JPH07118089A - Recharging device and recharging method for polycrystal - Google Patents

Recharging device and recharging method for polycrystal

Info

Publication number
JPH07118089A
JPH07118089A JP28762293A JP28762293A JPH07118089A JP H07118089 A JPH07118089 A JP H07118089A JP 28762293 A JP28762293 A JP 28762293A JP 28762293 A JP28762293 A JP 28762293A JP H07118089 A JPH07118089 A JP H07118089A
Authority
JP
Japan
Prior art keywords
raw material
supply pipe
gas
polycrystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28762293A
Other languages
Japanese (ja)
Other versions
JP3085567B2 (en
Inventor
Shinji Higo
信司 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP05287622A priority Critical patent/JP3085567B2/en
Publication of JPH07118089A publication Critical patent/JPH07118089A/en
Application granted granted Critical
Publication of JP3085567B2 publication Critical patent/JP3085567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To prevent the phenomenon that amorphous SiO and SiO2 are formed by cooling of the gaseous SiO in a melt by recharged granular silicon polycrystals and are taken into the melt to induce the collapse of the single crystal. CONSTITUTION:A raw material supply pipe 6 for supplying the granular polycrystals into a crucible 3 is formed as double pipes and gaseous hydrogen or an inert gas contg. the gaseous hydrogen is supplied from the gas supply pipe 8 placed on the outer side. This gas is released from this raw material supply pipe 6 and is blown to raw material polycrystals 10 floating on the melt surface. The gaseous SiO generated in the melt 11 is reduced by the gaseous hydrogen and is cracked to silicon and water and, therefore, the formation of the amorphous SiO and SiO2 does not arise. The gas is kept supplied during the time after the start of recharging of the raw material polycrystals before the completion of the dissolution. Then, the generation of the collapse of the single crystal at the time of applying the recharging method is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多結晶のリチャージ装
置およびリチャージ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline recharging device and method.

【0002】[0002]

【従来の技術】半導体素子の基板には主として高純度シ
リコンが用いられているが、この高純度シリコンの製造
方法の一つとして、るつぼ内の原料融液から円柱状の単
結晶を引き上げるチョクラルスキー法(以下CZ法とい
う)が用いられている。CZ法においては、るつぼ内に
原料多結晶を充填し、前記るつぼの外周を取り巻くヒー
タによって原料を加熱溶解した上、シードチャックに取
り付けた種子結晶を融液に浸漬し、シードチャックおよ
びるつぼを同方向または逆方向に回転しつつシードチャ
ックを引き上げて、単結晶を成長させる。
2. Description of the Related Art High-purity silicon is mainly used as a substrate for semiconductor devices. One of the methods for producing this high-purity silicon is to use a Czochral for pulling a cylindrical single crystal from a raw material melt in a crucible. The ski method (hereinafter referred to as the CZ method) is used. In the CZ method, a raw material polycrystal is filled in a crucible, the raw material is heated and melted by a heater surrounding the outer periphery of the crucible, and then the seed crystal attached to the seed chuck is immersed in a melt to make the seed chuck and the crucible the same. The seed chuck is pulled up while rotating in the opposite direction or in the opposite direction to grow a single crystal.

【0003】近年は、半導体ウェーハの直径が大型化
し、6インチを超える大径ウェーハが要求されるように
なり、単結晶の直径も6インチ以上のものが主流になり
つつある。このため単結晶製造装置も大型化し、1サイ
クル当たりの処理量も増大する傾向にある。しかし、単
結晶製造装置の大型化に伴って単結晶成長工程における
所要時間が長くなるとともに、その前後工程、たとえば
原料多結晶の溶解所要時間や、成長した単結晶を炉外に
取り出した後、るつぼ、ヒータ等が清掃可能な温度に下
がるまでの冷却所要時間等も従来に比べて長くなってい
る。これらは単結晶の生産性を低下させる要因となって
いる。
In recent years, the diameter of semiconductor wafers has increased, and large-diameter wafers exceeding 6 inches have been demanded. Single crystal diameters of 6 inches or more are becoming the mainstream. For this reason, the single-crystal manufacturing apparatus also tends to be large-sized, and the throughput per cycle tends to increase. However, as the size of the single crystal manufacturing apparatus becomes larger, the time required for the single crystal growth step becomes longer, and the steps before and after that, for example, the time required for melting the raw material polycrystal and after taking out the grown single crystal out of the furnace, The time required for cooling until the temperature at which the crucible, heater, etc., can be cleaned becomes longer than before. These are factors that reduce the productivity of single crystals.

