JPH07114942A - Non-aqueous electrolyte lithium secondary battery - Google Patents

Non-aqueous electrolyte lithium secondary battery

Info

Publication number
JPH07114942A
JPH07114942A JP5260126A JP26012693A JPH07114942A JP H07114942 A JPH07114942 A JP H07114942A JP 5260126 A JP5260126 A JP 5260126A JP 26012693 A JP26012693 A JP 26012693A JP H07114942 A JPH07114942 A JP H07114942A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
aqueous electrolyte
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5260126A
Other languages
Japanese (ja)
Inventor
Masaki Hasegawa
正樹 長谷川
Sukeyuki Murai
祐之 村井
Shuji Ito
修二 伊藤
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5260126A priority Critical patent/JPH07114942A/en
Publication of JPH07114942A publication Critical patent/JPH07114942A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a cycle characteristic so as to realize high electric power and a high capacity by including composite oxide composed of lithium and nickel of monocrystal powder having an average particle diameter less than a specific value into a positive electrode. CONSTITUTION:Polycrystal powder of LiNiO2 is used as a positive electrode active material for a positive electrode 1. Acetylene black of a conducting agent and a polyfluoroethylene resin of a binding agent are mixed with the positive electrode active material in predetermined ratios, followed by drying, thus obtaining a positive electrode mixture. The resultant mixture is pressure- molded into the positive electrode 1. The positive electrode 1 is press-fitted to the inner surface of a case 3 disposed in a current collector 2. A negative electrode 4 is constituted of a lithium plate, and is press-fitted to a sealing plate 6 having a negative electrode current collector 5. A separator 7 is made of a porous propylene film, and a gasket 8 is made of propylene. Propylene carbonate dissolved with lithium perchlorate is used as a non-aqueous electrolyte. An average particle diameter of the polycrystal powder of LiNiO2 is 10mum or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、最近開発が盛んに行わ
れている非水電解質リチウム二次電池、特にその正極の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte lithium secondary battery, which has been actively developed recently, and more particularly to improvement of its positive electrode.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。これまで非水
電解質二次電池の正極活物質として、LiCoO2、L
iMn2O4、LiFeO2、LiNiO2、V25、Cr
25、MnO2、TiS2、MoS2などの遷移金属の酸
化物およびカルコゲン化合物が提案されている。これら
の化合物は、層状もしくはトンネル構造を有し、リチウ
ムイオンが出入りできる結晶構造を持っている。特に、
LiCoO2やLiNiO2、LiMn24は、4V級の
非水電解質リチウム二次電池用正極活物質として注目さ
れている。しかし、これらの中で特性的に最も有望な正
極活物質であるLiCoO2は、コバルトが高価な元素
であり、高コストとなってしまう。さらには、原料の供
給面で不安もあり、世界情勢の変化による供給不足、価
格の高騰等の可能性も考えられる。また、LiMn24
やLiNiO2は、特性的にはLiCoO2と比較して若
干劣っている面もあるが、その原料であるマンガンやニ
ッケルの化合物が非常に低コストで安定して供給され、
コストや原料供給の面での心配はない。さらに、LiN
iO2はLiCoO2と同様の組成、構造を有しており、
リチウム二次電池用正極活物質として高容量、高電圧を
得ることのできる材料である。ところが、LiNiO2
は合成の条件により、その特性が大きく異なってくる材
料であり、リチウム二次電池用正極活物質材料として優
れた特性を有する結晶相を合成することが非常に困難で
あった。しかし、種々の出発原料、焼成条件等について
検討した結果、LiCoO2を上回る高容量を有する材
料を得ることが可能となり、今後、LiCoO2に代わ
るリチウム二次電池用正極材料として非常に期待される
材料である。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have high energy density at high voltage, and many studies have been conducted. So far, LiCoO 2 , L has been used as a positive electrode active material of a non-aqueous electrolyte secondary battery.
iMn 2 O4, LiFeO 2, LiNiO 2, V 2 O 5, Cr
Oxides of transition metals such as 2 O 5 , MnO 2 , TiS 2 , MoS 2 and chalcogen compounds have been proposed. These compounds have a layered structure or a tunnel structure, and have a crystal structure that allows lithium ions to enter and exit. In particular,
LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are attracting attention as positive electrode active materials for 4V class non-aqueous electrolyte lithium secondary batteries. However, among these, LiCoO 2 , which is the most promising positive electrode active material in terms of characteristics, is expensive because cobalt is an expensive element. In addition, there are concerns about the supply of raw materials, and it is possible that supply shortages due to changes in the world situation and price hikes may occur. In addition, LiMn 2 O 4
Although LiNiO 2 is characteristically slightly inferior to LiCoO 2 , the raw material compounds of manganese and nickel are stably supplied at a very low cost.
There are no worries in terms of cost or raw material supply. In addition, LiN
iO 2 has the same composition and structure as LiCoO 2 ,
It is a material that can obtain high capacity and high voltage as a positive electrode active material for a lithium secondary battery. However, LiNiO 2
Is a material whose properties vary greatly depending on the synthesis conditions, and it has been very difficult to synthesize a crystalline phase having excellent properties as a positive electrode active material material for lithium secondary batteries. However, as a result of investigating various starting materials, firing conditions, etc., it became possible to obtain a material having a higher capacity than LiCoO 2 , and in the future, it is highly expected as a positive electrode material for a lithium secondary battery which replaces LiCoO 2. It is a material.

