプレグである。
【0019】
本発明の一方向繊維強化プリプレグは、相互の密着性が良好であり、特に、±45°に貼り合わせたプリプレグ相互を細い芯金に巻き付けても良好な密着性を有すると共に、貼り合わせ部の経時変化による剥がれが抑制され、良好な作業性を与える。
【0020】
しかも、本発明の一方向繊維強化プリプレグは使用するマトリックス樹脂の耐熱性が十分なものであり、このためFRP成形後に加工、例えば、研磨した場合、研磨具面に脱落樹脂が粘着することを防げ、目詰まり等の不具合もなく、加工性に優れる。また、耐熱変形性にも優れた成形物となる。
【0021】
従って、特にゴルフシャフト等を始めとする円筒形状のFRP成形物を作製するのに有用である。即ち、通常、パイプの成形は、目標とする物性、形状を得るために種々の配向にプリプレグをカットし、マンドレルに巻き付ける。この際、マンドレルに接触する最内層部には所定の捩り強度を付与し、かつ成形後の脱芯作業が容易に行えるよう±45゜に貼り合わせたプリプレグを巻き付ける。次いで、この上に0゜層を巻き重ねしていくが、本発明の一方向繊維強化プリプレグを用いると、この際、内層の巻き端末部の経時変化による剥れを抑え、その後の0゜層巻き付けを容易にする良好な作業性を有する。
本発明を更に詳細に説明する。
【0022】
【発明の実施の形態】
繊維強化材
本発明の一方向繊維強化プリプレグにおいて、繊維強化材には炭素繊維、ボロン繊維、シリコンカーバイト繊維、ガラス繊維及びアラミド繊維等を使用することができ、その中でも、炭素繊維、ガラス繊維、アラミド繊維が用いられる。
【0023】
特に好ましくは、引張り強度3000MPa以上、弾性率200PGa以上の炭素繊維がよい。
【0024】
マトリックス樹脂成分
本発明の一方向繊維強化プリプレグにおいて、マトリックス樹脂は、次の〔A成分〕、〔B成分〕、〔C成分〕、及び〔D成分〕を必須成分として含む。
【0025】
〔A成分〕エポキシ樹脂;
〔B成分〕フェノキシ樹脂;
〔C成分〕官能基を含有する微粒子状架橋ゴム;
〔D成分〕硬化剤。
【0026】
〔A成分〕、〔B成分〕及び〔C成分〕の配合により、本発明の一方向繊維強化プリプレグは、成形品とした場合には耐熱性が高く、また、マトリックス樹脂が高粘度化し、凝集力が増強されて、プリプレグに強い粘着力(タック)が付与される。
【0027】
〔A成分〕、〔B成分〕及び〔C成分〕の配合により、本発明の一方向繊維強化プリプレグは、樹脂含有量17〜25重量%の低樹脂含有量の一方向繊維強化プリプレグであるにもかかわらず、エポキシ樹脂の沈み込みを抑制することができ、良好な表面樹脂保持特性を有する。
【0028】
特に、フェノキシ樹脂成分〔B成分〕をマトリックス樹脂に配合した場合には、樹脂粘度の温度依存性が鈍くなり温度(特に室温近傍)による粘着力の変化も抑えることができるという副次的効果がある。
【0029】
本発明の一方向繊維強化プリプレグに含まれるマトリックス樹脂における、〔A成分〕、〔B成分〕及び〔C成分〕の各配合比は、〔A成分〕100重量部に対して、〔B成分〕が1〜20重量部、及び〔C成分〕が1〜25重量部であることが好ましい。
【0030】
〔A成分〕エポキシ樹脂
本発明の一方向繊維強化プリプレグのマトリックス樹脂の〔A成分〕として用いられるエポキシ樹脂は、多官能エポキシ樹脂と2官能エポキシ樹脂で構成されることが望ましい。
【0031】
〔A成分〕中における多官能エポキシ樹脂の割合は、全体のエポキシ樹脂100重量部中に多官能エポキシ樹脂が1〜80重量部含まれることが望ましく、さらに望ましくは、5〜80重量部、最も望ましくは10〜70重量部である。多官能エポキシ成分が1重量部より少ないと十分な耐熱性が得られず、また80重量部より多いと硬化物の伸度が低下して脆性化傾向が強くなる。
【0032】
一方、2官能エポキシ樹脂は、比較的伸度が高く、衝撃特性にも優れているが耐熱性がやや低い。該2官能エポキシ樹脂には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などが好ましく使用される。ビスフェノール型に代表される2官能エポキシ樹脂は分子量の違いにより液状から固形まで種々のグレードがあり、プリプレグ用マトリックス樹脂に配合する場合、適宜これらを混合して粘度調整を行うことが可能である。
【0033】
多官能エポキシ樹脂は、プリプレグに耐熱性を付与するのに好ましいエポキシ樹脂である。該多官能エポキシ樹脂としては、トリグリシジルパラアミノフェニル樹脂、テトラグリシジルジアミノジフェニルメタン等及びフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂又はこれらの2種以上の混合物が好ましく使用される。
【0034】
本発明の一方向繊維強化プリプレグにおいては、要求される耐熱性に応じてエポキシ樹脂中にノボラック型、3官能、4官能といった多官能エポキシ樹脂を選択し配合する。
【0035】
〔B成分〕フェノキシ樹脂
本発明の一方向繊維強化プリプレグのマトリックス樹脂の〔B成分〕として用いられるフェノキシ樹脂は、線状高分子でありエポキシ樹脂との相溶性にも優れている。本発明に好ましく使用できるフェノキシ樹脂の分子量は10,000〜50,000である。フェノキシ樹脂の形状としては固形のペレット状、粉体等様々あるが、エポキシ樹脂への溶解性を考慮すると粉体がより好ましい。
【0036】
〔B成分〕の配合量は、〔A成分〕100重量部に対して1〜20重量部が望ましく、さらに望ましくは5〜15重量部が適切である。〔B成分〕の配合量が1重量部以下の場合、良好な粘着性が得られず、また20重量部を超えるとマトリックス樹脂全体の粘度が上がりすぎて使用不可能になってしまう。
【0037】
〔C成分〕官能基を含有する微粒子状架橋ゴム
本発明の一方向繊維強化プリプレグのマトリックス樹脂の〔C成分〕として用いられる官能基を含有する微粒子状架橋ゴムは、表面に官能基を有したままの架橋済ゴムの微粒子である。該〔C成分〕は、通常エポキシ樹脂に均一分散もしくは部分的にエポキシ樹脂と架橋した状態で用いられる。
【0038】
微粒子状ゴムの官能基は種々の構造のものがあるが、エポキシ樹脂との相性、反応の容易さ、安定性等の面からカルボキシル基またはエポキシ基が好ましい。また、微粒子状ゴムの粒子径は小さいほど好ましく、補強繊維内への含浸性から直径1μm以下のものが特に望ましい。
【0039】