【0004】単結晶の生産性低下を解決する手段の一つ
として、リチャージ法が知られている。これは、融液か
ら単結晶を引き上げた後、原料多結晶を再度チャージし
て溶解し、再度単結晶を成長させる工程を数回繰り返す
方法で、炉内部品の冷却時間やチャンバ清掃時間等を数
バッチ分省略することができる。また、通常は単結晶1
本分の引き上げごとに1個必要とする石英るつぼも、数
本の単結晶に対して1個の割合となり、製造コストが低
減する。
The recharge method is known as one of means for solving the decrease in the productivity of single crystals. This is a method of pulling a single crystal out of the melt, recharging and melting the raw material polycrystal, and then growing the single crystal again several times. It can be omitted for several batches. Also, usually single crystal 1
The number of quartz crucibles required for each pulling of one is one for several single crystals, and the manufacturing cost is reduced.

【0005】[0005]

【発明が解決しようとする課題】リチャージのため粒状
の原料多結晶を融液に供給すると、前記粒状多結晶は融
液面に浮遊する状態となる。融液内に発生したSiOガ
スは前記粒状多結晶によって冷却され、SiOアモルフ
ァスが形成される。そして、粒状多結晶の溶解の進行に
つれて前記SiOアモルファスが徐々に融液内に取り込
まれ、溶解せずに残存する。また、前記SiOアモルフ
ァスの一部はSiO2 となり、白色透明の浮遊物として
融液表面に残存する。前記SiOアモルファスやSiO
2 のパーティクルは、単結晶引き上げの際に単結晶崩れ
を引き起こす原因となる。
When granular raw material polycrystals are supplied to the melt for recharging, the granular polycrystals float on the surface of the melt. The SiO gas generated in the melt is cooled by the granular polycrystal to form SiO amorphous. Then, as the dissolution of the granular polycrystal progresses, the SiO amorphous is gradually taken into the melt and remains without being dissolved. Further, a part of the SiO amorphous becomes SiO 2 and remains on the surface of the melt as a white transparent suspended matter. SiO amorphous or SiO
The particles of No. 2 cause the collapse of the single crystal when pulling the single crystal.

【0006】単結晶の成長に当たり、不活性ガスに少量
の水素ガスを添加して炉内に導入し、融液に含まれる酸
素その他の不純物元素と水素とを結合させ、水素化合物
として雰囲気ガス中に放出させることによって結晶欠陥
を減少させる単結晶の成長方法が、特開昭61−178
495で提示されている。しかしこの方法ではリチャー
ジ中に発生するSiOアモルファスを効果的に排除する
ことはできない。また、原料多結晶が溶解して融液とな
るまでの間、炉内に水素ガスを流入させる単結晶成長方
法が特開平2−164788で提示されている。この場
合、カーボンヒータに含まれる不純物を還元させるには
有効であるが、水素ガスが融液面上に効果的に供給され
ないので、SiOアモルファスを排除することはできな
い。
In the growth of a single crystal, a small amount of hydrogen gas is added to an inert gas and introduced into the furnace to combine oxygen and other impurity elements contained in the melt with hydrogen to form a hydrogen compound in the atmosphere gas. A method for growing a single crystal, in which crystal defects are reduced by releasing it into the crystal, is disclosed in JP-A-61-178.
495 is presented. However, this method cannot effectively eliminate SiO amorphous generated during recharging. Further, Japanese Patent Laid-Open No. 2-164788 discloses a single crystal growth method in which hydrogen gas is allowed to flow into a furnace until the raw material polycrystal is melted to form a melt. In this case, it is effective to reduce the impurities contained in the carbon heater, but since hydrogen gas is not effectively supplied onto the melt surface, SiO amorphous cannot be excluded.