【0003】[0003]

【発明が解決しようとする課題】LiNiO2を正極活
物質として用いると、初期容量はLiCoO2を大きく
上回り、高容量のリチウム二次電池用正極を得ることが
できるが、サイクル特性の面で問題があった。特に、高
容量を得るために活物質重量当りの容量が150mAh
/gを超えるような深い深度で充放電を行うと、サイク
ル毎の容量低下が大きく、サイクル特性が非常に悪くな
ってしまう。このように、活物質重量当りの容量が15
0mAh/gを超える様な高容量を有するリチウム二次
電池用正極材料を得るためには、サイクル特性の改善が
必要不可欠である。本発明は、このような問題点を解決
するもので、優れたサイクル特性を有するリチウム二次
電池用正極を提供するものである。
When LiNiO 2 is used as the positive electrode active material, the initial capacity greatly exceeds that of LiCoO 2 , and a high capacity positive electrode for a lithium secondary battery can be obtained, but there is a problem in terms of cycle characteristics. was there. Particularly, in order to obtain a high capacity, the capacity per active material weight is 150 mAh.
When charging / discharging is performed at a deep depth exceeding / g, the capacity of each cycle is greatly reduced, and the cycle characteristics are extremely deteriorated. Thus, the capacity per active material weight is 15
In order to obtain a positive electrode material for a lithium secondary battery having a high capacity exceeding 0 mAh / g, it is essential to improve cycle characteristics. The present invention solves such a problem and provides a positive electrode for a lithium secondary battery having excellent cycle characteristics.

【0004】[0004]

【課題を解決するための手段】本発明は、リチウムとニ
ッケルの複合酸化物を主成分として含む正極、リチウム
またはリチウムを可逆的に吸蔵放出することのできる材
料を含む負極、および非水電解質を具備する非水電解質
リチウム二次電池において、前記のリチウムとニッケル
の複合酸化物に、平均粒径が10μm以下の単結晶粉末
を用いる。本発明は、また前記リチウムとニッケルの複
合酸化物に、最大の粒径が30μm以下で結晶子の大き
さが粒径の30%以上の多結晶体粉末を用いる。
The present invention provides a positive electrode containing a composite oxide of lithium and nickel as a main component, a negative electrode containing lithium or a material capable of reversibly inserting and extracting lithium, and a non-aqueous electrolyte. In the provided non-aqueous electrolyte lithium secondary battery, a single crystal powder having an average particle size of 10 μm or less is used as the lithium-nickel composite oxide. The present invention also uses, as the lithium-nickel composite oxide, a polycrystalline powder having a maximum grain size of 30 μm or less and a crystallite size of 30% or more of the grain size.

【0005】さらに、本発明の他の態様においては、前
記複合酸化物として、上記の単結晶粉末と多結晶体粉末
の混合物を用いる。ここで、前記多結晶体粉末は、最大
の粒径が5μm以下であることが好ましい。
Further, in another aspect of the present invention, a mixture of the single crystal powder and the polycrystalline powder is used as the composite oxide. Here, the polycrystalline powder preferably has a maximum particle size of 5 μm or less.