〔C成分〕の配合量は〔A成分〕100重量部に対して1〜25重量部が望ましく、さらに望ましくは2〜15重量部である。〔C成分〕の配合量が1重量部より少ない場合、良好な表面樹脂保持性並びに粘着性が得られず、逆に配合量が25重量部を超えると樹脂粘度が上昇しプリプレグ化が困難となるばかりか、耐熱性や物性( 層間強度、曲げ強度等) の大幅な低下に繋がる。
【0040】
〔D成分〕硬化剤
本発明の一方向繊維強化プリプレグのマトリックス樹脂の〔D成分〕として用いられる硬化剤としては、エポキシ樹脂と反応し得る活性基を有する化合物であればこれを用いることができる。特に、アミノ基、酸無水物基、アジド基を有する化合物が適している。
【0041】
好適な硬化剤成分の例としては、ジシアンジアミド(略語:DICY)、ジアミノジフェニルスルホン(略語:DDS)、ジアミノジメチルメタン(略語:DDM)及びそれらの各種異性体、アミノ安息香酸エステル類、各種酸無水物、フェノールノボラック樹脂、クレゾールノボラック樹脂等が挙げられる。
【0042】
この中で、特に貯蔵安定性、物性面からジシアンジアミドが好ましく用いられる。
【0043】
また硬化促進剤として、例えば、3 −(3 ,4 ジクロロフェニル)−1,1−ジメチルウレア(略語:DCMU)などの尿素誘導体やイミダゾール化合物、3 級アミン化合物などを使用することができる。特に硬化促進剤としては保存安定性、硬化促進性共に優れるDCMUが好ましい。
【0044】
〔D成分〕の配合量は〔A〕成分100重量部に対して0.5〜10重量部が適している。
【0045】
本発明の一方向繊維強化プリプレグに使用される樹脂組成物は、上述した〔A成分〕、〔B成分〕、〔C成分〕及び〔D成分〕を必須とするが、本発明においては必要により、シリカ等の無機充填剤、揺変剤、及び顔料等を添加することができる。
【0046】
プリプレグの製造
本発明の一方向繊維強化プリプレグは、よく知られた溶剤法又はホットメルト法によって一方向繊維強化プリプレグの製造法に準じて製造することが出来る。特にホットメルト法が溶剤を含まないので好ましい。
【0047】
プリプレグの樹脂含有量
従来一般的な繊維複合材料の繊維含有率は55〜65(体積)%であり、このような成形物を得るためのプリプレグの樹脂含有率(RC)は30〜40(重量)%のものが一般的である。
【0048】
近時の傾向は、より高性能の複合材料を得るために、繊維含有率を65〜75(体積)%にまで高める方向で検討がなされ、このような高繊維含有率の複合材料を得る際に、従来一般的に使用されてきた樹脂含有率(RC)30〜40(重量)%のプリプレグを使用すると、タックが強く、またボイドの少ない成形物が得られる反面、成形時に樹脂流れ量が多くなり、その結果、繊維の配向の乱れや成形後の研磨・仕上げに時間がかかり、成形物の繊維含有率を高めることも困難となる。
このために、プリプレグの樹脂含有率としては、10〜30(重量)%、特に17〜25(重量)%程度で使用するのはよい。
【0049】
【実施例】
以下、実施例により本発明を詳細に説明する。
本実施例に於ける各種試験方法は下記による。
【0050】
(1)プリプレグ密着性試験法(±45゜巻き付けテスト)
繊維方向が+45゜、−45゜になるようにプリプレグをカットし、そのプリプレグ相互を貼り合わせる。次に、長さ1000mm、巾はφ6.4mmに対して3周分になる寸法にカットする。このプリプレグを6.4mmφ×1200長さのマンドレルにテーブル温度35℃で巻き付けて、プリプレグ相互の貼り合わせ面の剥がれる距離を時間の経過と共に測定する。
【0051】
密着性の判定は、巻き付けて30分経過時点で評価する。
剥がれなし: ◎(本発明の範囲内)、
2 mm以内: ○(本発明の範囲内)、
5 mm以内: △(本発明の範囲外)、
5 mm以上: ×(本発明の範囲外)。
【0052】
本明細書において、「巻き端末が剥離せず」とは、貼り合わせ面の剥がれる距離が2mm以下を云う。
【0053】
このテストは、プリプレグ相互の90゜積層面の接着性と、マンドレル軸に対し繊維軸が45゜巻き付けの際の端部跳ね返り状態を評価することができる。
【0054】
(2)平板曲げ物性
長さ100mm、幅12.7mm、厚み2mmのプリプレグを硬化させてFRP試験片とする。該試験片の平板の曲げ強度、弾性率の測定は、島津オートグラフAG−10TD(島津製作所製)を用いて、試験速度5mm/min、圧子先端半径3.2mmL/D( 支点間距離/厚み) 32の条件で測定する。
【0055】
(3)耐熱試験測定法〔Tg測定〕
長さ50mm、幅12.7mm、厚み2mmのプリプレグを硬化させてFRP試験片とする。該試験片の成形板について、レオロジー社製MR−500を用いてDMA法により、周波数1Hz、捩り角度0.1°の条件でG”を測定し、このピーク値をTgとした。
【0056】
本実施例で使用する化合物名と略号或いは商品名と製造会社名との関係は以下に示す通りである。
【0057】
〔A成分〕
ビスフェノールA型エポキシ樹脂(2官能) …Ep.828:商品名,油化シェルエポキシ(株) 製
グルシジルアミン型エポキシ樹脂(3官能) …ELM100:商品名,住友化学工業(株) 製
グルシジルアミン型エポキシ樹脂(4官能) …Ep.604:商品名,油化シェルエポキシ(株) 製
フェノールノボラック型エポキシ樹脂(多官能)…Ep.154:商品名,油化シェルエポキシ(株) 製
【0058】
〔B成分〕
フェノキシ樹脂…PKHP−200:商品名,フェノキシスペシャルティーズ(株) 製
【0059】
〔C成分〕
カルボキシル基含有ブタジエンアクリロニトリル共重合体架橋物…XER−91:商品名、JSR(株)製
エポキシ基含有ブタジエンアクリロニトリル共重合体架橋物…XER−71:商品名、JSR(株)製
【0060】
〔D成分〕
ジシアンジアミド(略語:DICY)
3−(3,4−ジクロロフェニル) −1,1−ジメチルウレア(略語:DCMU)
【0061】
〔実施例1〕
A成分としてEp828(商品名、油化シェルエポキシ(株) 製)70重量部、Ep154(商品名,油化シェルエポキシ(株) 製)30重量部、B成分としてPKHP−200(商品名,フェノキシスペシャルティーズ(株) 製)10重量部、及びC成分としてXER−91(商品名、JSR(株)製)10重量部をニーダーで120℃×1時間混合し、C成分中のカルボキシル基をエポキシ樹脂に部分架橋させた。これに硬化剤としてDICY5重量部及びDCMU5重量部を加え、3本ロールミルにて混練し樹脂ブロックを作製した。この樹脂ブロックをフィルムコーターにて樹脂フィルムとし、引張強度400MPa、引張弾性率230GPaの一方向に配列させた炭素繊維 (HTA−12K:商品名、東邦レーヨン(株) 製) の両面から貼り合わせ、加熱加圧により樹脂を含浸させて炭素繊維目付が150g/m2 、樹脂含有率が25重量%の一方向プリプレグを作製した。この得られたプリプレグについて±45°巻き付けテストにて密着性の評価を実施した。その結果を下記の表1に示す。