【0007】特開平3−115185による単結晶の成
長方法はH2 分圧が0.5気圧以上のH2 雰囲気中で微
小欠陥密度の小さいシリコン単結晶を成長させるもので
あるが、この場合も水素ガスは融液面上に効果的に供給
されない。概して、水素ガス雰囲気中で行う粒状多結晶
の溶解においては、融液から発生したSiOアモルファ
スを効果的に排除することはできない。従って、水素ガ
スを融液面に強制的に供給する必要がある。
[0007] While growing method of a single crystal according to JP-A 3-115185 are those H 2 partial pressure is growing smaller silicon single crystal having very small defect density in an H 2 atmosphere for 0.5 atm, again Hydrogen gas is not effectively supplied on the melt surface. In general, in the dissolution of granular polycrystals performed in a hydrogen gas atmosphere, SiO amorphous generated from the melt cannot be effectively removed. Therefore, it is necessary to forcibly supply hydrogen gas to the melt surface.

【0008】特開平4−108685による単結晶引き
上げ装置は、融液中にガス供給パイプを浸漬し、このパ
イプから融液内に不活性ガスを供給して融液を上下方向
に攪拌することによって融液の組成を均一に保持するも
のである。しかし融液の攪拌は、融液面上に浮遊するS
iOアモルファスの排除に好ましくない影響を与える。
また、特開平4−224191では、るつぼ内で融解す
る原料多結晶に加熱した気体を吹きつけて原料多結晶の
昇温を促進し、融液生成後は融液中に前記気体を吹き込
んで攪拌し、融液温度を均一化するとともに原料多結晶
の溶解所要時間を短縮する方法が提示されている。この
方法は粒状多結晶のリチャージに関するものではなく、
SiOアモルファスの排除には何ら効果がない。更に、
融液の攪拌は、SiOアモルファスの排除に悪影響を与
える。
The apparatus for pulling a single crystal according to Japanese Patent Laid-Open No. 4-108685 is prepared by immersing a gas supply pipe in a melt, supplying an inert gas into the melt from this pipe, and stirring the melt in the vertical direction. It holds the composition of the melt uniformly. However, the agitation of the melt causes S floating on the melt surface.
This has an unfavorable effect on the elimination of iO amorphous.
Further, in JP-A-4-224191, a heated gas is blown to a raw material polycrystal melted in a crucible to accelerate the temperature rise of the raw material polycrystal, and after the melt is generated, the gas is blown into the melt and stirred. However, a method of making the melt temperature uniform and shortening the time required for melting the raw material polycrystal has been proposed. This method is not about recharging granular polycrystals,
It has no effect on the elimination of SiO amorphous. Furthermore,
Agitation of the melt adversely affects the elimination of SiO amorphous.

【0009】従来、粒状多結晶のリチャージにおいて水
素ガスを供給する手段は提案されていない。本発明は、
融液内で発生したSiOガスがリチャージした原料多結
晶に触れて冷却されることによってSiOアモルファス
を形成することに着目し、前記SiOガスあるいはSi
Oアモルファスを効果的に排除し、単結晶崩れの発生を
防止することができるような多結晶のリチャージ装置お
よびリチャージ方法を提供することを目的としている。
Conventionally, no means has been proposed for supplying hydrogen gas in recharging a granular polycrystal. The present invention is
Focusing on the fact that the SiO gas generated in the melt touches the recharged raw material polycrystal to be cooled to form a SiO amorphous, the SiO gas or Si
An object of the present invention is to provide a polycrystal recharging device and a recharging method capable of effectively eliminating O-amorphous and preventing single crystal collapse.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
本発明に係る多結晶のリチャージ装置は、粒状の原料多
結晶をるつぼ内に供給する原料供給管と、この原料供給
管から放出されて融液面に浮遊する前記原料多結晶に水
素ガスもしくは水素ガスを含む不活性ガスを吹きつける
ガス供給管とを備える構成とし、このような構成におい
て、原料供給管の軸心に沿って、前記原料供給管を取り
巻くようにガス供給管を設けてもよく、原料供給管と、
ガス供給管とを同一の管で構成してもよい。
To achieve the above object, a polycrystal recharging device according to the present invention is provided with a raw material supply pipe for supplying granular raw material polycrystal into a crucible, and a raw material supply pipe for discharging the raw material polycrystal. The raw material polycrystal floating on the melt surface is provided with a gas supply pipe for blowing hydrogen gas or an inert gas containing hydrogen gas, and in such a configuration, along the axis of the raw material supply pipe, A gas supply pipe may be provided so as to surround the raw material supply pipe,
The gas supply pipe may be the same pipe.