【0006】[0006]

【作用】本発明者らは、上記の構成により、リチウムと
ニッケルの複合酸化物を用いる正極のサイクル特性を改
良できることを見出した。すなわち、硝酸リチウムと炭
酸ニッケルを用いて合成したLiNiO2を活物質とし
て用いて正極を作製し、充放電試験をしたところ、サイ
クル劣化が大きく、特に活物質重量当りの容量が150
mAh/gを上回る様な場合にそのような傾向が顕著に
表われることがわかった。このサイクル劣化の原因を詳
しく調べたところ、リチウムに対し4.2V付近のプラ
トー領域まで使って充放電を行うことにより、大きなサ
イクル劣化が生じていることがわかった。さらに、X線
回折測定により充電深度にともなう結晶構造の変化を調
べたところ、前記のプラトー領域で急激な結晶格子の収
縮が起こっていることがわかった。また、SEM観察等
により活物質の粒子形状を調べたところ、粒径は数μm
程度であるが、一つ一つの粒子は単結晶ではなく微小な
結晶粒子が集合して形成された二次粒子であることがわ
かった。
The present inventors have found that the above structure can improve the cycle characteristics of a positive electrode using a composite oxide of lithium and nickel. That is, when a positive electrode was prepared using LiNiO 2 synthesized by using lithium nitrate and nickel carbonate as an active material and a charge / discharge test was performed, cycle deterioration was large, and particularly the capacity per active material weight was 150.
It has been found that such a tendency is remarkably exhibited when it exceeds mAh / g. When the cause of this cycle deterioration was investigated in detail, it was found that a large cycle deterioration occurred due to charging and discharging using a plateau region of about 4.2 V with respect to lithium. Furthermore, when the change in the crystal structure with the depth of charge was examined by X-ray diffraction measurement, it was found that a sharp shrinkage of the crystal lattice occurred in the plateau region. Moreover, when the particle shape of the active material was examined by SEM observation, etc., the particle size was several μm.
It was found that each particle is not a single crystal but a secondary particle formed by aggregating fine crystal particles, although it is only to a degree.

【0007】以上のようなことから、充放電サイクルを
繰り返すことにより結晶粒子に歪が生じ、このため二次
粒子内部の結晶粒子間の粒界の部分にクラックが入るこ
とにより集電不良が起こり、活物質の利用率が低下し容
量が減少するものと考えられる。そこでまず、二次粒子
の粒成長を抑制し粒径を小さくすることにより、導電剤
と活物質粒子との接触面積を増大させ、集電を良くした
リチウム二次電池用正極を作製し充放電試験を行った。
その結果、充放電時の結晶の歪にともない発生するクラ
ックによる集電不良が低減され、150mAh/g以上
の高容量が得られるような深い深度の充放電を繰り返し
た場合のサイクル劣化を抑制することができた。
From the above, by repeating the charge and discharge cycle, the crystal grains are distorted, which causes cracks in the grain boundaries between the crystal grains inside the secondary particles, resulting in defective current collection. It is considered that the utilization rate of the active material is reduced and the capacity is reduced. Therefore, first, by suppressing the particle growth of the secondary particles and decreasing the particle size, the contact area between the conductive agent and the active material particles was increased, and a positive electrode for a lithium secondary battery with good current collection was prepared and charged and discharged. The test was conducted.
As a result, current collection failure due to cracks generated due to crystal strain during charge / discharge is reduced, and cycle deterioration is suppressed when charge / discharge at a deep depth is repeated so that a high capacity of 150 mAh / g or more is obtained. I was able to.

