JPH07110993B2 - Method for producing hard boron nitride and synthesizer used therefor - Google Patents

Method for producing hard boron nitride and synthesizer used therefor

Info

Publication number
JPH07110993B2
JPH07110993B2 JP2210387A JP2210387A JPH07110993B2 JP H07110993 B2 JPH07110993 B2 JP H07110993B2 JP 2210387 A JP2210387 A JP 2210387A JP 2210387 A JP2210387 A JP 2210387A JP H07110993 B2 JPH07110993 B2 JP H07110993B2
Authority
JP
Japan
Prior art keywords
boron nitride
thermionic emission
plasma
source
emission material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2210387A
Other languages
Japanese (ja)
Other versions
JPS63190170A (en
Inventor
明彦 池ケ谷
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2210387A priority Critical patent/JPH07110993B2/en
Publication of JPS63190170A publication Critical patent/JPS63190170A/en
Publication of JPH07110993B2 publication Critical patent/JPH07110993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ダイヤモンドに次ぐ極めて高い硬度を有し、
かつ熱伝導性に優れる立方晶窒化硼素の新規な製造方法
及びそれに用いる合成装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention has extremely high hardness next to diamond,
The present invention also relates to a novel method for producing cubic boron nitride having excellent thermal conductivity and a synthesis apparatus used for the method.

(従来技術) 立方晶窒化硼素は、ヴイツカース硬度が4500と地球上で
ダイヤモンドに次ぐ硬度を有し、熱伝導性に関してもダ
イヤモンドと同じ様に優れている。
(Prior Art) Cubic boron nitride has a Vwitzkerth hardness of 4500, which is the second highest hardness after diamond on the earth, and is as excellent in thermal conductivity as diamond.

またダイヤモンドと比較して耐酸化性に優れ、高温で鉄
族金属と反応しずらいという特性を有するために、切削
工具材料や耐摩耗工具材料として非常に優れている。
Further, it is excellent in oxidation resistance as compared with diamond, and has a property of hardly reacting with an iron group metal at a high temperature, so that it is very excellent as a cutting tool material or a wear resistant tool material.

また熱伝導性に優れていることに加え、電気絶縁性にも
優れていることを半導体デバイスなどの放熱基材等への
応用がなされている。
Further, in addition to being excellent in heat conductivity, it is also applied to a heat dissipation base material for semiconductor devices and the like that it is also excellent in electric insulation.

従来立方晶窒化硼素は、ダイヤモンドと同様に超高圧超
高温発生装置を用いて合成されていたが近年ダイヤモン
ドの場合と同じ様に超高圧超高温を用いずに気相中から
加熱した基材上に析出させる気相合成法が開発されつつ
ある。
Conventionally, cubic boron nitride was synthesized using an ultra-high pressure ultra-high temperature generator similar to diamond, but in the same way as in the case of diamond in recent years, on a substrate heated from the gas phase without using ultra-high pressure ultra-high temperature. A vapor-phase synthesis method of precipitating into the atmosphere is being developed.

現在試みられている方法は、金属硼素を硼素源とするイ
オンプレーテイング法やイオン化蒸着法、IVD法があ
り、六方晶窒化硼素あるいは金属硼素をターゲツトと
し、それをArやN2でスパツタするスパツタリング法があ
る。
Currently attempted methods include an ion plating method using metal boron as a boron source, an ionization deposition method, and an IVD method. Hexagonal boron nitride or metal boron is used as a target, and sputtering using Ar or N 2 is sputtered. There is a law.

また硼素源、窒素源ともにガス体を利用し、該原料ガス
に外部より高周波、マイクロ波等の電力を負荷し、プラ
ズマ状態に励起して加熱保持した基材上に窒化硼素を合
成するプラズマCVD法が知られている。
Further, a plasma CVD in which a boron source and a nitrogen source utilize a gas body, and an electric power such as high frequency or microwave is externally applied to the raw material gas to excite it into a plasma state to synthesize boron nitride on a heated and held substrate. The law is known.