【0011】また、本発明に係る多結晶のリチャージ方
法は、チョクラルスキー法を用いる半導体単結晶の製造
において、融液から単結晶を引き上げた後、炉外から粒
状の原料多結晶を原料供給管を介してるつぼ内に供給す
るに当たり、前記原料多結晶をリチャージする直前から
リチャージした原料多結晶の溶解が完了するまでの間、
水素ガスもしくは水素ガスを含む不活性ガスを前記原料
供給管から放出されて融液面に浮遊する原料多結晶に吹
きつけることを特徴としている。
Further, in the method of recharging a polycrystal according to the present invention, in manufacturing a semiconductor single crystal using the Czochralski method, after pulling a single crystal from a melt, a granular raw material polycrystal is fed from the outside of the furnace. When supplying into the crucible via a tube, from just before recharging the raw material polycrystal to completion of melting of the recharged raw material polycrystal,
It is characterized in that hydrogen gas or an inert gas containing hydrogen gas is discharged from the raw material supply pipe and sprayed onto the raw material polycrystal floating on the melt surface.

【0012】[0012]

【作用】上記構成によれば、粒状の原料多結晶をるつぼ
内に供給する原料供給管と、水素ガスもしくは水素ガス
を含む不活性ガスを吹きつけるガス供給管とを設置し、
原料多結晶をリチャージする直前からリチャージした原
料多結晶の溶解が完了するまでの間、融液面に浮遊する
前記原料多結晶に水素ガスもしくは水素ガスを含む不活
性ガスを吹きつけることにしたので、融液内に発生した
SiOガスは、 SiO+H2 →Si+H2O に示すように水素ガスによって還元され、シリコンと水
とに分解される。水は水蒸気として炉外に排出される。
ガス供給管の軸心に沿って前記ガス供給管の内側に原料
供給管を設けた場合、あるいは原料供給管とガス供給管
とを同一の管で構成した場合は、粒状の原料多結晶に強
制的かつ効果的に水素ガスを吹きつけることができるの
で、SiOガスは容易に分解される。
According to the above structure, the raw material supply pipe for supplying the granular raw material polycrystal into the crucible and the gas supply pipe for blowing the hydrogen gas or the inert gas containing the hydrogen gas are installed.
Since it was decided to blow hydrogen gas or an inert gas containing hydrogen gas to the raw material polycrystals floating on the melt surface from immediately before recharging the raw material polycrystals until the completion of melting of the recharged raw material polycrystals. The SiO gas generated in the melt is reduced by hydrogen gas as shown by SiO + H 2 → Si + H 2 O, and decomposed into silicon and water. Water is discharged outside the furnace as steam.
When a raw material supply pipe is provided inside the gas supply pipe along the axis of the gas supply pipe, or when the raw material supply pipe and the gas supply pipe are made of the same pipe, the granular raw material polycrystal is forced. Since the hydrogen gas can be blown effectively and effectively, the SiO gas is easily decomposed.

【0013】[0013]

【実施例】以下に本発明に係る多結晶のリチャージ装置
およびリチャージ方法の実施例について、図面を参照し
て説明する。図1は請求項2に基づくリチャージ装置を
装着した単結晶製造装置の模式的部分断面図で、チャン
バ1内にはるつぼ軸2によって回転ならびに昇降するる
つぼ3と、このるつぼ3を取り巻くヒータ4および保温
筒5が設置されている。チャンバ1の外側には図示しな
い原料供給装置が設けられ、この原料供給装置に取着さ
れた原料供給管6はチャンバ1を貫通して前記るつぼ3
の周縁部近傍上方に開口している。また、前記原料供給
管6を開閉するバルブ7の下方に、原料供給管6を取り
巻くようにガス供給管8が設けられ、ガス供給管8の上
端にはガス導入管9が接続されている。
Embodiments of the polycrystal recharging device and recharging method according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic partial sectional view of a single crystal manufacturing apparatus equipped with a recharging device according to a second aspect of the present invention. A crucible 3 that rotates and moves up and down by a crucible shaft 2 in a chamber 1, a heater 4 surrounding the crucible 3 and A heat insulating cylinder 5 is installed. A raw material supply device (not shown) is provided outside the chamber 1, and a raw material supply pipe 6 attached to the raw material supply device penetrates the chamber 1 and the crucible 3 is provided.
The upper part of the opening is open near the periphery of A gas supply pipe 8 is provided below the valve 7 that opens and closes the raw material supply pipe 6 so as to surround the raw material supply pipe 6, and a gas introduction pipe 9 is connected to the upper end of the gas supply pipe 8.