【0008】また、結晶粒子の粒成長を促進することに
より比較的大きなサイズを持つ単結晶粒子の集合により
形成された二次粒子からなる活物質粉末を得、これを用
いて正極を作製し充放電試験をした。その結果、150
mAh/g以上の高容量が得られるような深い深度の充
放電を繰り返した場合のサイクル劣化を大幅に抑制する
ことができた。これは、二次粒子を形成する結晶粒子が
大きく、各結晶粒子が二次粒子表面に露出して導電剤と
接触し電気的なコンタクトを有しているため、充放電に
ともなう結晶粒子の歪により粒界にクラックが生じても
電気的に孤立し集電不良となることがないためであると
考えられる。さらに、結晶粒子の粒成長をより促進して
得られた粒界のない単結晶粒子からなる粉末を用いて正
極を作製し充放電試験をした。その結果、150mAh
/g以上の高容量が得られるような深い深度の充放電を
繰り返した場合のサイクル劣化を大幅に抑制することが
できた。これは、単結晶粒子からなる活物質粉末を用い
ることにより、充放電時の結晶の歪にともなう粒界にお
けるクラック発生による集電不良が起こらなくなったた
めと考えられる。
Further, by promoting grain growth of crystal grains, an active material powder composed of secondary particles formed by aggregation of single crystal grains having a relatively large size is obtained, and using this, an active material powder is prepared and filled. A discharge test was conducted. As a result, 150
It was possible to significantly suppress cycle deterioration when charging / discharging at a deep depth such that a high capacity of mAh / g or more was obtained. This is because the crystal particles that form the secondary particles are large, and each crystal particle is exposed on the surface of the secondary particle and comes into contact with the conductive agent to have an electrical contact, so that the distortion of the crystal particles due to charging and discharging is caused. It is considered that this is because even if a crack occurs at the grain boundary, it is not electrically isolated and current collection failure does not occur. Furthermore, a positive electrode was prepared using a powder composed of single crystal particles having no grain boundary, which was obtained by further promoting the grain growth of crystal particles, and was subjected to a charge / discharge test. As a result, 150 mAh
It was possible to significantly suppress the cycle deterioration when charging / discharging at a deep depth such that a high capacity of / g or more was obtained. It is considered that this is because the use of the active material powder composed of single crystal particles did not cause the current collection failure due to the generation of cracks at the grain boundaries accompanying the strain of the crystals during charge and discharge.

【0009】[0009]

【実施例】以下、本発明を実施例を用いて詳細に説明す
るが、本発明はこれら実施例に限定されるものではな
い。 [実施例1]本実施例では、最大の粒径が5μm以下
で、結晶子の大きさが粒径の30%以下の多結晶体粉末
のLiNiO2を正極活物質として用いた場合について
説明する。まず、硝酸リチウムと塩基性炭酸ニッケルの
それぞれをニッケルとリチウムのモル比が1.0:1.
1となるようにはかり取り、分散媒として少量の水を加
え充分に混合した後、乾燥させ、酸素気流中で12時間
焼成し黒色の焼成物を得た。焼成温度は650℃とし
た。得られた焼成物を充分に粉砕、分級し平均粒径5μ
m以下の粉末を得た。SEM観察および粒度分布測定を
行ったところ、得られた粉末は、最大の粒径が5μm以
下であり、それぞれの粒子を形成する単結晶の一次粒子
の大きさは1.5μm以下であった。次に、以上のよう
にして得られた焼成物を活物質として用い正極を作製し
た。活物質と導電剤のアセチレンブラックと結着剤のポ
リフッ化エチレン樹脂を重量比7:2:1の割合で混合
し、充分に乾燥したものを正極合剤とし、この正極合剤
0.15gを2トン/cm2で直径17.5mmのペレ
ット状に加圧成型し正極とした。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. [Embodiment 1] In this embodiment, a case will be described where LiNiO 2 which is a polycrystalline powder having a maximum grain size of 5 μm or less and a crystallite size of 30% or less of the grain size is used as a positive electrode active material. . First, the molar ratio of nickel to lithium is 1.0: 1.
The resulting mixture was weighed out to give a dispersion medium of 1, and a small amount of water was added as a dispersion medium, mixed thoroughly, dried and calcined in an oxygen stream for 12 hours to obtain a black calcined product. The firing temperature was 650 ° C. The fired product obtained was pulverized and classified to an average particle size of 5μ.
A powder of m or less was obtained. When SEM observation and particle size distribution measurement were performed, the obtained powder had a maximum particle size of 5 μm or less, and the size of the primary particles of the single crystal forming each particle was 1.5 μm or less. Next, a positive electrode was produced using the fired product obtained as described above as an active material. An active material, acetylene black as a conductive agent, and polyfluorinated ethylene resin as a binder were mixed at a weight ratio of 7: 2: 1, and sufficiently dried to be a positive electrode mixture, and 0.15 g of this positive electrode mixture was added. A positive electrode was obtained by pressure molding into a pellet having a diameter of 17.5 mm at 2 ton / cm 2 .