(発明が解決しようとする問題点) 前述した既存の硬質窒化硼素の製造方法では、ダイヤモ
ンドの気相合成方法の様に単一相の立方晶窒化硼素を合
成することは極めて難しく、立方晶窒化硼素に加えて六
方晶窒化硼素や非晶質の窒化硼素が共存しやすいという
問題点があつた。また単一相に近い立方晶窒化硼素が生
成でき、六方晶窒化硼素が赤外吸収スペクトルで殆ど検
出されない場合も報告されているが、この様な場合でも
結晶性は低く、気相合成ダイヤモンドの様に極めて完全
度の高い立方晶窒化硼素単相の合成は未だなされていな
い。
(Problems to be Solved by the Invention) With the above-described existing method for producing hard boron nitride, it is extremely difficult to synthesize single-phase cubic boron nitride as in the vapor phase synthesis method of diamond, and cubic nitride In addition to boron, there is a problem that hexagonal boron nitride and amorphous boron nitride easily coexist. In addition, it has been reported that cubic boron nitride close to a single phase can be formed, and hexagonal boron nitride is hardly detected in the infrared absorption spectrum. As described above, the synthesis of a cubic boron nitride single phase having an extremely high degree of perfection has not been made yet.

本発明者らは、従来法の問題点に鑑みて、非晶質窒化硼
素や立方晶窒化硼素を含まずかつ結晶性に優れた立方晶
窒化硼素を気相中より合成するために鋭意検討を重ねた
結果本発明を完成させた。
In view of the problems of the conventional method, the present inventors have earnestly studied to synthesize cubic boron nitride excellent in crystallinity and not containing amorphous boron nitride or cubic boron nitride from the vapor phase. As a result of stacking, the present invention was completed.

(問題点を解決するための手段) 即ち本発明の硬質窒化硼素の製造方法は、硬質窒化硼素
を気相中より合成する硬質窒化硼素の気相合成方法にお
いて、窒素(N)源と硼素(B)源を各々独立して活性
化し、400℃以上1200℃以下に保持した基材上で活性化
されたB源とN源を混合し、基材上に硬質窒化硼素を生
成させるものであつて、B源である原料ガスをマイクロ
波プラズマにより活性化し、N源は原料ガス導入ノズル
とその前方に配置した1400℃以上に高温加熱した熱電子
放射材との間でDCプラズマを形成することによつて活性
化し且つ高温加熱した熱電子放射材により、B源、N源
の原料ガスを熱活性化することをプラズマ活性化に加え
て併用することを特徴とするものである。
(Means for Solving the Problems) That is, the method for producing hard boron nitride according to the present invention is a method for synthesizing hard boron nitride in a vapor phase, which comprises a nitrogen (N) source and a boron (N) source. B) Each of the sources is independently activated, and the activated B source and N source are mixed on a substrate kept at 400 ° C or more and 1200 ° C or less to form hard boron nitride on the substrate. The source gas, which is the B source, is activated by microwave plasma, and the N source forms DC plasma between the source gas introduction nozzle and the thermionic emission material placed in front of it and heated to a high temperature of 1400 ° C or higher. It is characterized in that thermal activation of the source gas of the B source and the N source by the thermoelectron emitting material activated by the above and heated at a high temperature is used in addition to the plasma activation.

又本発明の硬質窒化硼素の製造方法に用いる合成装置は
(後述第1図参照)、反応槽(4)内に、窒化硼素を形
成するための基材(7)が設置される基材支持台(8)
と、この基材支持台の前方に位置する熱電子放射材
(5)と、これら基材支持台と熱電子放射材の間付近で
開口し且つその開口より反応槽内に導入される窒素源ガ
スを活性化するためのDCプラズマを熱電子放射材との間
で形成する窒素源ガスノズル(6)とを設け、一方反応
槽(4)壁側に、基材支持台の前方に位置して硼素源ガ
ス導入口(3)を設け且つ反応槽外に、反応槽によつて
垂直に貫通されて上記ガス導入口より反応槽内に導入さ
れる硼素源ガスを活性化するためのマイクロ波プラズマ
を形成するマイクロ波導波管(1)を設けたことを特徴
とするものである。
The synthesis apparatus used in the method for producing hard boron nitride of the present invention (see FIG. 1 described later) is a base material support in which a base material (7) for forming boron nitride is installed in a reaction tank (4). Table (8)
And a thermionic emission material (5) located in front of the base support, and a nitrogen source opened near the base support and the thermionic emission material and introduced into the reaction tank through the opening. A nitrogen source gas nozzle (6) for forming a DC plasma for activating the gas with the thermionic emission material is provided, and on the other hand, on the wall side of the reaction tank (4), in front of the base material support table. Microwave plasma for activating a boron source gas which is provided with a boron source gas introduction port (3) and is vertically penetrated outside the reaction vessel by the reaction vessel and introduced into the reaction vessel through the gas introduction port. It is characterized in that a microwave waveguide (1) for forming the is provided.