【0014】単結晶の引き上げが終了するとバルブ7を
開放し、原料供給管6を介して原料供給装置からるつぼ
3内に粒状の原料多結晶を供給する。このとき、ガス導
入管9からガス供給管8に水素ガスもしくは水素ガスを
含む不活性ガスを送り、前記ガスは下方に吹き出す。ガ
スの供給は、リチャージが終了して粒状の原料多結晶の
溶解が完了するまでの間、継続して行われる。原料供給
管6から放出された前記原料多結晶10は融液11の表
面に浮遊し、これに前記ガスが吹きつけられることによ
り、融液内に発生して上昇するSiOガスは還元されて
シリコンと水とに分解され、水は水蒸気として炉外に排
出される。水素ガスもしくは水素ガスを含む不活性ガス
の供給量は、融液11の表面に浮遊する原料多結晶10
の隅々まで十分に前記ガスが行きわたり、SiOガスあ
るいはSiOアモルファスを完全に還元できる程度の量
であることが望ましい。また、本装置は融液中に浸漬し
たガス供給管から融液内に水素ガスもしくは水素ガスを
含む不活性ガスを供給するものではないので、ガスによ
る融液の攪拌が起こらず、従って融液内でのSiOガス
発生を助長しない。
When the pulling of the single crystal is completed, the valve 7 is opened and the granular raw material polycrystal is supplied from the raw material supply device into the crucible 3 through the raw material supply pipe 6. At this time, hydrogen gas or an inert gas containing hydrogen gas is sent from the gas introduction pipe 9 to the gas supply pipe 8, and the gas is blown out downward. The gas is continuously supplied until the recharge is completed and the dissolution of the granular raw material polycrystal is completed. The raw material polycrystal 10 released from the raw material supply pipe 6 floats on the surface of the melt 11 and the gas is blown onto the raw material polycrystal 10 to reduce the SiO gas generated and rising in the melt to reduce silicon. Is decomposed into water and water, and the water is discharged as steam to the outside of the furnace. The supply amount of hydrogen gas or an inert gas containing hydrogen gas is such that the raw material polycrystal 10 floating on the surface of the melt 11
It is desirable that the amount be such that the above-mentioned gas can be sufficiently spread to all the corners and that the SiO gas or the SiO amorphous can be completely reduced. Further, since the present apparatus does not supply hydrogen gas or an inert gas containing hydrogen gas into the melt from the gas supply pipe immersed in the melt, stirring of the melt by the gas does not occur, and therefore the melt It does not promote the generation of SiO gas inside.

【0015】直径16インチのるつぼに塊状のシリコン
多結晶を45kg装填し、これを溶解した後、CZ法に
より直径6インチの単結晶20kgを引き上げて炉内か
ら取り出した。次にヒータ出力を20%アップし、るつ
ぼ位置を上方に設定した状態で粒状のシリコン多結晶の
リチャージを行った。このときの粒状多結晶の供給速度
は1kg/分とし、水素ガスと不活性ガスとの混合ガス
を供給しつつ20分間で20kgをリチャージした。前
記混合ガスは、水素とアルゴンとの比が1:9で、粒状
多結晶のリチャージ終了後、粒状多結晶が全溶するまで
の間、約1.5時間にわたって供給を継続した。粒状多
結晶が全溶したとき、融液面に白色透明の浮遊物は認め
られず、2本目の単結晶(直胴部の長さ800mm)を
崩れることなく成長させることができた。
A crucible having a diameter of 16 inches was charged with 45 kg of agglomerated silicon polycrystal, and after melting this, 20 kg of a single crystal having a diameter of 6 inches was pulled up by the CZ method and taken out from the furnace. Next, the heater output was increased by 20%, and the granular silicon polycrystal was recharged with the crucible position set to the upper side. The supply rate of the granular polycrystal at this time was 1 kg / min, and 20 kg was recharged in 20 minutes while supplying a mixed gas of hydrogen gas and an inert gas. The mixed gas had a ratio of hydrogen to argon of 1: 9, and was continuously supplied for about 1.5 hours after the completion of the recharge of the granular polycrystal and until the granular polycrystal was completely dissolved. When all the granular polycrystals were completely melted, white and transparent suspended matter was not observed on the melt surface, and the second single crystal (the length of the straight barrel portion was 800 mm) could be grown without breaking.