【0010】以上のように作製した正極を用いて製造し
た電池の断面図を図1に示す。1は正極であり、集電体
2を設けたケース3の内面に圧着されている。4は負極
で、厚さ0.8mm、直径17.5mmのリチウム板か
らなり、負極集電体5を付けた封口板6に圧着されてい
る。7は多孔性ポリプロピレンフィルからなるセパレー
タ、8はポリプロピレン製ガスケットである。非水電解
質として、1mol/lの過塩素酸リチウムを溶解した
プロピレンカーボネートを用いた。この電池を電池Aと
する。また、比較例1として本実施例と同様の方法で焼
成し、最大粒径が45μm以下となるように分級した活
物質粉末を用い、上記と同様の方法で正極および電池を
作成した。
A cross-sectional view of a battery manufactured by using the positive electrode manufactured as described above is shown in FIG. Reference numeral 1 denotes a positive electrode, which is pressure-bonded to the inner surface of the case 3 provided with the current collector 2. Reference numeral 4 denotes a negative electrode, which is made of a lithium plate having a thickness of 0.8 mm and a diameter of 17.5 mm, and is pressed onto a sealing plate 6 having a negative electrode current collector 5 attached thereto. Reference numeral 7 is a separator made of porous polypropylene fill, and 8 is a polypropylene gasket. As the non-aqueous electrolyte, propylene carbonate in which 1 mol / l lithium perchlorate was dissolved was used. This battery is referred to as battery A. Further, as Comparative Example 1, a positive electrode and a battery were prepared by the same method as described above, using the active material powder that was fired by the same method as this Example and classified so that the maximum particle size was 45 μm or less.

【0011】以上の試料についてそれぞれ10個の電池
を作製し、その初期容量を比較した。充放電の条件は、
0.5mAの定電流で電圧範囲3.0V〜4.3Vの電
圧規制とした。表1にそれぞれの平均の初期容量と50
サイクル目の容量維持率を示す。
Ten batteries were prepared for each of the above samples and their initial capacities were compared. Charge and discharge conditions are
The voltage was regulated at a constant current of 0.5 mA in a voltage range of 3.0 V to 4.3 V. Table 1 shows the average initial capacity and 50
The capacity retention rate at the cycle is shown.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示すように、50サイクル目の容量
維持率は、比較例1の最大の粒径を45μm以下に分級
した活物質を用いた場合には72%であるのに対し、電
池Aの最大の粒径が5μm以下の活物質を用いた場合は
89%となっており、サイクル性改善に効果のあること
がわかる。
As shown in Table 1, the capacity retention ratio at the 50th cycle is 72% when the active material obtained by classifying the maximum particle size of Comparative Example 1 to 45 μm or less is used, whereas the capacity retention ratio is 72%. When an active material having a maximum particle size of A of 5 μm or less is used, it is 89%, which shows that it is effective in improving the cycle property.

【0014】[実施例2]本実施例では、最大の粒径が
30μm以下で、結晶子の大きさが粒径の30%以上の
多結晶体からなるLiNiO2粉末を用いて正極を作製
した場合について説明する。まず、硝酸リチウムと塩基
性炭酸ニッケルのそれぞれをリチウムとニッケルがモル
比で1.0:1.1となるようにはかり取り、分散媒と
して少量の水を加え充分に混合した後、乾燥させ、酸素
気流中において30時間焼成し黒色の焼成物を得た。焼
成温度は650℃とした。得られた焼成物を充分に粉
砕、分級し10μm以下の粉末を得た。分級後の粉末を
SEMで観察したところ、粒径は10μm以下であり、
それぞれの粒子を形成する結晶子の大きさは3μm以上
であった。次に、以上のようにして得られた焼成物粉末
を活物質として用い実施例1と同様の方法で正極および
電池を作製した。この電池を電池Bとする。また、比較
例2として、本実施例と同様の方法で焼成して得られた
焼成物を粉砕後、最大の粒径が45μm以下となるよう
に分級した粉末を活物質として用い、実施例1と同様の
方法で正極および電池を作製した。比較例2の焼成物粉
末についてSEM観察をしたところ、粒径は45μm以
下であり、それぞれの粒子を形成する結晶子の大きさは
3μm以上であった。
Example 2 In this example, a positive electrode was produced using LiNiO 2 powder having a maximum grain size of 30 μm or less and a crystallite size of 30% or more of the grain size. The case will be described. First, lithium nitrate and basic nickel carbonate were weighed out so that lithium and nickel were in a molar ratio of 1.0: 1.1, a small amount of water was added as a dispersion medium, and the mixture was thoroughly mixed and dried. A black fired product was obtained by firing in an oxygen stream for 30 hours. The firing temperature was 650 ° C. The fired product obtained was thoroughly pulverized and classified to obtain a powder having a particle size of 10 μm or less. When the powder after classification was observed by SEM, the particle size was 10 μm or less,
The size of the crystallite forming each particle was 3 μm or more. Next, a positive electrode and a battery were produced in the same manner as in Example 1 using the fired product powder obtained as described above as an active material. This battery is referred to as battery B. Further, as Comparative Example 2, a powder obtained by pulverizing a calcined product obtained by calcining in the same manner as in this Example and then classifying the powder so that the maximum particle size was 45 μm or less was used as an active material. A positive electrode and a battery were produced in the same manner as in. When the SEM observation was performed on the fired product powder of Comparative Example 2, the particle size was 45 μm or less, and the size of the crystallite forming each particle was 3 μm or more.