【0062】
次にこのプリプレグを16ply積層し、オートクレーブ中にて130℃×2時間で硬化させCFRP板を作製し、所定の試験片寸法に切り出した後、Tg及び曲げ特性の評価を各々実施した。その結果を下記の表1に示す。
【0063】
〔実施例2〕
A成分としてEp828(商品名、油化シェルエポキシ(株) 製)70重量部、ELM100(商品名,住友化学工業(株) 製)30重量部とした以外は前記実施例1と同様にプリプレグを作製して評価を行った。その結果を下記の表1に示す。
【0064】
〔実施例3〕
A成分としてEp828(商品名、油化シェルエポキシ(株) 製)70重量部、Ep604(商品名,油化シェルエポキシ(株) 製)30重量部とした以外は前記実施例1と同じようにプリプレグを作製して評価を行った。その結果を下記の表1に示す。
【0065】
〔実施例4〕
A成分としてEp828(商品名、油化シェルエポキシ(株) 製)100重量部とした以外は前記実施例1と同様にプリプレグを作製し、評価を実施した。その結果を下記の表1に示す。
【0066】
〔実施例5〕
C成分としてXER−71(商品名、JSR(株)製)10重量部配合した以外は前記実施例1と同様にプリプレグを作製し評価を行った。その結果を下記の表1に示す。
【0067】
〔実施例6〕
B成分のPKHP−200(商品名,フェノキシスペシャルティーズ(株) 製)、C成分のXER−91(商品名、JSR(株)製)の配合量を各々1重量部とした以外は前記実施例1と同様にプリプレグを作製し評価を行った。その結果を下記の表1に示す。
【0068】
〔実施例7〕
B成分のPKHP−200(商品名,フェノキシスペシャルティーズ(株) 製)、C成分のXER−91(商品名、JSR(株)製)の配合量を各々5重量部とした以外は前記実施例1と同様にプリプレグを作製し評価を行った。その結果を下記の表1に示す。
【0069】
〔実施例8〕
B成分のPKHP−200(商品名,フェノキシスペシャルティーズ(株) 製)の配合量を20重量部とした以外は前記実施例1と同様にプリプレグを作製し評価を実施した。その結果を下記の表1に示す。
【0070】
〔実施例9〕
C成分のXER−91(商品名、JSR(株)製)の配合量を25重量部とした以外は前記実施例1と同様にプリプレグを作製し評価を行った。その結果を下記の表1に示す。
【0071】
〔実施例10〕
B成分のPKHP−200(商品名,フェノキシスペシャルティーズ(株) 製)の配合量を20重量部、C成分のXER−91(商品名、JSR(株)製)の配合量を25重量部とした以外は前記実施例1と同様にプリプレグを作製し評価を行った。その結果を下記の表1に示す。
【0072】
〔比較例1〕
B成分のPKHP−200(商品名,フェノキシスペシャルティーズ(株) 製)を除いた以外は前記実施例1と同様にプリプレグを作製し評価を実施した。その結果を下記の表1に示す。
【0073】
〔比較例2〕
C成分のXER−91(商品名、JSR(株)製)を除いた以外は前記実施例1と同様にプリプレグを作製し、評価を行った。その結果を下記の表1に示す。
〔比較例3〕
B成分としてPKHP−200(商品名,フェノキシスペシャルティーズ(株) 製)の配合量を25重量部に増やした以外は前記実施例1と同様にプリプレグを作製しようとしたが、樹脂粘度が上昇し過ぎて製造不可であった。その結果を下記の表1に示す。
【0074】
〔比較例4〕
C成分であるXER−91(商品名、JSR(株)製)の配合量を30重量部に増やして、前記実施例1と同様にプリプレグを製造したところ、樹脂の粘度がかなり高くなったがかろうじてプリプレグの製造は可能であった。このプリプレグの評価を前記実施例1と同様に実施した。その結果を下記の表1に示す。
【0075】
【表1】

Figure 0003986663
【0076】
【発明の効果】
本発明によれば、一方向繊維強化プリプレグにおいて樹脂含有率が低い、所謂低RCプリプレグであっても、良好なタック及び密着性を有した、非常に取扱い性に優れたプリプレグである。
【0077】
本発明により得られたプリプレグは、特にゴルフシャフト等に代表される円筒状成形物を作製するのに適しており、生産性の向上に繋がるばかりか、急テーパー、複雑形状といった成形品の作製も可能となる。
【0078】
本発明の一方向繊維強化プリプレグより作製されるFRP成形物は低樹脂含有率にも係わらず、内部欠陥(ボイド、デラミネーション)がなく、耐熱性、機械特性に優れており、FRPの軽量化が達成される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a prepreg for molding a fiber reinforced resin composite material. More particularly, the present invention relates to a prepreg for molding a fiber-reinforced composite material having a low resin content and suitable for molding a FRP pipe having a relatively small diameter and having a taper or a step, such as a fishing rod, a golf shaft, and a ski stock. 0002
[Prior art]
A prepreg formed by impregnating a reinforcing fiber with an uncured matrix resin has been widely used in sports and leisure applications as an intermediate material for molded products such as golf shafts, fishing rods, and tennis rackets.