【0016】上記の実施例と比較するため、直径16イ
ンチのるつぼに塊状のシリコン多結晶を45kg装填、
溶解し、CZ法により直径6インチの単結晶20kgを
引き上げて炉内から取り出した後、ヒータ出力を20%
アップし、るつぼ位置を上方に設定した状態で粒状のシ
リコン多結晶のリチャージを行った。ただし、水素を含
む混合ガスは供給しなかった。粒状多結晶が全溶した
後、融液面には白色透明の浮遊物が認められた。これ
は、粒状多結晶の溶解途中に融液から発生したSiOガ
スが融液面に浮遊する粒状多結晶に触れて冷却され、S
iOアモルファスが形成された後、前記アモルファスか
ら析出したSiO2 の細片であると考えられる。その
後、前記浮遊物が消滅するまで約30分間溶解を継続し
た上、直径6インチの単結晶を引き上げようとしたが、
370mmの位置で単結晶崩れが発生した。これは、融
液内にSiO2 のパーティクルが残存していたため単結
晶崩れを誘発したものと考えられる。
For comparison with the above-mentioned embodiment, a crucible having a diameter of 16 inches was loaded with 45 kg of massive silicon polycrystals.
After melting and pulling out 20 kg of a 6-inch diameter single crystal by the CZ method and taking it out of the furnace, the heater output was 20%.
Up, the granular silicon polycrystal was recharged with the crucible position set to the upper side. However, the mixed gas containing hydrogen was not supplied. After all the granular polycrystals were completely dissolved, white and transparent suspended matter was observed on the melt surface. This is because the SiO gas generated from the melt during the melting of the granular polycrystals comes into contact with the granular polycrystals floating on the surface of the melt and is cooled.
It is considered to be a piece of SiO 2 deposited from the amorphous amorphous material after the io-amorphous material is formed. After that, the melting was continued for about 30 minutes until the suspended matter disappeared, and a single crystal having a diameter of 6 inches was tried to be pulled.
Single crystal collapse occurred at a position of 370 mm. It is considered that this is because the particles of SiO 2 remained in the melt, which caused the collapse of the single crystal.

【0017】請求項1に基づくリチャージ装置は原料供
給管とガス供給管とがそれぞれ独立に配設されており、
請求項3に基づくリチャージ装置は原料供給管とガス供
給管とが同一の管で構成されている。ガス供給管の機能
は、いずれの場合も請求項2の場合と同じであり、リチ
ャージされて融液面に浮遊する原料多結晶に水素ガスも
しくは水素ガスを含む不活性ガスを吹きつけるものであ
るので、詳細説明を省略する。
In the recharging device according to the first aspect, the raw material supply pipe and the gas supply pipe are arranged independently of each other,
In the recharging device according to the third aspect, the raw material supply pipe and the gas supply pipe are the same pipe. In any case, the function of the gas supply pipe is the same as in the case of claim 2, and hydrogen gas or an inert gas containing hydrogen gas is blown to the raw material polycrystals that are recharged and float on the melt surface. Therefore, detailed description is omitted.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、粒
状の原料多結晶のリチャージ開始から溶解完了までの
間、水素ガスもしくは水素ガスを含む不活性ガスを融液
面に浮遊する原料多結晶に吹きつけるリチャージ装置お
よびリチャージ方法を用いることにしたので、融液内に
発生するSiOガスは水素ガスによって還元され、Si
OアモルファスやSiO2 を形成することがない。従っ
て、リチャージ法適用時における単結晶崩れの発生を防
止することができ、単結晶化率の向上すなわち単結晶生
産能率を引き上げることが可能となる。
As described above, according to the present invention, from the start of recharging of the granular raw material polycrystal to the completion of melting, hydrogen gas or an inert gas containing hydrogen gas is suspended in the melt surface. Since it was decided to use a recharging device and a recharging method for spraying onto the crystal, the SiO gas generated in the melt was reduced by hydrogen gas,
It does not form O-amorphous or SiO 2 . Therefore, it is possible to prevent the occurrence of single crystal collapse when the recharging method is applied, and it is possible to improve the single crystallization rate, that is, increase the single crystal production efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項2に基づくリチャージ装置を装着した単
結晶製造装置の模式的部分断面図である。
FIG. 1 is a schematic partial cross-sectional view of a single crystal manufacturing apparatus equipped with a recharge device according to claim 2.