以下詳細に本発明を説明する。The present invention will be described in detail below.

本発明は、B源とN源となる原料ガスを各々独立して活
性化し、表面温度を400℃以上1200℃以下に保持した基
材上で活性化されたB源とN源を混合する方法であつ
て、B源の活性化をマイクロ波無極放電によつて、マイ
クロ波プラズマを形成することによつて行ない、一方N
源はガス導入ノズルとその前方に配備した高温加熱した
熱電子放射材との間でDCプラズマを形成することによつ
て行なう。また高温加熱した熱電子放射により同時にB
源、N源の熱活性化も行なうことによつて、基材表面に
非晶質窒化硼素や六方晶窒化硼素を全く含まず、かつ結
晶性に優れた極めて完全度の高い立方晶窒化硼素を気相
中より合成できることを新規に知見した。
The present invention is a method of independently activating raw material gases to be a B source and an N source, and mixing the activated B source and N source on a substrate whose surface temperature is maintained at 400 ° C. or higher and 1200 ° C. or lower. Then, the activation of the B source is performed by a microwave non-polar discharge and by forming a microwave plasma, while N
The source is provided by forming a DC plasma between a gas introduction nozzle and a high temperature heated thermionic emission material placed in front of it. Also, due to thermionic emission heated at high temperature, B
By also activating the heat source and the N source, cubic boron nitride which does not contain amorphous boron nitride or hexagonal boron nitride at all on the surface of the base material and which has excellent crystallinity and which has an extremely high degree of perfection. We newly discovered that it can be synthesized from the gas phase.

さらに本発明においては基材の表面温度を正確に制御す
ることが重要なので、望ましくは支持台の加熱または強
制冷却を実施し、マイクロ波プラズマの強度、DCプラズ
マの強度、熱電子放射材の温度及び熱電子放射材と基材
との位置関係に左右されず独立して表面温度が正確に制
御できるようになつている。そのため基材表面温度と他
の条件を分離でき初めて結晶性の高い単一相の立方晶窒
化硼素を合成することに成功したのである。
Further, in the present invention, since it is important to accurately control the surface temperature of the substrate, it is desirable to carry out heating or forced cooling of the support, microwave plasma intensity, DC plasma intensity, thermionic emission material temperature. In addition, the surface temperature can be accurately controlled independently of the positional relationship between the thermionic emission material and the base material. Therefore, we succeeded in synthesizing single-phase cubic boron nitride having high crystallinity for the first time because the substrate surface temperature and other conditions could be separated.

第1図はこの発明の一実施例の合成装置を示す略図的断
面図である。反応槽(4)内に基材支持台(8)が収納
されている。該基材支持台(8)の上面に、その上に窒
化硼素を形成するための基材(7)が設置されている。
また基材支持台(8)の前方(この実施例では上方)に
は所定距離を隔てて熱電子放射材(5)が置かれてお
り、この熱電子放射材(5)と窒素源導入ガスノズル
(6)との間で、DCプラズマを形成させ、N源ガスを活
性化する。
FIG. 1 is a schematic sectional view showing a synthesizing apparatus according to an embodiment of the present invention. A substrate support base (8) is housed in the reaction tank (4). A base material (7) for forming boron nitride thereon is installed on the upper surface of the base material support base (8).
Further, a thermoelectron emitting material (5) is placed in front of the base material support (8) (upper side in this embodiment) at a predetermined distance. The thermoelectron emitting material (5) and the nitrogen source introducing gas nozzle. DC plasma is formed between (6) and N source gas is activated.

一方硼素源ガスはガス導入口(3)より反応槽(4)内
に導かれ、反応槽によつて垂直に貫通されたマイクロ波
導波管(1)によりマイクロ波が給電され反応槽内でマ
イクロ波無極放電を生じ、硼素源ガスはマイクロ波プラ
ズマの形成により活性化され、図では下方の基材の方へ
活性化状態の硼素源ガスが供給される。
On the other hand, the boron source gas is introduced into the reaction tank (4) through the gas introduction port (3), and microwaves are fed by the microwave waveguide (1) vertically penetrated by the reaction tank to supply microwaves in the reaction tank. A wave non-polar discharge is generated, the boron source gas is activated by the formation of microwave plasma, and the activated boron source gas is supplied to the lower substrate in the figure.

また熱電子放射材は高温加熱されているため、窒素源ガ
ス、硼素源ガスの熱活性化作用も有し、同時に基材表面
の加熱をしている。
Further, since the thermoelectron emitting material is heated at a high temperature, it also has a thermal activation effect on the nitrogen source gas and the boron source gas, and at the same time heats the surface of the base material.

基材支持台(8)は必要に応じて、ヒーターにより加
熱、あるいは冷却媒体の導入により冷却が可能で、基材
の表面温度を所定温度に維持できる。
The substrate support base (8) can be heated by a heater or cooled by introducing a cooling medium, if necessary, and the surface temperature of the substrate can be maintained at a predetermined temperature.

本装置により、マイクロ波プラズマにより活性化された
硼素源と、DCプラズマにより活性化させた窒素源(また
両者は同時に熱活性化も受ける)は基材上で混合され、
基材表面に高純度で結晶性の高い立方晶窒化硼素が合成
される。また条件によつてはウルツ型の硬質窒化硼素の
合成も可能である。
With this device, a boron source activated by microwave plasma and a nitrogen source activated by DC plasma (and both of them are also thermally activated at the same time) are mixed on the substrate,
Cubic boron nitride having high purity and high crystallinity is synthesized on the surface of the base material. Depending on the conditions, it is possible to synthesize wurtzite hard boron nitride.

上記において硼素源はジボランや三塩化硼素が好まし
く、窒素源は窒素またはアンモニアが好ましいが、硼素
源と窒素源を同時に含有するボラジンの使用も可能であ
る。また反応槽内に導入するガスは上述のガス以外で
H2,Ar,Kr,Xe,Rnを混合して使用しても差支えない。
In the above, the boron source is preferably diborane or boron trichloride, and the nitrogen source is preferably nitrogen or ammonia, but it is also possible to use borazine containing a boron source and a nitrogen source at the same time. In addition, the gas introduced into the reaction tank is other than the above gases.
H 2 , Ar, Kr, Xe, Rn may be mixed and used.

これらのガスでH2以外は熱伝導率が低いため基材の冷却
ガスとして使用できかつH2を含めてこれらのガスはプラ
ズマの強度を調節する作用も有している。
These non-H 2 in the gas can be used as a cooling gas low for substrate thermal conductivity and these gases, including of H 2 is also a function of adjusting the intensity of the plasma.

また反応ガス中の窒素原子に対する硼素原子の割合は0.
01%以上100%以下が望ましく、この範囲を逸脱すると
化学量論組成の硬質窒化硼素ができにくくなる。
The ratio of boron atoms to nitrogen atoms in the reaction gas is 0.
01% or more and 100% or less is desirable, and if it deviates from this range, it becomes difficult to form hard boron nitride having a stoichiometric composition.

熱電子放射材の材質に関しては高温において蒸気圧が低
いこと、高融点を有することが要求され、さらに熱電子
放射能に優れていることが要求されるため、W,Ta,Moな
どの高融点金属やLaB6などを用いることが好ましい。熱
電子放射材は1400℃以上に加熱して使用する。この温度
よりも低いと六方晶窒化硼素、非晶質窒化硼素の析出が
支配的となる。
Regarding the material of the thermionic emission material, it is required that the vapor pressure is low at a high temperature and that it has a high melting point, and that it is also required to have excellent thermionic emission, so that the high melting point of W, Ta, Mo, etc. It is preferable to use metal, LaB 6 or the like. The thermionic emissive material should be heated to 1400 ℃ or higher before use. When the temperature is lower than this temperature, precipitation of hexagonal boron nitride and amorphous boron nitride becomes dominant.

また基材の表面温度は400℃以上1200℃以下でないと硬
質窒化硼素が析出しない。
Hard boron nitride does not precipitate unless the surface temperature of the substrate is 400 ° C or higher and 1200 ° C or lower.

反応槽内の圧力は1×10-5Torr〜4×102Torrの極めて
広い範囲でプラズマの安定維持が可能で、硬質窒化硼素
を析出させることが可能であるが、圧力の低い側では析
出速度が極端に小さくなり、逆に高い側では六方晶窒化
硼素が混ざるため1×10-3Torr〜1×102Torrがより好
ましい。
The pressure in the reaction tank is stable within a very wide range of 1 × 10 -5 Torr to 4 × 10 2 Torr, and it is possible to deposit hard boron nitride, but it is possible to deposit on the low pressure side. Since the speed becomes extremely small and conversely the hexagonal boron nitride is mixed on the high side, 1 × 10 −3 Torr to 1 × 10 2 Torr is more preferable.

(作用) 本発明の特徴の1つは、B源とN源をそれぞれ独立して
活性化し、基材表面上で混ぜ合わせることにある。この
様な方法を用いている理由は、B源とN源を混ぜたあと
同時に活性化すると両者が反応性に富むため非晶質の窒
化硼素が生成しやすく、また決晶質の窒化硼素が得られ
ても安定相の六方晶窒化硼素が生成しやすいという問題
があつた。これに対して硼素源、窒素源をそれぞれ独立
して十分活性化し、基材表面で混合すると非平衡相であ
る六方晶窒化硼素のみを得ることが可能となつた。
(Operation) One of the features of the present invention is that the B source and the N source are independently activated and mixed on the surface of the substrate. The reason for using such a method is that if the B source and the N source are mixed and activated at the same time, since both are rich in reactivity, amorphous boron nitride is likely to be formed, and a definite crystalline boron nitride is generated. Even if it is obtained, there is a problem that stable phase hexagonal boron nitride is easily generated. On the other hand, by independently activating the boron source and the nitrogen source independently and mixing them on the surface of the base material, it was possible to obtain only the non-equilibrium hexagonal boron nitride.

またB源、N源を励起する方法も重要であり、B源は電
子密度が高く高い活性度を得ることが可能なマイクロ波
プラズマを用いており、一方N源は低エネルギーイオン
源とも言える熱電子放電源とガス噴出ノズルとの間でDC
プラズマを生じさせるホローアノード型DCプラズマを用
いている。これは高エネルギーのNイオン源を用いると
イオン衝撃で被覆膜が損傷を受ける問題があるからであ
る。
A method of exciting the B source and the N source is also important, and the B source uses microwave plasma which has a high electron density and can obtain high activity, while the N source can be said to be a low energy ion source. DC between the electronic discharge source and the gas ejection nozzle
A hollow anode type DC plasma that produces plasma is used. This is because when a high energy N ion source is used, the coating film may be damaged by ion bombardment.

本発明ではDCプラズマを生じせしめる熱陰極となる高温
加熱した熱電子放射材により原料ガスの熱活性化の効果
もあり、原料ガスの活性化が従来のプラズマCVD法より
も促進されることが考えられる。
In the present invention, there is also an effect of thermal activation of the raw material gas by the high temperature heated thermionic emission material that becomes a hot cathode that causes DC plasma, and it is considered that the activation of the raw material gas is promoted as compared with the conventional plasma CVD method. To be

また基材の表面温度はマイクロ波電力、DC電力、熱電子
放射材の温度、ガス圧力、基材の位置など多重要因で決
定されるが、基材支持台の強制冷却あるいはヒーターに
よる加熱によれば、上述のコーテイング条件とは独立し
て表面温度を設定することが可能であるためコーテイン
グ条件の選択の自由度も大きい。
The surface temperature of the base material is determined by multiple factors such as microwave power, DC power, the temperature of thermionic emission material, gas pressure, and the position of the base material. For example, since the surface temperature can be set independently of the above-mentioned coating conditions, the degree of freedom in selecting the coating conditions is large.