【0015】以上の試料についてそれぞれ10個の電池
を作製し、その初期容量を比較した。充放電の条件は、
0.5mAの定電流で電圧範囲3.0V〜4.3Vの電
圧規制とした。表2にそれぞれの平均の初期容量と50
サイクル目の容量維持率を示す。
Ten batteries were prepared for each of the above samples and their initial capacities were compared. Charge and discharge conditions are
The voltage was regulated at a constant current of 0.5 mA in a voltage range of 3.0 V to 4.3 V. Table 2 shows the average initial capacity and 50
The capacity retention rate at the cycle is shown.

【0016】[0016]

【表2】 [Table 2]

【0017】表2に示すように、50サイクル目の容量
維持率は比較例1の72%に対し、本実施例の最大の粒
径が30μm以下でそれぞれの粒子を形成する結晶子の
大きさが10μm以上である活物質を用いた電池Bは9
6%となっており、サイクル性改善に大きな効果が見ら
れた。比較例2は70%で、サイクル性改善の効果は見
られない。これは、結晶子の大きさに対して粒径が大き
いため、充放電にともない粒子内部の結晶子間に生じる
クラックにより、粒子表面に露出していない内部の結晶
の集電不良が起こっているためであると考えられる。
As shown in Table 2, the capacity retention ratio at the 50th cycle was 72% in Comparative Example 1, whereas the maximum particle size in this Example was 30 μm or less and the size of the crystallite forming each particle. Battery B using an active material having a thickness of 10 μm or more is 9
It was 6%, which was a great effect in improving the cycleability. Comparative Example 2 was 70%, and no effect of improving cycleability was observed. This is because the particle size is large relative to the size of the crystallites, so cracks that occur between crystallites inside the particles due to charge / discharge, resulting in poor current collection of internal crystals that are not exposed on the particle surface. It is thought to be because of this.

【0018】[実施例3]本実施例では、平均粒径が1
0μm以下の単結晶からなるLiNiO2粉末を用いて
正極を作製した場合について説明する。まず、硝酸リチ
ウムと塩基性炭酸ニッケルのそれぞれをニッケルとリチ
ウムのモル比が1.0:1.1となるようにはかり取
り、分散媒として少量の水を加え充分に混合した後、乾
燥させ、酸素気流中において550℃で50時間焼成し
た後、再度酸素気流中において650℃で6時間焼成し
黒色の焼成物を得た。得られた焼成物を充分に粉砕、分
級して平均粒径が10μm以下の粉末を得た。分級後の
粉末をSEM観察および粒度分布測定をしたところ、平
均粒径10μm以下の単結晶からなる粉末であることが
確認できた。次に、以上のようにして得られた焼成物粉
末を活物質として用い実施例1と同様の方法で正極およ
び電池を作製した。この電池を電池Cとする。さらに、
比較例3として、本実施例と同様の方法で焼成して得ら
れた焼成物を粉砕後、最大の粒径が45μm以下となる
ように分級した粉末を活物質として用い、実施例1と同
様の方法で正極および電池を作製した。
Example 3 In this example, the average particle size is 1
A case in which a positive electrode is manufactured using LiNiO 2 powder composed of a single crystal of 0 μm or less will be described. First, lithium nitrate and basic nickel carbonate were weighed out so that the molar ratio of nickel and lithium was 1.0: 1.1, a small amount of water was added as a dispersion medium, and the mixture was thoroughly mixed and dried. After firing in an oxygen stream at 550 ° C. for 50 hours, firing was performed again in an oxygen stream at 650 ° C. for 6 hours to obtain a black fired product. The obtained fired product was sufficiently pulverized and classified to obtain a powder having an average particle size of 10 μm or less. When the powder after classification was subjected to SEM observation and particle size distribution measurement, it was confirmed that the powder was a single crystal having an average particle size of 10 μm or less. Next, a positive electrode and a battery were produced in the same manner as in Example 1 using the fired product powder obtained as described above as an active material. This battery is referred to as battery C. further,
As Comparative Example 3, a fired product obtained by firing in the same manner as in the present Example was pulverized, and then powders classified to have a maximum particle size of 45 μm or less were used as an active material. A positive electrode and a battery were produced by the method described above.