【符号の説明】[Explanation of symbols]

3 るつぼ 6 原料供給管 8 ガス供給管 10 原料多結晶 11 融液 3 Crucible 6 Raw material supply pipe 8 Gas supply pipe 10 Raw material polycrystal 11 Melt

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒状の原料多結晶をるつぼ内に供給する
原料供給管と、この原料供給管から放出されて融液面に
浮遊する前記原料多結晶に水素ガスもしくは水素ガスを
含む不活性ガスを吹きつけるガス供給管とを備えている
ことを特徴とする多結晶のリチャージ装置。
1. A raw material supply pipe for supplying granular raw material polycrystal into a crucible, and hydrogen gas or an inert gas containing hydrogen gas in the raw material polycrystal discharged from the raw material supply pipe and floating on the melt surface. And a gas supply pipe for spraying the gas.
【請求項2】 原料供給管の軸心に沿って、前記原料供
給管を取り巻くようにガス供給管を設けたことを特徴と
する請求項1の多結晶のリチャージ装置。
2. The polycrystal recharging device according to claim 1, wherein a gas supply pipe is provided along the axis of the raw material supply pipe so as to surround the raw material supply pipe.
【請求項3】 原料供給管と、ガス供給管とを同一の管
で構成したことを特徴とする請求項1の多結晶のリチャ
ージ装置。
3. The polycrystal recharging device according to claim 1, wherein the raw material supply pipe and the gas supply pipe are formed of the same pipe.
【請求項4】 チョクラルスキー法を用いる半導体単結
晶の製造において、融液から単結晶を引き上げた後、炉
外から粒状の原料多結晶を原料供給管を介してるつぼ内
に供給するに当たり、前記粒状の原料多結晶をリチャー
ジする直前からリチャージした原料多結晶の溶解が完了
するまでの間、水素ガスもしくは水素ガスを含む不活性
ガスを前記原料供給管から放出されて融液面に浮遊する
原料多結晶に吹きつけることを特徴とする多結晶のリチ
ャージ方法。
4. In the production of a semiconductor single crystal using the Czochralski method, after pulling a single crystal from a melt, when supplying a granular raw material polycrystal from the outside of a furnace into a crucible through a raw material supply pipe, Immediately before the granular raw material polycrystal is recharged until the recharged raw material polycrystal is completely dissolved, hydrogen gas or an inert gas containing hydrogen gas is discharged from the raw material supply pipe and floats on the melt surface. A method of recharging a polycrystal characterized by spraying a raw polycrystal.
JP05287622A 1993-10-22 1993-10-22 Polycrystalline recharge apparatus and recharge method Expired - Fee Related JP3085567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05287622A JP3085567B2 (en) 1993-10-22 1993-10-22 Polycrystalline recharge apparatus and recharge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05287622A JP3085567B2 (en) 1993-10-22 1993-10-22 Polycrystalline recharge apparatus and recharge method

Publications (2)

Publication Number Publication Date
JPH07118089A true JPH07118089A (en) 1995-05-09
JP3085567B2 JP3085567B2 (en) 2000-09-11

Family

ID=17719641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05287622A Expired - Fee Related JP3085567B2 (en) 1993-10-22 1993-10-22 Polycrystalline recharge apparatus and recharge method

Country Status (1)