[0003]
Conventionally, the prepreg has mainly been used with a resin content of around 40% by weight. However, in recent years, mainly for golf shafts and fishing rods, the resin content (hereinafter, Development of so-called low RC prepregs, which may be abbreviated as RC), is underway.
[0004]
When molding a prepreg into a cylindrical FRP widely used in sports equipment such as golf shafts and fishing rods, the prepreg is cut into a predetermined shape, and in some cases, several sheets are laminated and rolled around a core metal To obtain a molded product.
[0005]
However, when the matrix resin used in the conventional prepreg having a relatively high resin content is used for the low RC prepreg, the amount of the absolute resin on the surface is reduced, so that the adhesiveness is lowered.
[0006]
In molding, there are a case where a prepreg cut in advance is laminated in a direction different from the fiber axis direction before being wound around the core metal, and then wound around the core metal, or a case where the cut prepreg is directly wound.
[0007]
In many cases, cut, laminated prepregs or uncut prepregs are left for a while before being wound around the core, and during that time, the resin on the surface moves to the release paper side of the prepreg when the resin content is low. Further, the reinforcing fibers are lifted and the surface tack is remarkably lowered.
[0008]
When such a prepreg with low surface tackiness is used and wound around a core for molding, the adhesion between the prepregs is poor and the prepreg winding terminal part rebounds, causing a great hindrance to the winding process of the next layer. It will be.
[0009]
In particular, when winding a prepreg around a cored bar, it is often laid up with an angle in the axial direction of the fiber relative to the axial direction of the cored bar. In this case, if the angle is ± 45 °, the fiber from the end of the prepreg The prepreg breaks in the axial direction, and the rebound phenomenon is maximized. This tendency is remarkable when the reinforcing fiber material is carbon fiber having high elasticity.
[0010]
Further, when a prepreg having a low tack is used, defects such as voids and delamination are likely to occur in the molded product, leading to troubles such as strength reduction and breakage. When measures are taken to increase tack, the heat resistance tends to decrease. At the manufacturing stage of the tubular body, there is a step of polishing the surface after molding, and thus the molded product is required to have heat resistance. If the heat resistance of the molded product is low, the falling resin adheres to the surface of the polishing tool during dry polishing, causing clogging, resulting in surface roughness of the molded product, and high-speed polishing becoming difficult. .
[0011]
Furthermore, in sporting goods such as fishing rods and golf clubs, when left in a car under hot weather, it may be exposed to heat of 100 ° C or higher, increasing the heat resistance of the molded product, Deformation such as bending must be prevented. As a measure of heat resistance, a high-quality molding material is required that the heat resistance of the cured product be at least 100 ° C.
[0012]
In general, there is a method for increasing the crosslink density as a means for increasing the heat resistance of a molded product. However, if the heat resistance is increased by such means, the molded product becomes brittle and is not suitable for applications in fields where toughness is required. It becomes.
[0013]
Conventionally, in order to improve the prepreg tack, various methods as described below have been proposed.
[0014]
For example, JP-A-60-28425 proposes a prepreg resin composition in which an alkylphenol resin is added to a general-purpose epoxy resin. However, the prepreg impregnated with the epoxy resin composition added with an alkylphenol resin has good adhesiveness until the resin content is around 30%, but the adhesiveness is insufficient in the low resin content region of 25% or less. Tack change with time cannot be suppressed.
[0015]
Japanese Patent Application Laid-Open No. 9-3158 discloses a method for improving tack by adding a vinyl ester resin and a photopolymerization initiator to a low-viscosity resin and applying light of a specific wavelength. However, in the method of improving the tackiness of the prepreg by light irradiation, it is difficult to control the reaction, and it is difficult to obtain a prepreg having a certain quality tackiness, which is not suitable for industrial production.
[0016]
Further, Japanese Patent Application Laid-Open No. 59-146836 proposes a method of attaching a polyethylene sheet to the surface in order to improve the surface resin retention of the prepreg. However, when the polyethylene sheet is peeled off from the prepreg and the prepreg is allowed to stand, there is no effect of retaining the surface resin of the prepreg.
[0017]
[Problems to be solved by the invention]
The object of the present invention is to provide a prepreg, particularly a prepreg having a low resin content, which has good tack and prepreg adhesion and does not impair heat resistance and physical properties when used as an FRP. There is to do.
[0018]
[Means for Solving the Problems]
In order to achieve the object, a cylindrical molded product fabrication unidirectional fiber reinforced prepreg of the present invention, impregnated with a matrix resin in one direction orientation fiber reinforcement, resin content 17 to 25 wt% of the cylindrical forming A unidirectional fiber reinforced prepreg for manufacturing a product , wherein the unidirectional fiber reinforcing material is selected from the group consisting of carbon fiber, boron fiber, silicon carbide fiber, glass fiber and aramid fiber, The resin contains the following [Component A], [Component B], [Component C], and [Component D],
[Component A] epoxy resin;
[Component B] Phenoxy resin;
[Component C] Fine particulate crosslinked rubber containing a carboxyl group or an epoxy group;
[Component D] Curing agent
The [Component A] is composed of a polyfunctional epoxy resin and a bifunctional epoxy resin, and 1 to 80 parts by weight of the polyfunctional epoxy resin is contained in 100 parts by weight of the epoxy resin in [Component A], The amount of [B component] in the matrix resin is 1 to 20 parts by weight per 100 parts by weight of [A component], and the amount of [C component] in the matrix resin is 1 to 100 parts by weight of [A component]. ~ 25 parts by weight, the unidirectional fiber-reinforced prepreg is characterized in that the winding terminal does not peel off in a ± 45 ° rolling test, and the glass transition temperature (Tg) of this prepreg cured product is 100 ° C or higher. a cylindrical molded product fabrication unidirectional fiber reinforced prepreg.
[0019]
The unidirectional fiber-reinforced prepreg of the present invention has good adhesion to each other. In particular, the unidirectional fiber-reinforced prepreg has good adhesion even when the prepreg bonded to ± 45 ° is wound around a thin metal core, and Peeling due to changes over time is suppressed, giving good workability.
[0020]
Moreover, the unidirectional fiber-reinforced prepreg of the present invention has sufficient heat resistance of the matrix resin to be used. Therefore, when processed, for example, polished after FRP molding, it is possible to prevent the falling resin from sticking to the polishing tool surface. Excellent workability without clogging and other problems. Moreover, it becomes a molded product excellent in heat distortion resistance.
[0021]
Therefore, it is particularly useful for producing a cylindrical FRP molded product such as a golf shaft. That is, in general, the pipe is formed by cutting the prepreg in various orientations and winding it around a mandrel in order to obtain target physical properties and shapes. At this time, the innermost layer portion in contact with the mandrel is provided with a predetermined torsional strength, and a prepreg bonded at ± 45 ° is wound so that the decentering operation after molding can be easily performed. Subsequently, a 0 ° layer is wound on this, and when the unidirectional fiber-reinforced prepreg of the present invention is used, the peeling due to the aging of the winding end portion of the inner layer is suppressed, and the subsequent 0 ° layer Good workability that facilitates winding.
The present invention will be described in further detail.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Fiber reinforcement :
In the unidirectional fiber reinforced prepreg of the present invention, carbon fiber, boron fiber, silicon carbide fiber, glass fiber, aramid fiber, etc. can be used as the fiber reinforcement, and among them, carbon fiber, glass fiber, aramid fiber, etc. There is need use.
[0023]
Particularly preferred is a carbon fiber having a tensile strength of 3000 MPa or more and an elastic modulus of 200 PGa or more.
[0024]
Matrix resin component :
In the unidirectional fiber-reinforced prepreg of the present invention, the matrix resin contains the following [A component], [B component], [C component], and [D component] as essential components .
[0025]
[Component A] epoxy resin;
[Component B] Phenoxy resin;
[Component C] Fine particulate crosslinked rubber containing a functional group;
[Component D] Curing agent.
[0026]
By blending [Component A], [Component B] and [Component C], the unidirectional fiber-reinforced prepreg of the present invention has high heat resistance when formed into a molded product, and the matrix resin has a high viscosity and is agglomerated. The force is increased, and a strong adhesive force (tack) is imparted to the prepreg.
[0027]
By blending [Component A], [Component B] and [Component C], the unidirectional fiber reinforced prepreg of the present invention is a unidirectional fiber reinforced prepreg having a low resin content of 17 to 25% by weight. Nevertheless, it is possible to suppress sinking of the epoxy resin and to have good surface resin retention characteristics.
[0028]
In particular, when the phenoxy resin component [component B] is blended with the matrix resin, the temperature dependency of the resin viscosity becomes dull and the secondary effect that the change in adhesive force due to temperature (particularly near room temperature) can be suppressed can be obtained. is there.
[0029]
In the matrix resin contained in the unidirectional fiber-reinforced prepreg of the present invention, the mixing ratio of [Component A], [Component B] and [Component C] is [Component B] with respect to [A component] 100 parts by weight. Is preferably 1 to 20 parts by weight, and [C component] is preferably 1 to 25 parts by weight.
[0030]
[Component A] Epoxy Resin The epoxy resin used as [Component A] of the matrix resin of the unidirectional fiber-reinforced prepreg of the present invention is preferably composed of a polyfunctional epoxy resin and a bifunctional epoxy resin.
[0031]
The ratio of the polyfunctional epoxy resin in [Component A] is preferably 1 to 80 parts by weight of polyfunctional epoxy resin in 100 parts by weight of the total epoxy resin, more preferably 5 to 80 parts by weight, most preferably The amount is desirably 10 to 70 parts by weight. When the polyfunctional epoxy component is less than 1 part by weight, sufficient heat resistance cannot be obtained, and when it is more than 80 parts by weight, the elongation of the cured product is lowered and the tendency to become brittle becomes strong.
[0032]
On the other hand, the bifunctional epoxy resin has a relatively high elongation and excellent impact properties, but has a slightly low heat resistance. As the bifunctional epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin and the like are preferably used. Bifunctional epoxy resins represented by the bisphenol type have various grades ranging from liquid to solid depending on the difference in molecular weight. When blended in a matrix resin for prepreg, it is possible to adjust the viscosity by mixing them appropriately.
[0033]
The polyfunctional epoxy resin is a preferable epoxy resin for imparting heat resistance to the prepreg. As the polyfunctional epoxy resin, triglycidyl paraaminophenyl resin, tetraglycidyl diaminodiphenylmethane and the like, phenol novolac type epoxy resin, cresol novolac type epoxy resin or a mixture of two or more of these are preferably used.
[0034]
In the unidirectional fiber-reinforced prepreg of the present invention, a polyfunctional epoxy resin such as a novolak type, a trifunctional, or a tetrafunctional is selected and blended in the epoxy resin according to the required heat resistance.
[0035]
[B Component] Phenoxy Resin The phenoxy resin used as the [B component] of the matrix resin of the unidirectional fiber-reinforced prepreg of the present invention is a linear polymer and excellent in compatibility with the epoxy resin. The molecular weight of the phenoxy resin that can be preferably used in the present invention is 10,000 to 50,000. The phenoxy resin has various shapes such as a solid pellet and a powder, but a powder is more preferable in consideration of solubility in an epoxy resin.
[0036]
The amount of [Component B] is preferably 1 to 20 parts by weight, more preferably 5 to 15 parts by weight per 100 parts by weight of [Component A]. When the blending amount of [Component B] is 1 part by weight or less, good adhesiveness cannot be obtained, and when it exceeds 20 parts by weight, the viscosity of the entire matrix resin increases so that it cannot be used.
[0037]
[C component] Fine particle crosslinked rubber containing functional group The fine particle crosslinked rubber used as [C component] of the matrix resin of the unidirectional fiber-reinforced prepreg of the present invention has a functional group on the surface. Fine particles of crosslinked rubber as it is. The [Component C] is usually used in a state of being uniformly dispersed in the epoxy resin or partially crosslinked with the epoxy resin.
[0038]
The functional group of the particulate rubber has various structures, but a carboxyl group or an epoxy group is preferable from the viewpoint of compatibility with the epoxy resin, ease of reaction, stability, and the like. Further, the particle diameter of the fine particle rubber is preferably as small as possible, and the diameter of 1 μm or less is particularly desirable from the viewpoint of impregnation into the reinforcing fiber.
[0039]
The blending amount of [Component C] is desirably 1 to 25 parts by weight, more desirably 2 to 15 parts by weight, based on 100 parts by weight of [Component A]. When the blending amount of [Component C] is less than 1 part by weight, good surface resin retention and adhesiveness cannot be obtained. Conversely, when the blending amount exceeds 25 parts by weight, the resin viscosity increases and it is difficult to make a prepreg. In addition, the heat resistance and physical properties (interlayer strength, bending strength, etc.) are significantly reduced.
[0040]
[Component D] Curing Agent As the curing agent used as [Component D] of the matrix resin of the unidirectional fiber-reinforced prepreg of the present invention, any compound having an active group capable of reacting with an epoxy resin can be used. . In particular, compounds having an amino group, an acid anhydride group, or an azide group are suitable.
[0041]
Examples of suitable curing agent components include dicyandiamide (abbreviation: DICY), diaminodiphenylsulfone (abbreviation: DDS), diaminodimethylmethane (abbreviation: DDM) and various isomers thereof, aminobenzoic acid esters, various acid anhydrides. Products, phenol novolac resins, cresol novolac resins, and the like.
[0042]
Of these, dicyandiamide is preferably used particularly in view of storage stability and physical properties.
[0043]
As the curing accelerator, for example, urea derivatives such as 3- (3,4-dichlorophenyl) -1,1-dimethylurea (abbreviation: DCMU), imidazole compounds, tertiary amine compounds, and the like can be used. In particular, the curing accelerator is preferably DCMU which is excellent in both storage stability and curing acceleration.
[0044]
The blending amount of [D component] is suitably 0.5 to 10 parts by weight per 100 parts by weight of [A] component.
[0045]
The resin composition used in the unidirectional fiber reinforced prepreg of the present invention, described above [component A], [B component], it shall be the essential [C component) and (D component], required in the present invention Thus, an inorganic filler such as silica, a thixotropic agent, a pigment, and the like can be added.
[0046]
Production of prepreg The unidirectional fiber reinforced prepreg of the present invention can be produced according to the production method of the unidirectional fiber reinforced prepreg by a well-known solvent method or hot melt method. The hot melt method is particularly preferable because it does not contain a solvent.
[0047]
Resin content of prepreg The fiber content of a conventional general fiber composite material is 55 to 65 (volume)%, and the resin content (RC) of the prepreg for obtaining such a molded product is 30. Those of ˜40 (weight)% are common.
[0048]
In order to obtain a higher performance composite material, a recent trend is to increase the fiber content to 65 to 75 (volume)%, and when obtaining such a high fiber content composite material. In addition, when a prepreg having a resin content (RC) of 30 to 40 (weight)% that has been generally used in the past is used, a molded product having a strong tack and few voids can be obtained. As a result, the orientation of the fibers is disturbed and it takes time to polish and finish after molding, and it is difficult to increase the fiber content of the molded product.
For this reason, the resin content of the prepreg is preferably about 10 to 30 (wt)%, particularly about 17 to 25 (wt)%.
[0049]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
Various test methods in this example are as follows.
[0050]
(1) Prepreg adhesion test method (± 45 ° winding test)
The prepreg is cut so that the fiber direction is + 45 ° and −45 °, and the prepregs are bonded together. Next, the length is cut to a length of 1000 mm and the width is 3 turns with respect to φ6.4 mm. The prepreg is wound around a mandrel having a length of 6.4 mmφ × 1200 at a table temperature of 35 ° C., and the distance at which the bonded surfaces of the prepregs are peeled is measured over time.
[0051]
The determination of adhesion is evaluated at the time when 30 minutes have passed after winding.
No peeling: ◎ (within the scope of the present invention),
Within 2 mm: ○ (within the scope of the present invention),
Within 5 mm: △ (outside the scope of the present invention),
5 mm or more: x (outside the scope of the present invention).
[0052]
In this specification, “the winding terminal does not peel” means that the distance at which the bonded surface is peeled is 2 mm or less.
[0053]
This test can evaluate the adhesiveness of 90 ° laminated surfaces between prepregs and the end bounce state when the fiber axis is wound 45 ° with respect to the mandrel axis.
[0054]
(2) Plate bending physical properties A prepreg having a length of 100 mm, a width of 12.7 mm, and a thickness of 2 mm is cured to obtain an FRP test piece. Measurement of the bending strength and elastic modulus of the flat plate of the test piece was performed using a Shimadzu Autograph AG-10TD (manufactured by Shimadzu Corporation), a test speed of 5 mm / min, an indenter tip radius of 3.2 mm L / D (distance between fulcrums / thickness). ) Measure under 32 conditions.
[0055]
(3) Heat test measurement method [Tg measurement]
A prepreg having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm is cured to obtain an FRP test piece. About the molded plate of the test piece, G ″ was measured under the conditions of a frequency of 1 Hz and a twist angle of 0.1 ° by means of a DMA method using MR-500 manufactured by Rheology, and this peak value was defined as Tg.
[0056]
The relationship between the names and abbreviations of the compounds used in the examples and the names of the products and the names of the manufacturers is as shown below.
[0057]
[Component A]
Bisphenol A type epoxy resin (bifunctional) Ep. 828: Trade name, Glucidylamine type epoxy resin (trifunctional) manufactured by Yuka Shell Epoxy Co., Ltd. ELM100: Trade name, Glucidylamine type epoxy resin (tetrafunctional), manufactured by Sumitomo Chemical Co., Ltd. Ep. 604: Trade name, Yuka Shell Epoxy Co., Ltd., phenol novolac type epoxy resin (multifunctional), Ep. 154: Product name, manufactured by Yuka Shell Epoxy Co., Ltd.
[B component]
Phenoxy resin PKHP-200: Product name, manufactured by Phenoxy Specialties Co., Ltd. [0059]
[C component]
Carboxyl group-containing butadiene acrylonitrile copolymer cross-linked product ... XER-91: trade name, manufactured by JSR Corp. Epoxy group-containing butadiene acrylonitrile copolymer cross-linked product ... XER-71: trade name, manufactured by JSR Corp.
[D component]
Dicyandiamide (abbreviation: DICY)
3- (3,4-dichlorophenyl) -1,1-dimethylurea (abbreviation: DCMU)
[0061]
[Example 1]
70 parts by weight of Ep828 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) as the A component, 30 parts by weight of Ep154 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.), and PKHP-200 (trade name, phenoxy) as the B component 10 parts by weight of Specialties Co., Ltd.) and 10 parts by weight of XER-91 (trade name, manufactured by JSR Co., Ltd.) as a C component are mixed with a kneader at 120 ° C. for 1 hour, and the carboxyl group in the C component is epoxy The resin was partially crosslinked. To this was added 5 parts by weight of DICY and 5 parts by weight of DCMU as a curing agent, and kneaded with a three-roll mill to prepare a resin block. This resin block is made into a resin film with a film coater, and bonded from both sides of carbon fibers (HTA-12K: trade name, manufactured by Toho Rayon Co., Ltd.) arranged in one direction with a tensile strength of 400 MPa and a tensile modulus of 230 GPa. Resin was impregnated by heating and pressing to prepare a unidirectional prepreg having a carbon fiber basis weight of 150 g / m 2 and a resin content of 25% by weight. The obtained prepreg was evaluated for adhesion by a ± 45 ° winding test. The results are shown in Table 1 below.
[0062]
Next, 16 ply of this prepreg was laminated, cured in an autoclave at 130 ° C. for 2 hours to produce a CFRP plate, cut into predetermined test piece dimensions, and then evaluated for Tg and bending characteristics. The results are shown in Table 1 below.
[0063]
[Example 2]
A prepreg was prepared in the same manner as in Example 1 except that Ep828 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) was 70 parts by weight and ELM100 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) was 30 parts by weight. It produced and evaluated. The results are shown in Table 1 below.
[0064]
Example 3
The same as in Example 1 except that Ep828 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) is 70 parts by weight and Ep604 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) is 30 parts by weight. A prepreg was prepared and evaluated. The results are shown in Table 1 below.
[0065]
Example 4
A prepreg was prepared and evaluated in the same manner as in Example 1 except that 100 parts by weight of Ep828 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) was used as the A component. The results are shown in Table 1 below.
[0066]
Example 5
A prepreg was prepared and evaluated in the same manner as in Example 1 except that 10 parts by weight of XER-71 (trade name, manufactured by JSR Corporation) was blended as component C. The results are shown in Table 1 below.
[0067]
Example 6
Example 1 except that the blending amount of component B PKHP-200 (trade name, manufactured by Phenoxy Specialties Co., Ltd.) and component C XER-91 (trade name, manufactured by JSR Co., Ltd.) was 1 part by weight. A prepreg was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
[0068]
Example 7
The above examples except that the blending amounts of component B PKHP-200 (trade name, manufactured by Phenoxy Specialties) and component C XER-91 (trade name, manufactured by JSR) were each 5 parts by weight. A prepreg was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
[0069]
Example 8
A prepreg was prepared and evaluated in the same manner as in Example 1 except that the blending amount of B component PKHP-200 (trade name, manufactured by Phenoxy Specialties Co., Ltd.) was 20 parts by weight. The results are shown in Table 1 below.
[0070]
Example 9
A prepreg was prepared and evaluated in the same manner as in Example 1 except that the compounding amount of C component XER-91 (trade name, manufactured by JSR Corporation) was 25 parts by weight. The results are shown in Table 1 below.
[0071]
Example 10
20 parts by weight of B component PKHP-200 (trade name, manufactured by Phenoxy Specialties), 25 parts by weight of C component XER-91 (trade name, manufactured by JSR) A prepreg was prepared and evaluated in the same manner as in Example 1 except that. The results are shown in Table 1 below.
[0072]
[Comparative Example 1]
A prepreg was prepared and evaluated in the same manner as in Example 1 except that B component PKHP-200 (trade name, manufactured by Phenoxy Specialties) was omitted. The results are shown in Table 1 below.
[0073]
[Comparative Example 2]
A prepreg was prepared and evaluated in the same manner as in Example 1 except that C component XER-91 (trade name, manufactured by JSR Corporation) was excluded. The results are shown in Table 1 below.
[Comparative Example 3]
An attempt was made to prepare a prepreg in the same manner as in Example 1 except that the blending amount of PKHP-200 (trade name, manufactured by Phenoxy Specialties Co., Ltd.) was increased to 25 parts by weight as the B component, but the resin viscosity increased. It was too late to manufacture. The results are shown in Table 1 below.
[0074]
[Comparative Example 4]
When the compounding amount of XER-91 (trade name, manufactured by JSR Co., Ltd.), which is component C, was increased to 30 parts by weight and a prepreg was produced in the same manner as in Example 1, the viscosity of the resin was considerably increased. The production of prepreg was barely possible. This prepreg was evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
[0075]
[Table 1]
Figure 0003986663
[0076]
【The invention's effect】
According to the present invention, even a so-called low RC prepreg having a low resin content in a unidirectional fiber reinforced prepreg is a prepreg having excellent tack and adhesion and excellent in handleability.
[0077]
The prepreg obtained by the present invention is particularly suitable for producing a cylindrical molded product typified by a golf shaft and the like, which not only leads to an improvement in productivity, but also produces a molded product such as a sharp taper or a complicated shape. It becomes possible.
[0078]
The FRP molded product produced from the unidirectional fiber-reinforced prepreg of the present invention has no internal defects (voids and delamination), has excellent heat resistance and mechanical properties, and has a light weight FRP, despite its low resin content. Is achieved.

Claims (7)

一方向繊維強化材にマトリックス樹脂を含浸した、樹脂含有量17〜25重量%の円筒状成形物作製用一方向繊維強化プリプレグであって、
該一方向繊維強化材が炭素繊維、ボロン繊維、シリコンカーバイト繊維、ガラス繊維およびアラミド繊維よりなる群の中から選ばれたものであり、
該マトリックス樹脂が次の〔A成分〕、〔B成分〕、〔C成分〕、及び〔D成分〕を含有し、
〔A成分〕エポキシ樹脂;
〔B成分〕フェノキシ樹脂;
〔C成分〕カルボキシル基またはエポキシ基を含有する微粒子状架橋ゴム;
〔D成分〕硬化剤
前記〔A成分〕が、多官能エポキシ樹脂と2官能エポキシ樹脂で構成され、しかも〔A成分〕におけるエポキシ樹脂100重量部中に多官能エポキシ樹脂が1〜80重量部含まれるものであり、
前記マトリックス樹脂における〔B成分〕の配合量が〔A成分〕100重量部に対し1〜20重量部であり、
前記マトリックス樹脂における〔C成分〕の配合量が〔A成分〕100重量部に対し1〜25重量部であり、
該一方向繊維強化プリプレグが±45°ローリングテストにおいて巻き端末が剥離せず、しかもこのプリプレグ硬化物のガラス転移温度(Tg)が100℃以上であることを特徴とする円筒状成形物作製用一方向繊維強化プリプレグ。
A unidirectional fiber reinforced prepreg having a resin content of 17 to 25% by weight and impregnated with a matrix resin in a unidirectional fiber reinforcement,
The unidirectional fiber reinforcement is selected from the group consisting of carbon fiber, boron fiber, silicon carbide fiber, glass fiber and aramid fiber,
The matrix resin contains the following [Component A], [Component B], [Component C], and [Component D],
[Component A] epoxy resin;
[Component B] Phenoxy resin;
[Component C] Fine particulate crosslinked rubber containing a carboxyl group or an epoxy group;
[Component D] Curing agent
The [Component A] is composed of a polyfunctional epoxy resin and a bifunctional epoxy resin, and 1 to 80 parts by weight of the multifunctional epoxy resin is contained in 100 parts by weight of the epoxy resin in [Component A].
The amount of [B component] in the matrix resin is 1 to 20 parts by weight per 100 parts by weight of [A component],
The amount of [C component] in the matrix resin is 1 to 25 parts by weight per 100 parts by weight of [A component],
The unidirectional fiber reinforced prepreg is not winding terminal peeling at 45 ° rolling test ±, moreover cylindrical molded product fabrication one glass transition temperature of the cured prepreg product (Tg) of is characterized in that at 100 ° C. or higher Directional fiber reinforced prepreg.
前記多官能エポキシ樹脂が、3官能エポキシ樹脂及び/又は4官能エポキシ樹脂である請求項1記載の円筒状成形物作製用一方向繊維強化プリプレグ。The unidirectional fiber-reinforced prepreg for producing a cylindrical molded article according to claim 1, wherein the polyfunctional epoxy resin is a trifunctional epoxy resin and / or a tetrafunctional epoxy resin. 前記多官能エポキシ樹脂が、ノボラック型エポキシ樹脂である請求項1記載の円筒状成形物作製用一方向繊維強化プリプレグ。The unidirectional fiber-reinforced prepreg for producing a cylindrical molded article according to claim 1, wherein the polyfunctional epoxy resin is a novolac type epoxy resin. 前記マトリックス樹脂における〔B成分〕の分子量が10,000〜50,000である請求項1記載の円筒状成形物作製用一方向繊維強化プリプレグ。The unidirectional fiber-reinforced prepreg for producing a cylindrical molded product according to claim 1, wherein the [B component] in the matrix resin has a molecular weight of 10,000 to 50,000. 前記〔C成分〕の微粒子状架橋ゴムの粒子径が1μm以下である請求項1記載の円筒状成形物作製用一方向繊維強化プリプレグ。The unidirectional fiber-reinforced prepreg for producing a cylindrical molded article according to claim 1, wherein the particle diameter of the particulate crosslinked rubber of [C component] is 1 μm or less. 前記〔D成分〕の硬化剤がジシアンジアミドであり、かつ硬化促進剤を含有する請求項1記載の円筒状成形物作製用一方向繊維強化プリプレグ。The unidirectional fiber-reinforced prepreg for producing a cylindrical molded product according to claim 1, wherein the curing agent of [Component D] is dicyandiamide and contains a curing accelerator. 前記マトリックス樹脂中に揺変剤が含まれることを特徴とする請求項1乃至6のいずれか1項記載の円筒状成形物作製用一方向繊維強化プリプレグ。A thixotropic agent is contained in the matrix resin, The unidirectional fiber-reinforced prepreg for producing a cylindrical molded product according to any one of claims 1 to 6.
JP13306698A 1998-05-15 1998-05-15 Unidirectional fiber reinforced prepreg Expired - Lifetime JP3986663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13306698A JP3986663B2 (en) 1998-05-15 1998-05-15 Unidirectional fiber reinforced prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13306698A JP3986663B2 (en) 1998-05-15 1998-05-15 Unidirectional fiber reinforced prepreg

Publications (2)

Publication Number Publication Date
JPH11322977A JPH11322977A (en) 1999-11-26
JP3986663B2 true JP3986663B2 (en) 2007-10-03

Family

ID=15096048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13306698A Expired - Lifetime JP3986663B2 (en) 1998-05-15 1998-05-15 Unidirectional fiber reinforced prepreg

Country Status (1)

Country Link
JP (1) JP3986663B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989822B2 (en) * 2001-04-27 2012-08-01 三菱レイヨン株式会社 Manufacturing method of prepreg
WO2004037505A1 (en) 2002-10-23 2004-05-06 Mitsubishi Rayon Co.,Ltd. Prepreg and method of manufacturing the prepreg
JP2006241402A (en) * 2005-03-07 2006-09-14 Yokohama Rubber Co Ltd:The Resin composition for self-adhesive prepreg, and method for producing the same
WO2014157132A1 (en) * 2013-03-28 2014-10-02 新日鉄住金化学株式会社 Phenoxy resin composition and cured product thereof
KR102267888B1 (en) * 2017-08-24 2021-06-21 (주)엘지하우시스 Fiber-reinforced composite and method of manufacturing the same

Also Published As

Publication number Publication date
JPH11322977A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP4571714B2 (en) Epoxy resin composition for FRP, prepreg and tubular molded body using the same
JP5828758B2 (en) Tubular body made of fiber reinforced epoxy resin material
EP0545640A1 (en) Epoxy resin composition, prepreg containing same and process for the producing of prepreg using same
JP2005298815A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2000039188A1 (en) Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers
KR101420056B1 (en) Golf club shaft
JP3986663B2 (en) Unidirectional fiber reinforced prepreg
JP2000355630A (en) Member made from fiber-reinforced plastic
JPH0770406A (en) Low temperature curing epoxy resin for prepreg and prepreg using the same
JP2003002990A (en) Prepreg
JPH0820708A (en) Epoxy resin composition and prepreg prepared therefrom
JP2003103519A (en) Prepreg sheet, tubular article, and golf club shaft
JPH0834864A (en) Impact-resistant prepreg
JP4843932B2 (en) Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JPH0841174A (en) Epoxy resin composition and prepreg
JP2003253094A (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH0812861A (en) Epoxy resin composition and prepreg
JP2001031783A (en) Prepreg and fiber-reinforced composite material
JP2008231288A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
JP2001139662A (en) Epoxy resin composition, prepreg and golf shaft
JP3796951B2 (en) Prepreg
JP4583563B2 (en) Tubular body made of fiber reinforced resin
JPH0586425B2 (en)
JP2003012889A (en) Epoxy resin composition and tennis racket using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

EXPY Cancellation because of completion of term