【0019】以上の試料についてそれぞれ10個の電池
を作製し、その初期容量を比較した。充放電の条件は、
0.5mAの定電流で電圧範囲3.0V〜4.3Vの電
圧規制とした。表3にそれぞれの平均の初期容量と50
サイクル目の容量維持率を示す。
Ten batteries were prepared for each of the above samples and their initial capacities were compared. Charge and discharge conditions are
The voltage was regulated at a constant current of 0.5 mA in a voltage range of 3.0 V to 4.3 V. Table 3 shows the average initial capacity and 50
The capacity retention rate at the cycle is shown.

【0020】[0020]

【表3】 [Table 3]

【0021】表3に示すように、50サイクル目の容量
維持率は比較例1は72%であるのに対し、本実施例の
平均粒径が10μm以下の単結晶粉末である活物質を用
いた電池Cは97%となっており、サイクル性改善に大
きな効果がみられた。また、比較例3は81%で、それ
ほどサイクル性改善の効果は見られない。これは、単結
晶ではあるが粒径が大きいため、充放電にともなう歪が
大きく結晶内にクラックが生じ、結晶内部で集電不良が
起こっているためであると考えられる。
As shown in Table 3, the capacity retention ratio at the 50th cycle was 72% in Comparative Example 1, whereas the active material of this Example was a single crystal powder having an average particle size of 10 μm or less. The content of Battery C was 97%, which was a great effect in improving the cycleability. Further, Comparative Example 3 is 81%, and the effect of improving the cycleability is not so great. It is considered that this is because the grain size is large even though it is a single crystal, so that strain due to charge / discharge is large and cracks occur in the crystal, resulting in poor current collection inside the crystal.

【0022】以上の実施例においては、合成の出発原料
として硝酸リチウムと塩基性炭酸ニッケルを用いている
が、リチウム源として炭酸リチウム、水酸化リチウム、
蓚酸リチウム、酢酸リチウム等のリチウム塩やリチウム
酸化物を、ニッケル源として水酸化ニッケル、硝酸ニッ
ケル等のニッケル塩やニッケル酸化物を用いた場合でも
同様の効果が得られる。また、以上の実施例では無置換
のリチウム酸ニッケルの場合についてのみ説明したが、
ニッケルをアルミニウム、チタン、バナジウム、クロ
ム、マンガン、鉄、コバルト、亜鉛、ニオブ、モリブデ
ン、タングステン等の他の元素で置換した場合にも同様
の効果が得られる。
In the above examples, lithium nitrate and basic nickel carbonate were used as starting materials for the synthesis, but lithium carbonate, lithium hydroxide,
Similar effects can be obtained even when a lithium salt or lithium oxide such as lithium oxalate or lithium acetate is used as a nickel source, and a nickel salt or nickel oxide such as nickel hydroxide or nickel nitrate is used. Further, in the above examples, only the case of unsubstituted nickel lithium oxide was described,
The same effect can be obtained when nickel is replaced with another element such as aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, zinc, niobium, molybdenum, or tungsten.

【0023】[0023]

【発明の効果】 以上のように本発明によれば、リチウ
ムとニッケルの複合酸化物を主成分として含む正極を用
いる非水電解質リチウム二次電池のサイクル性を改善
し、高電圧、高容量の二次電池を得ることができる。
As described above, according to the present invention, the cycle property of a non-aqueous electrolyte lithium secondary battery using a positive electrode containing a composite oxide of lithium and nickel as a main component is improved, and high voltage and high capacity are obtained. A secondary battery can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた電池の縦断面図であ
る。
FIG. 1 is a vertical sectional view of a battery used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 正極集電体 3 ケース 4 負極 5 負極集電体 6 封口板 7 セパレータ 8 ガスケット 1 Positive Electrode 2 Positive Electrode Current Collector 3 Case 4 Negative Electrode 5 Negative Current Collector 6 Sealing Plate 7 Separator 8 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Within the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムとニッケルの複合酸化物を主成
分として含む正極、リチウムまたはリチウムを可逆的に
吸蔵放出することのできる材料を含む負極、および非水
電解質を具備し、前記のリチウムとニッケルの複合酸化
物が、平均粒径が10μm以下の単結晶粉末であること
を特徴とする非水電解質リチウム二次電池。
1. A positive electrode containing a composite oxide of lithium and nickel as a main component, a negative electrode containing lithium or a material capable of reversibly occluding and releasing lithium, and a non-aqueous electrolyte. The non-aqueous electrolyte lithium secondary battery is characterized in that the complex oxide is a single crystal powder having an average particle size of 10 μm or less.
【請求項2】 リチウムとニッケルの複合酸化物を主成
分として含む正極、リチウムまたはリチウムを可逆的に
吸蔵放出することのできる材料を含む負極、および非水
電解質を具備し、前記のリチウムとニッケルの複合酸化
物が、最大の粒径が30μm以下で結晶子の大きさが粒
径の30%以上の多結晶体粉末であることを特徴とする
非水電解質リチウム二次電池。
2. A positive electrode containing a composite oxide of lithium and nickel as a main component, a negative electrode containing lithium or a material capable of reversibly inserting and extracting lithium, and a non-aqueous electrolyte. 2. The non-aqueous electrolyte lithium secondary battery, wherein the complex oxide is a polycrystalline powder having a maximum grain size of 30 μm or less and a crystallite size of 30% or more of the grain size.
【請求項3】 リチウムとニッケルの複合酸化物を主成
分として含む正極、リチウムまたはリチウムを可逆的に
吸蔵放出することのできる材料を含む負極、および非水
電解質を具備し、前記のリチウムとニッケルの複合酸化
物が、平均粒径が10μm以下の単結晶粉末と、最大の
粒径が30μm以下で結晶子の大きさが粒径の30%以
上の多結晶体粉末の混合体であることを特徴とする非水
電解質リチウム二次電池。
3. A positive electrode containing a composite oxide of lithium and nickel as a main component, a negative electrode containing lithium or a material capable of reversibly inserting and extracting lithium, and a non-aqueous electrolyte. Is a mixture of a single crystal powder having an average particle size of 10 μm or less and a polycrystalline powder having a maximum particle size of 30 μm or less and a crystallite size of 30% or more of the particle size. Characteristic non-aqueous electrolyte lithium secondary battery.
JP5260126A 1993-10-18 1993-10-18 Non-aqueous electrolyte lithium secondary battery Pending JPH07114942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260126A JPH07114942A (en) 1993-10-18 1993-10-18 Non-aqueous electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260126A JPH07114942A (en) 1993-10-18 1993-10-18 Non-aqueous electrolyte lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH07114942A true JPH07114942A (en) 1995-05-02

Family

ID=17343659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260126A Pending JPH07114942A (en) 1993-10-18 1993-10-18 Non-aqueous electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH07114942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163483A1 (en) 2018-02-22 2019-08-29 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2022542774A (en) * 2019-07-02 2022-10-07 巴斯夫杉杉電池材料(寧郷)有限公司 W-containing high-nickel ternary positive electrode material and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163483A1 (en) 2018-02-22 2019-08-29 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US11888147B2 (en) 2018-02-22 2024-01-30 Panasonic Holdings Corporation Nonaqueous electrolyte secondary batteries
JP2022542774A (en) * 2019-07-02 2022-10-07 巴斯夫杉杉電池材料(寧郷)有限公司 W-containing high-nickel ternary positive electrode material and its production method

Similar Documents

Publication Publication Date Title
JP7107666B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
KR101241571B1 (en) Cathode material for lithium ion secondary battery and lithium ion secondary battery using it
KR100934612B1 (en) Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JPH11219706A (en) Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JP2004006094A (en) Nonaqueous electrolyte secondary battery
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
EP1255311A2 (en) Cathode active material and non-aqueous electrolyte cell
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP3503688B2 (en) Lithium secondary battery
JP2016081716A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR100433592B1 (en) Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same
JP5658058B2 (en) Lithium ion secondary battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3475480B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2023544339A (en) Positive electrode active material and lithium secondary battery containing the same
JPH11260368A (en) Positive electrode active material for lithium secondary battery
JPH07114942A (en) Non-aqueous electrolyte lithium secondary battery