Country Link
JP (1) JP3085567B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945529A1 (en) * 1998-03-26 1999-09-29 Leybold Systems GmbH Crystal pulling apparatus
EP0945528A1 (en) * 1998-03-26 1999-09-29 Leybold Systems GmbH Crystal pulling apparatus
JP2006312115A (en) * 2005-05-06 2006-11-16 Tokyo Electric Power Co Inc:The Gas pressure-filling apparatus and gas pressure-filling method
JP2007284320A (en) * 2006-04-20 2007-11-01 Sharp Corp Solid melting apparatus and method for feeding raw material
EP2072645A2 (en) 2007-12-19 2009-06-24 Schott AG Method for producing a monocrystalline or polycrystalline semiconductor material
DE102008022882A1 (en) 2008-05-08 2009-11-05 Schott Ag Producing monocrystalline or polycrystalline semiconductor material using a vertical gradient freeze method, involves introducing lumpy semiconductor raw material into a melting crucible, melting there, and directionally solidifying
US20100107966A1 (en) * 2008-11-05 2010-05-06 Memc Electronic Materials, Inc. Methods for preparing a melt of silicon powder for silicon crystal growth

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945529A1 (en) * 1998-03-26 1999-09-29 Leybold Systems GmbH Crystal pulling apparatus
EP0945528A1 (en) * 1998-03-26 1999-09-29 Leybold Systems GmbH Crystal pulling apparatus
JP2006312115A (en) * 2005-05-06 2006-11-16 Tokyo Electric Power Co Inc:The Gas pressure-filling apparatus and gas pressure-filling method
JP2007284320A (en) * 2006-04-20 2007-11-01 Sharp Corp Solid melting apparatus and method for feeding raw material
JP4762776B2 (en) * 2006-04-20 2011-08-31 シャープ株式会社 Solid melting equipment
EP2072645A2 (en) 2007-12-19 2009-06-24 Schott AG Method for producing a monocrystalline or polycrystalline semiconductor material
US8101019B2 (en) 2007-12-19 2012-01-24 Schott Ag Method for producing a monocrystalline or polycrystalline semiconductor material
EP2072645B2 (en) 2007-12-19 2014-12-24 Schott AG Method for producing a monocrystalline or polycrystalline semiconductor material
DE102008022882A1 (en) 2008-05-08 2009-11-05 Schott Ag Producing monocrystalline or polycrystalline semiconductor material using a vertical gradient freeze method, involves introducing lumpy semiconductor raw material into a melting crucible, melting there, and directionally solidifying
US20100107966A1 (en) * 2008-11-05 2010-05-06 Memc Electronic Materials, Inc. Methods for preparing a melt of silicon powder for silicon crystal growth

Also Published As

Publication number Publication date
JP3085567B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JP4103593B2 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
JPH11189495A (en) Silicon single crystal and its production
TWI422716B (en) Crystal growing method
US20100139549A1 (en) Quartz Glass Crucible for Pulling Silicon Single Crystal and Method of Manufacturing Quartz Glass Crucible for Pulling Silicon Single Crystal
JP3085567B2 (en) Polycrystalline recharge apparatus and recharge method
JP2001233629A (en) Method of producing quartz glass crucible
WO2000052235A1 (en) Method for producing silicon single crystal
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
JP4788445B2 (en) Pulling method of silicon single crystal
JP3832536B2 (en) Method for producing silicon single crystal and pulling machine
JPH1149597A (en) Quartz crucible for pulling up silicon single crystal
JPH1192276A (en) Apparatus for producing semiconductor single crystal and production of semiconductor single crystal
JPH11195565A (en) Silicon wafer and method of growing crystal
JPH0748200A (en) Production of single crystal
JPS5933552B2 (en) crystal growth equipment
CN109576778A (en) A method of reducing the impurity content that CZ method prepares monocrystalline
JP3885245B2 (en) Single crystal pulling method
JP4330230B2 (en) Single crystal growth method
JP4807130B2 (en) Pulling method of silicon single crystal
JPH0640592Y2 (en) Silicon single crystal growth equipment
JP2004292288A (en) Method for melting raw material for silicon single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH09241091A (en) Device for growing single crystal and method for growing the same
JP2009173503A (en) Single crystal pulling device and method for manufacturing single crystal
JPH1192275A (en) Apparatus for producing semiconductor single crystal and production of semiconductor single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees