JP5252869B2 - Epoxy resin composition for fiber reinforced composite material and prepreg - Google Patents

Epoxy resin composition for fiber reinforced composite material and prepreg Download PDF

Info

Publication number
JP5252869B2
JP5252869B2 JP2007247230A JP2007247230A JP5252869B2 JP 5252869 B2 JP5252869 B2 JP 5252869B2 JP 2007247230 A JP2007247230 A JP 2007247230A JP 2007247230 A JP2007247230 A JP 2007247230A JP 5252869 B2 JP5252869 B2 JP 5252869B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
resin composition
fiber
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007247230A
Other languages
Japanese (ja)
Other versions
JP2009079073A (en
JP2009079073A5 (en
Inventor
彰浩 伊藤
忠義 齋藤
家嗣 山藤
真仁 田口
幹広 内薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007247230A priority Critical patent/JP5252869B2/en
Publication of JP2009079073A publication Critical patent/JP2009079073A/en
Publication of JP2009079073A5 publication Critical patent/JP2009079073A5/ja
Application granted granted Critical
Publication of JP5252869B2 publication Critical patent/JP5252869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、繊維強化複合材料用エポキシ樹脂組成物及びプリプレグに関する。   The present invention relates to an epoxy resin composition for fiber-reinforced composite materials and a prepreg.

炭素繊維、ガラス繊維等の強化繊維とエポキシ樹脂等からなる繊維強化複合材料(以下、FRPとする。)は、軽量性、耐食性、耐久性、及びその他の機械的特性に優れている。そのため、ゴルフシャフトや釣り竿、自転車フレーム等のスポーツレジャー用途から一般的な産業用途、更には航空機、車両等の用途等、幅広い分野で用いられている。   A fiber-reinforced composite material (hereinafter referred to as FRP) made of a reinforcing fiber such as carbon fiber or glass fiber and an epoxy resin is excellent in lightness, corrosion resistance, durability, and other mechanical properties. Therefore, they are used in a wide range of fields such as sports and leisure applications such as golf shafts, fishing rods and bicycle frames, general industrial applications, and further applications such as aircraft and vehicles.

強化繊維としては、比強度、比弾性に優れる点から炭素繊維が好適に用いられる。FRPは、ゴルフシャフトや釣り竿に代表されるように管状の形状で用いられることが多い。このような炭素繊維強化樹脂管状体は、通常、軽量性、高剛性、静的強度の点では優れているが、屈撓性に乏しく、炭素繊維の破壊伸度が小さいため、耐衝撃性(靱性)を向上させることが難しいとされている。   As the reinforcing fiber, carbon fiber is preferably used because it is excellent in specific strength and specific elasticity. FRP is often used in a tubular shape as represented by golf shafts and fishing rods. Such a carbon fiber reinforced resin tubular body is usually excellent in terms of lightness, high rigidity, and static strength, but has poor flexibility, and the carbon fiber has a low fracture elongation. It is considered difficult to improve toughness.

しかし、近年、スポーツ分野を中心にFRPの耐衝撃性の向上の要求が高まっている。これは、FRPの耐衝撃性の向上により製品の折損等の不良発生を防止できるだけでなく、耐衝撃性向上に伴う設計の自由度の拡大によりさらなる軽量化が達成できるためである。   However, in recent years, there has been an increasing demand for improving the impact resistance of FRP, mainly in the sports field. This is because not only the occurrence of defects such as breakage of the product can be prevented by improving the impact resistance of the FRP, but further weight reduction can be achieved by increasing the degree of design freedom accompanying the improvement of the impact resistance.

FRP、特に炭素繊維を強化繊維とする炭素繊維複合材料(CFRP)では、得られる複合材料の力学的特性が高くなる点から、予め強化繊維に樹脂組成物を含浸させたプリプレグを所望の形状に切断した後に賦型し、加熱硬化させる方法が広く利用されている。ただし、プリプレグとは、強化繊維に樹脂組成物を含浸させたものであり、FRPを製造する際の中間材料として用いられる。
また、一般的にプリプレグの樹脂組成物としては、強度発現性の点から主に熱硬化性樹脂が用いられている。なかでも、取り扱い性や強度発現性の点からエポキシ樹脂が広く用いられている。
In the case of FRP, especially carbon fiber composite material (CFRP) using carbon fiber as a reinforcing fiber, the prepreg obtained by impregnating the resin composition into the reinforcing fiber in advance is formed into a desired shape because the resulting composite material has high mechanical properties. A method of forming after cutting and heat-curing is widely used. However, the prepreg is obtained by impregnating a reinforcing fiber with a resin composition, and is used as an intermediate material when manufacturing FRP.
In general, a thermosetting resin is mainly used as a prepreg resin composition from the viewpoint of strength development. Among these, epoxy resins are widely used from the viewpoints of handleability and strength development.

熱硬化性樹脂を樹脂組成物としたFRP又は該FRPを用いた繊維強化樹脂管状体において、耐衝撃性を向上させた例としては下記に示すものがある。
(1)有機繊維を繊維強化樹脂層に加えたFRP及び繊維強化樹脂管状体(特許文献1〜5)。
(2)有機重合体からなるフィルム、テープ等を繊維強化樹脂層と共に用いたFRP(特許文献6〜7)。
(3)FRPの外側にガラス繊維と樹脂組成物とからなる層を外層に用いた繊維強化樹脂管状体(特許文献8)。
(4)繊維強化樹脂層の樹脂組成物中にゴム成分を添加したFRP(特許文献9)。
(5)繊維強化樹脂層の樹脂組成物として、ビスフェノールA型エポキシ樹脂やオキサゾリドン環含有エポキシ樹脂等の特定の樹脂を用いた繊維強化樹脂管状体(特許文献10)。
In the FRP using a thermosetting resin as a resin composition or a fiber reinforced resin tubular body using the FRP, examples of improved impact resistance include the following.
(1) FRP and fiber reinforced resin tubular body in which organic fibers are added to a fiber reinforced resin layer (Patent Documents 1 to 5).
(2) FRP using a film, tape or the like made of an organic polymer together with a fiber reinforced resin layer (Patent Documents 6 to 7).
(3) A fiber-reinforced resin tubular body using a layer composed of glass fibers and a resin composition on the outside of the FRP as an outer layer (Patent Document 8).
(4) FRP in which a rubber component is added to the resin composition of the fiber reinforced resin layer (Patent Document 9).
(5) A fiber reinforced resin tubular body using a specific resin such as a bisphenol A type epoxy resin or an oxazolidone ring-containing epoxy resin as the resin composition of the fiber reinforced resin layer (Patent Document 10).

(1)、(2)は、繊維強化樹脂層による積層体の層間剥離強度を向上させたものである。具体的には、積層体の層間の剥離強度を効果的に改善する目的で、熱可塑性樹脂の微粒子等を層間に集中的に分布させている。しかし、該方法では、プリプレグにおけるタックレベルの大幅な低下が避けられないばかりか、工程及び品質管理が複雑化する等の問題がある。また、製品の軽量化も難しい。
また、インターリーフと呼ばれる一種の衝撃吸収層を層間に挿入する方法も示されているが(例えば、特許文献11〜14)、いずれも層間が厚くなることによる繊維比率の低下、プリプレグにおけるタックレベルの低下による取扱性の低下等のおそれがある。
(1) and (2) improve the delamination strength of the laminate by the fiber reinforced resin layer. Specifically, for the purpose of effectively improving the peel strength between layers of the laminate, fine particles of thermoplastic resin and the like are intensively distributed between the layers. However, in this method, there is a problem that a significant decrease in tack level in the prepreg is unavoidable, and the process and quality control are complicated. It is also difficult to reduce the weight of the product.
Moreover, although the method of inserting a kind of shock absorbing layer called an interleaf is also shown (for example, patent documents 11-14), all are the fall of the fiber ratio by an interlayer becoming thick, the tack level in a prepreg There is a risk of a decrease in handleability due to a decrease in the temperature.

(3)は、異種材料であるガラス繊維を加えて耐衝撃性を向上させたものであるが、(1)(2)と同様に異種材料を加えているために軽量化が難しい。また、耐衝撃性の向上もそれ程大きいものではなく、さらなる耐衝撃性の向上が望まれる。
(4)は、エポキシ樹脂成分中にアクリルニトリル−ブタジエン共重合体等のゴム状ポリマーを添加し、硬化時に該ゴム層をミクロ相分離させる。該方法では、これらの成分の添加量に応じて耐衝撃性が改善するが、その一方で剛性が失われる傾向がある。
(5)は、耐衝撃性がある程度向上するものの、さらなる耐衝撃性の向上が望まれる。
以上のことから、優れた力学的特性を保ち、かつより優れた耐衝撃性を有するFRPを得るための方策が求められている。
In (3), the glass fiber, which is a different material, is added to improve the impact resistance. However, since different materials are added as in (1) and (2), it is difficult to reduce the weight. Further, the improvement in impact resistance is not so great, and further improvement in impact resistance is desired.
In (4), a rubbery polymer such as an acrylonitrile-butadiene copolymer is added to the epoxy resin component, and the rubber layer is microphase-separated at the time of curing. In this method, the impact resistance is improved according to the amount of these components added, but the rigidity tends to be lost.
In (5), although impact resistance is improved to some extent, further improvement in impact resistance is desired.
In view of the above, there is a need for a method for obtaining FRP having excellent mechanical properties and superior impact resistance.

また、一般にゴルフシャフトやテニスラケット等のFRPに用いられるプリプレグは、通常エポキシ樹脂等からなる樹脂組成物を、表面が離型処理された工程紙(離型紙)の離型層表面に数十μmの厚みで塗工し、その樹脂塗工面に強化繊維を引き揃え、加熱しながら押圧することにより強化繊維に樹脂組成物を含浸させる。該含浸工程において樹脂組成物の粘度が高すぎると、タック、柔軟性等のプリプレグに強く要求される特性が大幅に低下するだけでなく、プリプレグの工程通過性が著しく低下する。そのため、樹脂組成物の粘度は高くなりすぎないようにする必要がある。
特開昭51−118538号公報 特開昭62−164482号公報 特開平8−20651号公報 特開平9−176347号公報 特開平10−337436号公報 特開平9−239082号公報 特開平10−235767号公報 特開平10−329247号公報 特開2001−139662号公報 特開2000−24151号公報 米国特許第3472730号明細書 特開昭51−58484号公報 特開昭60−63229号公報 特開昭60−231738号公報
Further, prepregs generally used for FRP such as golf shafts and tennis rackets are usually several tens of μm on the surface of the release layer of process paper (release paper) whose surface has been released from a resin composition made of epoxy resin or the like. The reinforcing fiber is applied to the resin coating surface, and the reinforcing fiber is impregnated with the resin composition by pressing while heating. If the viscosity of the resin composition is too high in the impregnation step, not only properties such as tackiness and flexibility that are strongly required for the prepreg are significantly reduced, but also the prepreg processability is markedly reduced. Therefore, it is necessary to prevent the viscosity of the resin composition from becoming too high.
JP 51-118538 A Japanese Patent Laid-Open No. 62-164482 JP-A-8-20651 JP-A-9-176347 Japanese Patent Laid-Open No. 10-337436 Japanese Patent Laid-Open No. 9-239082 Japanese Patent Laid-Open No. 10-235767 JP-A-10-329247 Japanese Patent Laid-Open No. 2001-13962 JP 2000-24151 A U.S. Pat. No. 3,472,730 JP 51-58484 A JP-A-60-63229 JP-A-60-231738

鋭意研究の結果、優れた耐衝撃性を有する繊維強化複合材料を得るには、硬化させた後の樹脂組成物の硬化板での破壊靱性値が400J/m以上であることが必要であることがわかった。
本発明では、工程通過性が高く、またFRPとしたときに力学的特性及び耐衝撃性(靭性)に優れ、繊維強化複合材料用エポキシ樹脂組成物を提供する。また、本発明では、前記繊維強化複合材料用エポキシ樹脂組成物が強化繊維に含浸されたプリプレグを提供する。
As a result of intensive research, in order to obtain a fiber-reinforced composite material having excellent impact resistance, it is necessary that the fracture toughness value of the cured resin composition after curing is 400 J / m 2 or more. I understood it.
The present invention provides an epoxy resin composition for fiber-reinforced composite materials that has high process passability and is excellent in mechanical properties and impact resistance (toughness) when FRP is used. Moreover, in this invention, the prepreg by which the said epoxy resin composition for fiber reinforced composite materials was impregnated in the reinforced fiber is provided.

本発明の繊維強化複合材料用エポキシ樹脂組成物は、エポキシ樹脂(I)と、180℃、6時間で加熱溶解した際に前記エポキシ樹脂(I)中に1質量%以上溶解するポリアミド樹脂(II)と、前記エポキシ樹脂(I)を100〜160℃で硬化する硬化剤(III)とを含有する樹脂組成物であり、前記エポキシ樹脂(I)(100質量部)は、下記式(1)で示されるオキサゾリドン環を有するエポキシ樹脂(A)5〜50質量部と、他のエポキシ樹脂(B)95〜50質量部とからなり、前記ポリアミド樹脂(II)は、重合脂肪酸から誘導されるポリアミド類と、ポリオキシアルキレングリコール及びジカルボン酸から得られるポリエーテルエステル類との共重合により得られるポリエーテルエステルアミドブロック共重合体であり、前記ポリアミド樹脂(II)の含有量は、前記エポキシ樹脂(I)100質量部に対して1.5〜20質量部であり、前記硬化剤(III)の含有量は、前記エポキシ樹脂(I)100質量部に対して1.5〜20質量部である。
The epoxy resin composition for fiber-reinforced composite material of the present invention comprises an epoxy resin (I) and a polyamide resin (II) that dissolves in an amount of 1% by mass or more in the epoxy resin (I) when heated and dissolved at 180 ° C. for 6 hours. ) And a curing agent (III) that cures the epoxy resin (I) at 100 to 160 ° C., and the epoxy resin (I) (100 parts by mass) is represented by the following formula (1): The epoxy resin (A) having an oxazolidone ring represented by 5 to 50 parts by mass and the other epoxy resin (B) 95 to 50 parts by mass, and the polyamide resin (II) is a polyamide derived from a polymerized fatty acid s and, polyoxyalkylene glycols and polyether ester amide block copolymer der obtained by copolymerization of the polyether esters derived from dicarboxylic acids The content of the polyamide resin (II) is 1.5 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin (I), and the content of the curing agent (III) is the epoxy resin (I). ) 1.5 to 20 parts by mass with respect to 100 parts by mass.

Figure 0005252869
(式(1)中、R、Rはそれぞれ独立に水素原子又はメチル基、X〜Xはそれぞれ独立にハロゲン原子、水素原子、又は炭素数1〜4のアルキル基、R〜Rはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。また、Qは下記式(2)又は(3)である。)
Figure 0005252869
(In the formula (1), R 1, R 2 each independently represent a hydrogen atom or a methyl group, X 1 to X 4 each independently represents a halogen atom, a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms, R 3 ~ R 6 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Q 1 is the following formula (2) or (3).

Figure 0005252869
(式(2)中のZ〜Zはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。)
Figure 0005252869
(Z 1 to Z 4 in the formula (2) are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)

Figure 0005252869
(式(3)中のT〜Tはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。また、Qは単結合、−CH−、−C(CH−、−SO−、−SO−、−S−、又は−O−である。)
Figure 0005252869
(T 1 to T 8 in Formula (3) are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Q 2 is a single bond, —CH 2 —, —C (CH 3 ) 2. -, - SO 2 -, - SO -, - S-, or -O- and is).

Figure 0005252869
(式(4)中、aは1〜10、bは1〜10、cは1〜20で、いずれも整数である。また、PAは下記式(5)であり、PEは下記式(8)である。)
Figure 0005252869
(In the formula (4), a is 1 to 10, b is 1 to 10, c is 1 to 20, and both are integers. PA is the following formula (5), and PE is the following formula (8). ).)

Figure 0005252869
(式(5)中、dは0〜2、eは0〜2、fは1〜10で、いずれも整数である。ただし、d及びeが同時に0になることはない。また、αは2〜40の整数である。また、PA及びPAはそれぞれ独立に、下記式(6)及び/又は下記式(7)である。)
Figure 0005252869
(In the formula (5), d is 0 to 2, e is 0 to 2, f is 1 to 10, and both are integers, provided that d and e are not 0 at the same time. (It is an integer of 2 to 40. In addition, PA 1 and PA 2 are each independently the following formula (6) and / or the following formula (7).)

Figure 0005252869
(式(6)中、βは2〜40、γは2〜40で、いずれも整数である。また、R、Rはそれぞれ独立に水素原子又はメチル基である。)
Figure 0005252869
(In formula (6), β is 2 to 40, and γ is 2 to 40, both of which are integers. R 7 and R 8 are each independently a hydrogen atom or a methyl group.)

Figure 0005252869
(式(7)中、βは2〜40、γは2〜40で、いずれも整数である。)
Figure 0005252869
(In formula (7), β is 2 to 40, and γ is 2 to 40, both of which are integers.)

Figure 0005252869
(式(8)中、gは3〜20、hは1〜10で、いずれも整数である。θは2〜8、φは2〜40で、いずれも整数である。)
Figure 0005252869
(In Formula (8), g is 3-20, h is 1-10, and all are integers. Θ is 2-8, φ is 2-40, and both are integers.)

また、本発明の繊維強化複合材料用エポキシ樹脂組成物は、前記硬化剤(III)がジシアンジアミドであるのが好ましい。   In the epoxy resin composition for fiber-reinforced composite materials of the present invention, the curing agent (III) is preferably dicyandiamide.

また、本発明のプリプレグは、前記繊維強化複合材料用エポキシ樹脂組成物が強化繊維に含浸される。   In the prepreg of the present invention, the reinforcing fiber is impregnated with the epoxy resin composition for fiber-reinforced composite material.

本発明の繊維強化複合材料用樹脂組成物は、工程通過性が高く、また力学的特性及び耐衝撃性(靭性)に優れたFRPを製造できる。また、本発明によれば、前記繊維強化複合材料用樹脂組成物が強化繊維に含浸されたプリプレグを提供できる。   The resin composition for fiber-reinforced composite material of the present invention can produce FRP having high process passability and excellent mechanical properties and impact resistance (toughness). In addition, according to the present invention, it is possible to provide a prepreg in which reinforcing fibers are impregnated with the resin composition for fiber-reinforced composite materials.

本発明の繊維強化複合材料用エポキシ樹脂組成物(以下、樹脂組成物とする。)は、エポキシ樹脂(I)と、前記エポキシ樹脂(I)に可溶なポリアミド樹脂(II)と、硬化剤(III)とを含有する。
エポキシ樹脂(I)は、エポキシ樹脂(A)と、エポキシ樹脂(A)以外のその他のエポキシ樹脂(B)とからなる。
The epoxy resin composition for fiber-reinforced composite material of the present invention (hereinafter referred to as a resin composition) includes an epoxy resin (I), a polyamide resin (II) soluble in the epoxy resin (I), and a curing agent. (III).
Epoxy resin (I) consists of epoxy resin (A) and other epoxy resins (B) other than epoxy resin (A).

エポキシ樹脂(A)は、オキサゾリドン環を有しており、下記式(1)で示される構造を有する。
エポキシ樹脂(I)としては、例えば、特開平5−43655号公報に示されている、エポキシ樹脂とイソシアナート化合物とをオキサゾリドン環形成触媒の存在下で反応させる方法で合成できる。また、旭化成ケミカルズ(株)製のAER4151、AER4152等を用いることができる。
The epoxy resin (A) has an oxazolidone ring and has a structure represented by the following formula (1).
The epoxy resin (I) can be synthesized, for example, by a method of reacting an epoxy resin and an isocyanate compound in the presence of an oxazolidone ring-forming catalyst as disclosed in JP-A-5-43655. Moreover, AER4151, AER4152, etc. by Asahi Kasei Chemicals Co., Ltd. can be used.

Figure 0005252869
(式(1)中、R、Rはそれぞれ独立に水素原子又はメチル基、X〜Xはそれぞれ独立にハロゲン原子、水素原子、又は炭素数1〜4のアルキル基、R〜Rはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。また、Qは下記式(2)又は(3)である。)
Figure 0005252869
(In the formula (1), R 1, R 2 each independently represent a hydrogen atom or a methyl group, X 1 to X 4 each independently represents a halogen atom, a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms, R 3 ~ R 6 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Q 1 is the following formula (2) or (3).

Figure 0005252869
(式(2)中のZ〜Zはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。)
Figure 0005252869
(Z 1 to Z 4 in the formula (2) are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)

Figure 0005252869
(式(3)中のT〜Tはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。また、Qは単結合、−CH−、−C(CH−、−SO−、−SO−、−S−、又は−O−である。)
Figure 0005252869
(T 1 to T 8 in Formula (3) are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Q 2 is a single bond, —CH 2 —, —C (CH 3 ) 2. -, - SO 2 -, - SO -, - S-, or -O- and is).

エポキシ樹脂(I)中のエポキシ樹脂(A)の含有量は、エポキシ樹脂(I)の全量を100質量部として、5〜50質量部である。
エポキシ樹脂(A)が5質量部以上であれば、耐衝撃性に優れた樹脂組成物が得られる。また、エポキシ樹脂(A)が50質量部を超えると、添加量に対する耐衝撃性の向上効果が小さい。
The content of the epoxy resin (A) in the epoxy resin (I) is 5 to 50 parts by mass with the total amount of the epoxy resin (I) being 100 parts by mass.
If an epoxy resin (A) is 5 mass parts or more, the resin composition excellent in impact resistance will be obtained. Moreover, when an epoxy resin (A) exceeds 50 mass parts, the improvement effect of the impact resistance with respect to the addition amount is small.

他のエポキシ樹脂(B)は、エポキシ樹脂(A)以外のエポキシ樹脂であり、特に限定されない。例えば、分子中に2つのエポキシ基を有する2官能エポキシ樹脂、3つ以上のエポキシ樹脂を有する多官能エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、1種のみを使用してもよく、2種類以上を併用してもよい。   The other epoxy resin (B) is an epoxy resin other than the epoxy resin (A) and is not particularly limited. For example, a bifunctional epoxy resin having two epoxy groups in the molecule, a polyfunctional epoxy resin having three or more epoxy resins, and the like can be mentioned. These epoxy resins may use only 1 type and may use 2 or more types together.

2官能エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アルキル骨格を主鎖とするエポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フルオレン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族エポキシ樹脂、脂環式エポキシ樹脂等、またそれらのブロム化エポキシ樹脂や、CTBN等のゴム成分やクレイトンに代表されるようなエアストマー等で変性したエポキシ樹脂等が挙げられる。   Examples of the bifunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, epoxy resin having an alkyl skeleton as the main chain, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene Type epoxy resin, fluorene type epoxy resin, aminophenol type epoxy resin, novolac type epoxy resin, aliphatic epoxy resin, alicyclic epoxy resin, etc., and those brominated epoxy resins, rubber components such as CTBN, and clayton And an epoxy resin modified with an air stoma or the like.

多官能エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、テトラグリシジルアミンのようなグリシジルアミン型エポキシ樹脂、テトラキス(グリシジルオキシフェニル)エタンやトリス(グリシジルオキシメタン)のようなグリシジルエーテル型エポキシ樹脂が挙げられ、これらの組み合わせが好適に用いられる。   Examples of the polyfunctional epoxy resin include phenol novolac type epoxy resin, cresol type epoxy resin, glycidylamine type epoxy resin such as tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol and tetraglycidylamine, tetrakis (glycidyloxyphenyl) ethane, A glycidyl ether type epoxy resin such as tris (glycidyloxymethane) can be mentioned, and a combination thereof is preferably used.

他のエポキシ樹脂(B)は、樹脂組成物の加工性及び安定性の点から、エポキシ樹脂(A)及び後述するポリアミド樹脂(II)と均一に溶解させるか、もしくはこれらとの混合成分とするのが好ましい。
エポキシ樹脂(I)中の他のエポキシ樹脂(B)の含有量は、エポキシ樹脂(I)の全量を100質量部としたとき、50〜95質量部である。他のエポキシ樹脂(B)が50質量部以上であれば、樹脂組成物の耐衝撃性を高く保ったまま、他のエポキシ樹脂(B)による効果を得ることができる。他のエポキシ樹脂(B)が95質量部以下であれば、耐衝撃性に優れた樹脂組成物が得られる。
The other epoxy resin (B) is uniformly dissolved in the epoxy resin (A) and the polyamide resin (II) described later from the viewpoint of processability and stability of the resin composition, or is mixed with these components. Is preferred.
Content of the other epoxy resin (B) in epoxy resin (I) is 50-95 mass parts when the whole quantity of epoxy resin (I) is 100 mass parts. When the other epoxy resin (B) is 50 parts by mass or more, the effect of the other epoxy resin (B) can be obtained while keeping the impact resistance of the resin composition high. If other epoxy resin (B) is 95 mass parts or less, the resin composition excellent in impact resistance will be obtained.

ポリアミド樹脂(II)は、エポキシ樹脂(I)に可溶であり、180℃、6時間で加熱溶解した際に、エポキシ樹脂(I)中に1質量%以上溶解するポリアミド樹脂である。   The polyamide resin (II) is soluble in the epoxy resin (I), and is a polyamide resin that dissolves 1% by mass or more in the epoxy resin (I) when heated and dissolved at 180 ° C. for 6 hours.

ポリアミド樹脂(II)としては、ポリエステルアミド共重合体が好ましい。具体的には、脂肪酸から誘導されたダイマー酸(二量体化脂肪酸)を主成分とする重合脂肪酸から誘導されるポリアミド樹脂類や、前記重合脂肪酸から誘導されるポリアミド樹脂類と、ポリエーテル類、ポリエステル類、ポリエーテルエステル類からなる群から選択される一つ以上とを用いて、共重合等により分子骨格に両者を含むポリアミドエラストマー類、すなわちポリエーテルエステルアミド、ポリエーテルエステルアミドブロック共重合体、ポリエステルアミド共重合体等が挙げられる。これらは、1種のみを使用してもよく、2種類以上を併用してもよい。   As the polyamide resin (II), a polyesteramide copolymer is preferable. Specifically, polyamide resins derived from polymerized fatty acids mainly composed of dimer acids (dimerized fatty acids) derived from fatty acids, polyamide resins derived from the polymerized fatty acids, and polyethers Polyamide elastomers containing both in the molecular skeleton by copolymerization using one or more selected from the group consisting of polyesters, polyetheresters, ie, polyetheresteramide, polyetheresteramide block copolymer Examples thereof include a polyester and a polyesteramide copolymer. These may use only 1 type and may use 2 or more types together.

重合脂肪酸から誘導されたポリアミド樹脂類としては、例えば、富士化成工業社製PAシリーズ(PA−100、PA−100A、PA−102A、PA−105A、PA−100A)が挙げられる。
また、ポリアミド樹脂(II)としては、下記式(4)で示されるポリエーテルエステルアミド(ポリエーテルエステルアミドブロック共重合体)が好ましい。該ポリエーテルエステルアミドは、ポリアミド成分と、ポリオキシアルキレングリコール及びジカルボン酸からなるポリエーテルエステル成分との反応で得られ、分子鎖中にアミド結合とエーテル結合とエステル結合とを有する重合体であり、エポキシ樹脂に高い相溶性を示す。そのため、エポキシ樹脂(I)と微細な海島構造を形成でき、その結果、優れた力学的特性を維持したまま耐衝撃性を向上させる効果が大きい。
Examples of polyamide resins derived from polymerized fatty acids include PA series (PA-100, PA-100A, PA-102A, PA-105A, PA-100A) manufactured by Fuji Kasei Kogyo Co., Ltd.
Moreover, as polyamide resin (II), the polyetheresteramide (polyetheresteramide block copolymer) shown by following formula (4 ) is preferable. The polyether ester amide is a polymer obtained by reacting a polyamide component with a polyether ester component comprising polyoxyalkylene glycol and dicarboxylic acid, and having an amide bond, an ether bond and an ester bond in the molecular chain. High compatibility with epoxy resin. Therefore, a fine sea-island structure can be formed with the epoxy resin (I). As a result, the effect of improving the impact resistance while maintaining excellent mechanical properties is great.

Figure 0005252869
(式(4)中、aは1〜10、bは1〜10、cは1〜20で、いずれも整数である。また、PAは下記式(5)であり、PEは下記式(8)である。)
Figure 0005252869
(In the formula (4), a is 1 to 10, b is 1 to 10, c is 1 to 20, and both are integers. PA is the following formula (5), and PE is the following formula (8). ).)

Figure 0005252869
(式(5)中、dは0〜2、eは0〜2、fは1〜10で、いずれも整数である。ただし、d及びeが同時に0になることはない。また、αは2〜40の整数である。また、PA及びPAはそれぞれ独立に、下記式(6)及び/又は下記式(7)である。すなわち、PA、PAはいずれも、式(6)の構成単位単独の場合と、式(7)の構成単位単独の場合と、式(6)の構成単位と式(7)の構成単位とが混在している場合とがある。)
Figure 0005252869
(In the formula (5), d is 0 to 2, e is 0 to 2, f is 1 to 10, and both are integers, provided that d and e are not 0 at the same time. It is an integer of 2 to 40. In addition, PA 1 and PA 2 are each independently the following formula (6) and / or the following formula (7), that is, both PA 1 and PA 2 are represented by the formula (6 ) In the case of a single structural unit, in the case of a single structural unit in formula (7), and in the mixed case of a structural unit in formula (6) and a structural unit in formula (7).

Figure 0005252869
(式(6)中、βは2〜40、γは2〜40で、いずれも整数である。また、R、Rはそれぞれ独立に水素原子又はメチル基である。)
Figure 0005252869
(In formula (6), β is 2 to 40, and γ is 2 to 40, both of which are integers. R 7 and R 8 are each independently a hydrogen atom or a methyl group.)

Figure 0005252869
(式(7)中、βは2〜40、γは2〜40で、いずれも整数である。)
Figure 0005252869
(In formula (7), β is 2 to 40, and γ is 2 to 40, both of which are integers.)

Figure 0005252869
(式(8)中、gは3〜20、hは1〜10で、いずれも整数である。また、θは2〜8、φは2〜40で、いずれも整数である。)
Figure 0005252869
(In Formula (8), g is 3-20, h is 1-10, and all are integers. Moreover, (theta) is 2-8, (phi) is 2-40, and all are integers.

ポリエーテルエステルアミドの製造方法は、均一で高分子量の重合体が得られる方法であればどのような方法でもよい。例えば、まず、ポリアミドオリゴマーを合成し、これにポリオキシアルキレングリコールとジカルボン酸とを加え、減圧下で加熱して高重合度化させる方法が挙げられる。   The method for producing the polyetheresteramide may be any method as long as a uniform and high molecular weight polymer can be obtained. For example, first, a method of synthesizing a polyamide oligomer, adding a polyoxyalkylene glycol and dicarboxylic acid to the polyamide oligomer, and heating under reduced pressure to increase the degree of polymerization can be mentioned.

また、このようなポリエーテルエステルアミドとしては、市販品を用いることもできる。ポリエーテルエステルアミドの市販品としては、富士化成工業社製TPAEシリーズ(TPAE12、TPAE31、TPAE32、TPAE38、TPAE8、TPAE10、TPAE100、TPAE23、TPAE63、TPAE200、TPAE201、TPAE260)が挙げられる。
これらのうちTPAE32は、式(4)〜(8)で示されるものの混合物であって、式(4)〜(8)中、平均値として、a=b=1、c=7.26、d=0.16、e=0.84、f=2.23、α=10、β=34、γ=2、g=14、h=1、θ=4、φ=10である。また、R及びRはいずれも水素原子である。また、TPAE32は、PA、PAがいずれも、式(6)の構成単位と式(7)の構成単位とが混在した状態となっている。
Moreover, as such a polyether ester amide, a commercial item can also be used. Examples of commercially available polyether ester amides include TPAE series (TPAE12, TPAE31, TPAE32, TPAE38, TPAE8, TPAE10, TPAE100, TPAE23, TPAE63, TPAE200, TPAE201, and TPAE260) manufactured by Fuji Kasei Kogyo.
Among these, TPAE32 is a mixture of the compounds represented by the formulas (4) to (8). In the formulas (4) to (8), a = b = 1, c = 7.26, d = 0.16, e = 0.84, f = 2.23, α = 10, β = 34, γ = 2, g = 12, h = 1, θ = 4, and φ = 10. R 7 and R 8 are both hydrogen atoms. Further, in TPAE 32, both PA 1 and PA 2 are in a state in which the constituent unit of formula (6) and the constituent unit of formula (7) are mixed.

硬化剤(III)は、100℃〜160℃での加熱でエポキシ樹脂を硬化できる硬化剤であり、繊維強化複合材料とした際に高い力学的特性を発現できる点からジシアンジアミドであることが好ましい。ジシアンジアミドを硬化剤として用いることにより160℃以下での硬化が容易となり、かつ20℃で1ヶ月を超えるポットライフが実現できる。   The curing agent (III) is a curing agent capable of curing the epoxy resin by heating at 100 ° C. to 160 ° C., and is preferably dicyandiamide from the viewpoint of exhibiting high mechanical properties when made into a fiber-reinforced composite material. By using dicyandiamide as a curing agent, curing at 160 ° C. or less is facilitated, and a pot life exceeding one month can be realized at 20 ° C.

180℃で硬化反応が行えるジアミノジフェニルメタン等の硬化剤は、該硬化過程においてポリアミド樹脂が相分離を起こすおそれがあるため好ましくない。また、100℃以下で硬化反応が行えるアミノ化合物やイミダゾール類では、ポリアミド樹脂末端とエポキシ樹脂中の官能基との結合形成が充分に進行しないおそれがあるため好ましくない。ただし、これらの硬化剤をマイクロカプセル化したものを、プリプレグの保存安定性を高めるために用いることは構わない。 Curing agent such as diaminodiphenyl methane that allows the curing reaction at 180 ° C. is not preferable because the polyamide resin in the cured process is likely to undergo phase separation. In addition, amino compounds and imidazoles that can undergo a curing reaction at 100 ° C. or less are not preferable because there is a possibility that the bond formation between the end of the polyamide resin and the functional group in the epoxy resin may not proceed sufficiently. However, those obtained by encapsulating these curing agents may be used for enhancing the storage stability of the prepreg.

硬化剤(III)の含有量は、エポキシ樹脂(I)100質量部に対し、1.5〜20質量部である。また、含有量は2〜10質量部であるのが好ましい。硬化剤(III)の含有量が1.5質量部以上であれば、エポキシ樹脂(I)の硬化反応が充分に進行し、力学的特性に優れた繊維強化複合材料を製造できる樹脂組成物が得られる。また、硬化剤(III)の含有量が20質量部以下であれば、充分な保存安定性が得られ、硬化後の樹脂組成物の物性も良好となる。   Content of hardening | curing agent (III) is 1.5-20 mass parts with respect to 100 mass parts of epoxy resins (I). Moreover, it is preferable that content is 2-10 mass parts. When the content of the curing agent (III) is 1.5 parts by mass or more, a resin composition capable of producing a fiber-reinforced composite material in which the curing reaction of the epoxy resin (I) proceeds sufficiently and has excellent mechanical properties. can get. Moreover, if content of hardening | curing agent (III) is 20 mass parts or less, sufficient storage stability will be acquired and the physical property of the resin composition after hardening will also become favorable.

本発明の樹脂組成物は、エポキシ樹脂(I)、ポリアミド樹脂(II)、硬化剤(III)以外に硬化促進剤を含んでいてもよい。
硬化促進剤としては、例えば、イミダゾールやイミダゾール誘導体、尿素化合物、イミダゾールのカルボン酸塩や金属錯塩、3級アミン化合物等が挙げられる。
硬化剤(III)としてジシアンジアミドを用いる場合には、硬化促進剤としてフェニルジメチルウレア、3−(3,4−ジクロロフェニル)−1、1、ジメチル尿素(DCMU)等の尿素誘導体あるいはイミダゾール誘導体、等の尿素化合物、イミダゾール類、アミン類を用いるのが好ましい。
The resin composition of the present invention may contain a curing accelerator in addition to the epoxy resin (I), the polyamide resin (II), and the curing agent (III).
Examples of the curing accelerator include imidazole, imidazole derivatives, urea compounds, imidazole carboxylates and metal complexes, tertiary amine compounds, and the like.
When dicyandiamide is used as the curing agent (III), a urea accelerator such as phenyldimethylurea, 3- (3,4-dichlorophenyl) -1,1, dimethylurea (DCMU) or an imidazole derivative is used as a curing accelerator. Urea compounds, imidazoles and amines are preferably used.

硬化促進剤の添加量は、エポキシ樹脂(I)100質量部に対して1〜15質量部であるのが好ましい。また、添加量は2〜10質量部であるのがさらに好ましい。硬化促進剤の添加量が1質量部以上であれば、硬化促進剤の機能が充分に得られる。また、硬化促進剤の添加量が15質量部以下であれば、20℃での貯蔵安定性が低下するおそれがほとんどない。   It is preferable that the addition amount of a hardening accelerator is 1-15 mass parts with respect to 100 mass parts of epoxy resins (I). Further, the addition amount is more preferably 2 to 10 parts by mass. If the addition amount of a hardening accelerator is 1 mass part or more, the function of a hardening accelerator will be fully acquired. Moreover, if the addition amount of a hardening accelerator is 15 mass parts or less, there is almost no possibility that the storage stability in 20 degreeC will fall.

また、本発明の樹脂組成物は、機能性を付与のために添加剤を含んでいてもよい。
添加剤としては、例えば、樹脂粘度やプリプレグの取り扱い性を制御する目的で熱可塑性樹脂を用いることができる。
熱可塑性樹脂としては、エポキシ樹脂(I)との相溶性、繊維強化複合材料の物性に悪影響を及ぼさない等の理由から、ポリビニルフォルマール樹脂、ポリビニルブチラール樹脂、ポリエチレンオキサイド樹脂、ポリメチルメタアクリレート樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、フェノキシ樹脂等が好ましい。これらの熱可塑性樹脂は2種以上を混合して用いてもよい。
Moreover, the resin composition of this invention may contain the additive for providing functionality.
As the additive, for example, a thermoplastic resin can be used for the purpose of controlling the resin viscosity and the handling property of the prepreg.
The thermoplastic resin is compatible with the epoxy resin (I) and does not adversely affect the physical properties of the fiber reinforced composite material. For this reason, polyvinyl formal resin, polyvinyl butyral resin, polyethylene oxide resin, polymethyl methacrylate resin Polyamide resin, polyester resin, polyethersulfone resin, polysulfone resin, polyetherimide resin, polyimide resin, phenoxy resin and the like are preferable. Two or more of these thermoplastic resins may be mixed and used.

また、添加剤としてゴム粒子、可溶性のゴム、コア−シェル構造のゴム等を含むことができる。これらは、少なくとも母胎樹脂に一部溶解しているか、溶解せずに粒子状で存在する。本発明では品質の良好なプリプレグを得るために、粒子が存在する場合には、実質的に粒子径が約50μm以上のものが含まれないように、予め粒子を粉砕しておくか溶解させておくことが好ましい。   Further, the additive may include rubber particles, soluble rubber, rubber having a core-shell structure, and the like. These are at least partially dissolved in the mother resin, or exist in the form of particles without being dissolved. In the present invention, in order to obtain a prepreg of good quality, if particles are present, the particles are pulverized or dissolved in advance so that particles having a particle diameter of about 50 μm or more are not substantially included. It is preferable to keep it.

また、難燃性を付与するためにシリカ、水酸化アルミニウム、水酸化マグネシウム、アルミナ、タルク、酸化マグネシウム等の無機充填剤や、アンチモン化合物等を用いてもよい。これらは、2種類以上を混合して使用してもよい。また、樹脂の流動性を制御する目的で、微粒子のシリカ粒子、湿潤剤や脱法剤としての界面活性剤やシリコン系有機金属化合物等も使用できる。
添加剤の使用量は、樹脂組成物の全量に対して20質量%以下であるのが好ましい。添加剤が20質量%以下であれば、得られる樹脂組成物の耐衝撃性を損ねるおそれがほとんどない。
In order to impart flame retardancy, inorganic fillers such as silica, aluminum hydroxide, magnesium hydroxide, alumina, talc, and magnesium oxide, antimony compounds, and the like may be used. You may use these in mixture of 2 or more types. In addition, for the purpose of controlling the fluidity of the resin, fine silica particles, a surfactant as a wetting agent or a desiccant, a silicon-based organometallic compound, or the like can be used.
The amount of the additive used is preferably 20% by mass or less based on the total amount of the resin composition. If the additive is 20% by mass or less, there is almost no risk of impairing the impact resistance of the resulting resin composition.

本発明の樹脂組成物は、オキサゾリドン環を有するエポキシ樹脂(A)を含むエポキシ樹脂(I)とポリアミド樹脂(II)との相乗効果により、優れた耐衝撃性(靭性)を有する、樹脂硬化物(硬化させた樹脂組成物)及び繊維強化複合材料が製造できる。これらのうち、いずれかの成分を含まない場合は優れた耐衝撃性(靭性)が得られない。   The resin composition of the present invention is a cured resin product having excellent impact resistance (toughness) due to the synergistic effect of the epoxy resin (I) containing the epoxy resin (A) having an oxazolidone ring and the polyamide resin (II). (Hardened resin composition) and fiber reinforced composite material can be manufactured. Among these, when any component is not included, excellent impact resistance (toughness) cannot be obtained.

優れた耐衝撃性を有する繊維強化複合材料を得るには、硬化させた後の樹脂組成物の硬化板での破壊靱性値が400J/m以上であることが必要であるが、従来の高靱性型の樹脂組成物でも破壊靱性値が300J/m前後である。
一方、本発明の樹脂組成物は該破壊靱性値が400J/m以上であり、優れた耐衝撃性を有する繊維強化複合材料を製造できる。
In order to obtain a fiber-reinforced composite material having excellent impact resistance, it is necessary that the fracture toughness value of the cured resin composition on the cured plate is 400 J / m 2 or more. Even toughness type resin compositions have fracture toughness values of around 300 J / m 2 .
On the other hand, the resin composition of the present invention has a fracture toughness value of 400 J / m 2 or more, and can produce a fiber-reinforced composite material having excellent impact resistance.

本発明のプリプレグは、以上説明した樹脂組成物を強化繊維に含浸させたものである。
強化繊維としては、特に制限はなく、例えば、比強度から炭素繊維、ポリアラミド繊維、ポリエチレン繊維等の有機繊維、ボロン繊維、スチール繊維、ガラス繊維等が挙げられ、比強度及び比弾性の点から炭素繊維であるのが好ましい。
強化繊維の形態や配列についても特に制限はなく、例えば、数千本〜数万本フィラメントの単位であるトウ1本、又はさらにそのトウを数本まとめた形状のいわゆるトウプリプレグのような形態、トウを一方向に並べて引き揃えた一方向テーププリプレグのような形態、クロス(織物)のような形態、マット、ニット、スリーブ等の形態のものを使用できる。
The prepreg of the present invention is obtained by impregnating reinforcing fibers with the resin composition described above.
The reinforcing fiber is not particularly limited, and examples thereof include organic fibers such as carbon fiber, polyaramid fiber, and polyethylene fiber, boron fiber, steel fiber, glass fiber, and the like in terms of specific strength, and carbon in terms of specific strength and specific elasticity. It is preferably a fiber.
There is no particular limitation on the form and arrangement of the reinforcing fibers, for example, one tow which is a unit of several thousand to several tens of thousands of filaments, or a form like a so-called tow prepreg having a shape obtained by collecting several tows, Forms such as a unidirectional tape prepreg in which tows are arranged and aligned in one direction, forms such as a cloth (woven fabric), mats, knits, and sleeves can be used.

プリプレグの製造方法としては、従来公知の方法を使用でき、例えば、表面が離型処理された工程紙(離型紙)の離型層表面に樹脂組成物を数十μmの厚みで塗工し、その樹脂塗工面に強化繊維を引き揃え、加熱しながら押圧することによって強化繊維に樹脂組成物を含浸させる方法が挙げられる。   As a method for producing a prepreg, a conventionally known method can be used. For example, a resin composition is applied to the surface of a release layer of a process paper (release paper) whose surface has been release-treated, with a thickness of several tens of μm, A method of impregnating the reinforcing fiber with the resin composition by arranging the reinforcing fiber on the resin coated surface and pressing it while heating can be mentioned.

尚、本発明の繊維強化複合材料用エポキシ樹脂組成物は、プリプレグ用として特に好適であるが、その他にも、例えばコンパウンド用途等のマトリックス樹脂としても好適に使用できる。   In addition, although the epoxy resin composition for fiber reinforced composite materials of the present invention is particularly suitable for prepreg, it can also be suitably used as a matrix resin for compound applications, for example.

以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によって限定されない。
実施例中の化合物の略号、及び試験方法は以下に示す通りである。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
The abbreviations and test methods of the compounds in the examples are as follows.

エポキシ樹脂(A)
AER4152:オキサゾリドン環を有するエポキシ樹脂(旭化成ケミカルズ(株)製)
Epoxy resin (A)
AER4152: Epoxy resin having an oxazolidone ring (manufactured by Asahi Kasei Chemicals Corporation)

他のエポキシ樹脂(B)
jER828:ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン(株)製)
jER807:ビスフェノールF型液状エポキシ樹脂(ジャパンエポキシレジン(株)製)
jER1001:ビスフェノールA型固形エポキシ樹脂(ジャパンエポキシレジン(株)製)
jER1002:ビスフェノールA型固形エポキシ樹脂(ジャパンエポキシレジン(株)製)
BPA328:アクリルゴム変性ビスフェノールA型エポキシ樹脂(日本触媒社製)
Other epoxy resin (B)
jER828: Bisphenol A type liquid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
jER807: Bisphenol F type liquid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
jER1001: Bisphenol A type solid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
jER1002: bisphenol A type solid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
BPA328: Acrylic rubber modified bisphenol A type epoxy resin (manufactured by Nippon Shokubai Co., Ltd.)

ポリアミド樹脂(II)
TPAE32:ポリエーテルエステルアミド共重合体(富士化成工業(株)製)
Polyamide resin (II)
TPAE32: Polyetheresteramide copolymer (Fuji Kasei Kogyo Co., Ltd.)

硬化剤(III)
DICY:ジシアンジアミド(製品名:Dicy 7、ジャパンエポキシレジン(株)製)
Curing agent (III)
DICY: Dicyandiamide (Product name: Dicy 7, Japan Epoxy Resin Co., Ltd.)

硬化促進剤
DCMU:3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素(製品名:DCMU99、保土谷化学社製)
熱可塑性樹脂
PVF:ポリビニルフォルマール(製品名:ビニレックE、チッソ(株)製)
Curing accelerator DCMU: 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Product name: DCMU99, manufactured by Hodogaya Chemical Co., Ltd.)
Thermoplastic resin PVF: Polyvinyl formal (Product name: Vinylec E, manufactured by Chisso Corporation)

樹脂組成物の評価は、樹脂組成物の工程通過性の評価、及び硬化させた樹脂組成物(樹脂硬化物)の耐熱性、破壊靭性値(GIC)、力学的特性として3点曲げ強度を測定することにより行った。
[耐熱性(G’−Tg)]
硬化剤(III)を含有する樹脂組成物を130℃で、1.5時間の硬化条件にて成形することによって、樹脂硬化物として厚さ2mmの硬化樹脂板を得た後、更にこれを60mm長×12mm幅にカットして試験片を準備した。その後、レオメトリック・ファー・イースト(株)製の動的粘弾性測定装置(RDA−700)を使用し、試験片を5℃/STEPで昇温しながら、該試験片に10ラジアン/秒の速度で剪断力を加え、前記試験片の貯蔵剛性率の温度依存性を測定した。この貯蔵剛性率の温度依存性曲線のガラス状態領域での接線と転移領域での接線との交点をガラス転移温度として求めた。
The resin composition is evaluated by evaluating the processability of the resin composition, and measuring the three-point bending strength as the heat resistance, fracture toughness value (GIC), and mechanical properties of the cured resin composition (resin cured product). It was done by doing.
[Heat resistance (G'-Tg)]
A resin composition containing the curing agent (III) is molded at 130 ° C. under curing conditions for 1.5 hours to obtain a cured resin plate having a thickness of 2 mm as a resin cured product, and then this is further reduced to 60 mm. A test piece was prepared by cutting into a length × 12 mm width. Then, using a dynamic viscoelasticity measuring device (RDA-700) manufactured by Rheometric Far East Co., Ltd., the test piece was heated at 5 ° C./STEP, and 10 radians / second was applied to the test piece. A shear force was applied at a speed, and the temperature dependence of the storage rigidity of the test piece was measured. The intersection of the tangent in the glass state region and the tangent in the transition region of the temperature dependence curve of the storage rigidity was determined as the glass transition temperature.

[破壊靭性値(GIC)]
得られた厚さ3mmの硬化樹脂板を用いて、ASTM D5045準拠 SENB法に準拠して樹脂の破壊靭性値(GIC)を評価した。
[Fracture toughness value (GIC)]
Using the obtained cured resin plate having a thickness of 3 mm, the fracture toughness value (GIC) of the resin was evaluated in accordance with ASTM D5045-compliant SENB method.

[3点曲げ強度]
得られた厚さ2mmの硬化樹脂板を用いて、JIS K6911に準拠して曲げ強度、弾性率、伸度を評価した。
[3-point bending strength]
Using the obtained cured resin plate having a thickness of 2 mm, bending strength, elastic modulus, and elongation were evaluated in accordance with JIS K6911.

[工程通過性]
シリコン系離型剤を塗布した離型紙上に、60℃に加温した樹脂組成物を50g載せた。ついで、60℃に加熱された簡易コーターを用い、前記樹脂組成物から膜厚0.04mmの樹脂フィルムが製造できるかを評価した。5m/分で膜厚が0.04mmの樹脂フィルムが製造できる場合に工程通過性が良好であると判断した。
[Process passability]
50 g of a resin composition heated to 60 ° C. was placed on a release paper coated with a silicon release agent. Next, using a simple coater heated to 60 ° C., it was evaluated whether a resin film having a thickness of 0.04 mm could be produced from the resin composition. When a resin film having a thickness of 0.04 mm can be produced at 5 m / min, it was judged that the process passability was good.

[実施例1]
表1に示す組成で樹脂組成物を調製した。
AER415(50g)、jER828(100g)、jER1001(50g)、及びTPAE2(5.6g)をフラスコに順次投入後、180℃に調温したフラスコで均一になるまで溶解した。その後、50℃〜60℃に冷却した後、DICY(10.8g)とDCMU(7.2g)とを投入し、均一になるまで撹拌混合して樹脂組成物を得た。ついで、フラスコ内部を減圧ポンプで減圧することにより樹脂組成物中の空気を脱泡してから、シリコン系の離型剤を用いて離型処理した2枚のガラス板間に挟み、130℃で、1.5時間加熱することで樹脂組成物を硬化させ、硬化樹脂物である硬化樹脂板を得た。ただし、樹脂組成物を挟み込む際に、スペーサーを入れることで、厚さ2mmと厚さ3mmの硬化樹脂板を得た。
[Example 1]
Resin compositions were prepared with the compositions shown in Table 1.
AER415 2 (50 g), jER828 (100 g), jER1001 (50 g), and TPAE 3 2 (5.6 g) were sequentially added to the flask, and then dissolved in a flask adjusted to 180 ° C. until uniform. Then, after cooling to 50 ° C. to 60 ° C., DICY (10.8 g) and DCMU (7.2 g) were added, and stirred and mixed until uniform to obtain a resin composition. Next, the air in the resin composition is degassed by reducing the pressure inside the flask with a vacuum pump, and then sandwiched between two glass plates that have been subjected to a release treatment using a silicon-based release agent. The resin composition was cured by heating for 1.5 hours to obtain a cured resin plate that was a cured resin product. However, when sandwiching the resin composition, a cured resin plate having a thickness of 2 mm and a thickness of 3 mm was obtained by inserting a spacer.

[実施例2〜7]
用いる樹脂、硬化剤等の種類及び組成を表1に示すように変更した以外は、実施例1と同様にして樹脂組成物を調製し、硬化樹脂板を得た。
[Examples 2 to 7]
A resin composition was prepared in the same manner as in Example 1 except that the type and composition of the resin and curing agent used were changed as shown in Table 1, and a cured resin plate was obtained.

Figure 0005252869
Figure 0005252869

[比較例1〜4]
用いる樹脂、硬化剤等の種類及び組成を表2に示すように変更した以外は、実施例1と同様にして樹脂組成物を調製し、硬化樹脂板を得た。
また、実施例1〜7の評価結果を表3、比較例1〜4の評価結果を表4に示す。
[Comparative Examples 1-4]
A resin composition was prepared in the same manner as in Example 1 except that the type and composition of the resin and curing agent used were changed as shown in Table 2, and a cured resin plate was obtained.
Moreover, the evaluation result of Examples 1-7 is shown in Table 3, and the evaluation result of Comparative Examples 1-4 is shown in Table 4.

Figure 0005252869
Figure 0005252869

Figure 0005252869
Figure 0005252869

Figure 0005252869
Figure 0005252869

実施例1の硬化樹脂板は、115℃を超える優れた耐熱性を維持しながら、400J/mを超える高い破壊靭性値を示した。また、3点曲げ強度が10MPaを超える高い強度であり、工程通過性も良好であった。この結果より、力学的特性及び耐衝撃性(靭性)に優れた樹脂硬化物が得られ、かつ工程通過性の高い樹脂組成物であることが確認された。
同様の結果は、実施例2〜7でも得られた。
The cured resin plate of Example 1 exhibited a high fracture toughness value exceeding 400 J / m 2 while maintaining excellent heat resistance exceeding 115 ° C. Further, the three-point bending strength was high strength exceeding 10 MPa, and the process passability was also good. From these results, it was confirmed that a cured resin product having excellent mechanical properties and impact resistance (toughness) was obtained, and that the resin composition had high process passability.
Similar results were obtained in Examples 2-7.

一方、比較例1の硬化樹脂板は、3点曲げ強度が13MPaと高い値を示したものの、破壊靭性値が300J/mと低い値であり、耐衝撃性が低かった。 On the other hand, the cured resin plate of Comparative Example 1 had a high three-point bending strength of 13 MPa, but had a low fracture toughness value of 300 J / m 2 and a low impact resistance.

比較例2の硬化樹脂板は、3点曲げ強度、破壊靭性値等は優れているものの、エポキシ樹脂(I)に含まれるエポキシ樹脂(A)の含有量が多いため、樹脂組成物の粘度が高く、所定の条件では樹脂フィルムを製造できなかった。   Although the cured resin plate of Comparative Example 2 has excellent three-point bending strength, fracture toughness value, etc., since the content of the epoxy resin (A) contained in the epoxy resin (I) is large, the viscosity of the resin composition is high. The resin film could not be produced under high conditions.

比較例3の硬化樹脂板は、3点曲げ強度は12MPaと高い値を示したものの、破壊靭性値が232J/mと非常に低い値であり、耐衝撃性が低かった。 The cured resin plate of Comparative Example 3 had a high three-point bending strength of 12 MPa, but had a very low fracture toughness value of 232 J / m 2 and a low impact resistance.

比較例4の硬化樹脂板は、ポリアミド樹脂(II)の含有量が多く、樹脂組成物の粘度が高くなり、60℃で添加したDICY及びDCMUが均一に混合できなかった。そのため、硬化樹脂板についての評価ができなかった。   The cured resin plate of Comparative Example 4 contained a large amount of polyamide resin (II), the viscosity of the resin composition was high, and DICY and DCMU added at 60 ° C. could not be mixed uniformly. Therefore, evaluation about a cured resin board was not able to be performed.

本発明の繊維強化複合材料用エポキシ樹脂組成物及びプリプレグによれば、優れた力学的特性と耐衝撃性を兼ね備えた繊維強化複合材料が製造できる。従って、スポーツ分野を中心とする様々な分野において有用である。   According to the epoxy resin composition for fiber-reinforced composite material and the prepreg of the present invention, a fiber-reinforced composite material having both excellent mechanical properties and impact resistance can be produced. Therefore, it is useful in various fields centering on the sports field.

Claims (3)

エポキシ樹脂(I)と、180℃、6時間で加熱溶解した際に前記エポキシ樹脂(I)中に1質量%以上溶解するポリアミド樹脂(II)と、前記エポキシ樹脂(I)を100〜160℃で硬化する硬化剤(III)とを含有する樹脂組成物であって、
前記エポキシ樹脂(I)(100質量部)は、下記式(1)で示されるオキサゾリドン環を有するエポキシ樹脂(A)5〜50質量部と、他のエポキシ樹脂(B)95〜50質量部とからなり、
前記ポリアミド樹脂(II)は、重合脂肪酸から誘導されるポリアミド類と、ポリオキシアルキレングリコール及びジカルボン酸から得られるポリエーテルエステル類との共重合により得られるポリエーテルエステルアミドブロック共重合体であり、
前記ポリアミド樹脂(II)の含有量は、前記エポキシ樹脂(I)100質量部に対して1.5〜20質量部であり、
前記硬化剤(III)の含有量は、前記エポキシ樹脂(I)100質量部に対して1.5〜20質量部である繊維強化複合材料用エポキシ樹脂組成物。
Figure 0005252869
(式(1)中、R、Rはそれぞれ独立に水素原子又はメチル基、X〜Xはそれぞれ独立にハロゲン原子、水素原子、又は炭素数1〜4のアルキル基、R〜Rはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。また、Qは下記式(2)又は(3)である。)
Figure 0005252869
(式(2)中のZ〜Zはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。)
Figure 0005252869
(式(3)中のT〜Tはそれぞれ独立に水素原子又は炭素数1〜4のアルキル基である。また、Qは単結合、−CH−、−C(CH−、−SO−、−SO−、−S−、又は−O−である。
The epoxy resin (I), the polyamide resin (II) that dissolves 1% by mass or more in the epoxy resin (I) when heated and dissolved at 180 ° C. for 6 hours, and the epoxy resin (I) at 100 to 160 ° C. A resin composition containing a curing agent (III) that cures at
The epoxy resin (I) (100 parts by mass) includes 5 to 50 parts by mass of an epoxy resin (A) having an oxazolidone ring represented by the following formula (1), and 95 to 50 parts by mass of another epoxy resin (B). Consists of
The polyamide resin (II) has a polyamides derived from polymerized fatty acid, a polyether ester amide block copolymer obtained by copolymerization of the polyether esters derived from polyoxyalkylene glycol and dicarboxylic acids,
Content of the said polyamide resin (II) is 1.5-20 mass parts with respect to 100 mass parts of said epoxy resins (I),
Content of the said hardening | curing agent (III) is an epoxy resin composition for fiber reinforced composite materials which is 1.5-20 mass parts with respect to 100 mass parts of said epoxy resins (I).
Figure 0005252869
(In the formula (1), R 1, R 2 each independently represent a hydrogen atom or a methyl group, X 1 to X 4 each independently represents a halogen atom, a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms, R 3 ~ R 6 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Q 1 is the following formula (2) or (3).
Figure 0005252869
(Z 1 to Z 4 in the formula (2) are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
Figure 0005252869
(T 1 to T 8 in Formula (3) are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Q 2 is a single bond, —CH 2 —, —C (CH 3 ) 2. -, - SO 2 -, - SO -, - S-, or -O- and is).
前記硬化剤(III)がジシアンジアミドである、請求項1に記載の繊維強化複合材料用エポキシ樹脂組成物。 The epoxy resin composition for fiber-reinforced composite materials according to claim 1, wherein the curing agent (III) is dicyandiamide. 請求項1又は2に記載の繊維強化複合材料用エポキシ樹脂組成物が強化繊維に含浸されたプリプレグ。 Prepregs for fiber-reinforced composite materials epoxy resin composition according impregnated into reinforcing fibers to claim 1 or 2.
JP2007247230A 2007-09-25 2007-09-25 Epoxy resin composition for fiber reinforced composite material and prepreg Active JP5252869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247230A JP5252869B2 (en) 2007-09-25 2007-09-25 Epoxy resin composition for fiber reinforced composite material and prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247230A JP5252869B2 (en) 2007-09-25 2007-09-25 Epoxy resin composition for fiber reinforced composite material and prepreg

Publications (3)

Publication Number Publication Date
JP2009079073A JP2009079073A (en) 2009-04-16
JP2009079073A5 JP2009079073A5 (en) 2011-09-22
JP5252869B2 true JP5252869B2 (en) 2013-07-31

Family

ID=40654089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247230A Active JP5252869B2 (en) 2007-09-25 2007-09-25 Epoxy resin composition for fiber reinforced composite material and prepreg

Country Status (1)

Country Link
JP (1) JP5252869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9856354B2 (en) * 2008-08-28 2018-01-02 Mitsubishi Chemical Corporation Epoxy resin composition and prepreg using the same, fiber-reinforced composite resin tubular body manufactured from the prepreg and manufacturing method therefor, and fiber-reinforced composite resin molded body
TWI477549B (en) * 2009-02-06 2015-03-21 Ajinomoto Kk Resin composition
BR112014031472A2 (en) * 2012-06-26 2017-06-27 Dow Global Technologies Llc insulating composite for power transmission and distribution and pultrusion process to prepare insulating composite
KR101805677B1 (en) * 2015-07-27 2017-12-07 주식회사 이지컴퍼지트 Epoxy resin composition for aramid-fiber-reinforced composite material, prepreg, and fiber-reinforced composite material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960704977A (en) * 1994-07-18 1996-10-09 마에다 가쯔노스께 An Epoxy Resin Composition, a Prepreg and a Fiber Reinforced Composite Material
JPH10130499A (en) * 1996-10-25 1998-05-19 Fuji Kasei Kogyo Kk Polyetherester amide resin composition
JPH10287808A (en) * 1997-04-11 1998-10-27 Fuji Kasei Kogyo Kk Polyether ester amide resin composition
JP2003201388A (en) * 2002-01-08 2003-07-18 Toray Ind Inc Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP2003301029A (en) * 2002-04-10 2003-10-21 Toray Ind Inc Epoxy resin composition and prepreg
JP2006104403A (en) * 2004-10-08 2006-04-20 Toray Ind Inc Epoxy resin composition
JP4933791B2 (en) * 2006-02-14 2012-05-16 三菱レイヨン株式会社 Epoxy resin composition

Also Published As

Publication number Publication date
JP2009079073A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP6497370B2 (en) Epoxy resin composition, and film, prepreg and fiber reinforced plastic using the same
US9574081B2 (en) Epoxy-resin composition, and film, prepreg and fiber-reinforced plastic using the same
JP5761366B2 (en) Epoxy resin composition, and film, prepreg, and fiber reinforced plastic using the same
CN104254566B (en) Benzoxazine colophony composition and fibre reinforced composites
KR100623457B1 (en) Resin Compositions, Prepregs and Fiber Reinforced Composites for Fiber Reinforced Composites
JP6516066B2 (en) Prepreg and carbon fiber reinforced composite material
JP6787130B2 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
KR101255897B1 (en) Epoxy resin composition and prepreg using same, fiber-reinforced composite resin tubular body manufactured from the prepreg and manufacturing method therefor, and fiber-reinforced composite resin molded body
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP6156569B2 (en) Epoxy resin composition for carbon fiber reinforced plastic, and film, prepreg and carbon fiber reinforced plastic using the same
JP7063021B2 (en) Prepreg and carbon fiber reinforced composites
JP2017226745A (en) Epoxy resin composition, and film, prepreg and fiber-reinforced plastic using the same
JP5252869B2 (en) Epoxy resin composition for fiber reinforced composite material and prepreg
JP4880992B2 (en) Epoxy resin composition and composite intermediate
JP5668329B2 (en) Epoxy resin composition and fiber reinforced composite material using the same
JP4933791B2 (en) Epoxy resin composition
JP5057714B2 (en) Epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material intermediate
JP2011016985A5 (en)
JP5495285B2 (en) Prepreg and its manufacturing method
JP2004027043A (en) Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material
JPS6236421A (en) Epoxy resin composition for prepreg
JP5078208B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
JPH11279261A (en) Heat-resistant epoxy resin composition for fiber-reinforced composite material
JP6844740B2 (en) Prepreg and fiber reinforced composite materials, and their manufacturing methods
JPH03203934A (en) Epoxy resin prepreg

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R151 Written notification of patent or utility model registration

Ref document number: 5252869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250