(実施例) 以下に本発明の実施例を述べる。(Examples) Examples of the present invention will be described below.

実施例1: 第1図に本発明の一実施例の合成装置の略図的断面図を
示したが、この装置を用いて、立方晶窒化硼素の合成を
実施した。#5000のダイヤモンド砥粒により、表面に傷
入れ処理を行なつたSiウエハー(大きさは10mm×10mm×
0.3mm)を基材(7)とした。
Example 1: FIG. 1 shows a schematic cross-sectional view of a synthesis apparatus according to an embodiment of the present invention. Using this apparatus, cubic boron nitride was synthesized. A Si wafer (size: 10mm x 10mm x
0.3 mm) was used as the base material (7).

反応槽(4)内を1×10-6Torr以下に排気した後導入口
(3)よりH2100SCM、ノズル(6)よりH220SCMを反応
槽内に導入し、圧力を3Torrに保持し、熱陰極を兼ねる
熱電子放射材(5)としてWフイラメントを使用し2000
℃に加熱してから、導波管(1)を通じて反応槽内にマ
イクロ波を給電し、マイクロ波無極放電を生じせしめ、
同時に直流電源を用いてノズル(6)と熱電子放射材
(5)の間でDCプラズマを発生させる。この際のマイク
ロ波電力は200W、DC電力は30Wとした。
Reaction vessel (4) in the 1 × 10 -6 Torr was evacuated below inlet port (3) from H 2 100SCM, the H 2 20SCM from the nozzle (6) is introduced into the reaction vessel, to maintain the pressure in 3Torr , W filament was used as the thermionic emission material (5) which doubles as a hot cathode.
After heating to ℃, microwave is fed into the reaction tank through the waveguide (1) to generate microwave non-polar discharge,
At the same time, a DC power source is used to generate DC plasma between the nozzle (6) and the thermionic emission material (5). At this time, the microwave power was 200W and the DC power was 30W.

そして基材支持台(8)に冷却ガスを流すことによつて
基材支持台を冷却し基材(7)の表面温度を850℃に保
持した。その後導入口(3)より、水素で希釈したB2H6
(B2H61%+H299%)5SCM、ノズル(6)よりNH3を10SC
M同時に導入した。
Then, by flowing a cooling gas through the base material support base (8), the base material support base was cooled to keep the surface temperature of the base material (7) at 850 ° C. After that, B 2 H 6 diluted with hydrogen was introduced from the inlet (3).
(B 2 H 6 1% + H 2 99%) 5 SCM, NH 3 from nozzle (6) 10 SC
M introduced at the same time.

約3時間のコーテイングを行なつたところ、被覆膜が形
成された。この膜をX線回折、赤外吸収スペクトル分光
法によつて調査したところ、立方晶窒化硼素の固有の回
折ピーク並びに赤外吸収が検出され、六方晶等の他の結
晶構造に起因する回折ピークや赤外吸収は全く検出され
なかつた。SEMによる組織観察では0.5〜1μmの明瞭な
稜線を有する多結晶の集合体が観察された。マイクロビ
ツカースでの硬度測定の結果では5200Hvの値が得られ
た。また被覆膜の膜厚は破断面の観察より4.5μmであ
つた。
After coating for about 3 hours, a coating film was formed. When this film was examined by X-ray diffraction and infrared absorption spectroscopy, a unique diffraction peak of cubic boron nitride and infrared absorption were detected, and diffraction peaks due to other crystal structures such as hexagonal crystal were detected. No infrared absorption was detected. In the structure observation by SEM, a polycrystalline aggregate having a clear ridge of 0.5 to 1 μm was observed. The value of 5200 Hv was obtained as the result of the hardness measurement with the Micro Vickers. Further, the film thickness of the coating film was 4.5 μm from the observation of the fracture surface.

実施例2: 市販のISO P−30超硬合金型番SPU422を用いて基材
(7)とし、実施例1と同じ装置を用いて、立方晶窒化
硼素のコーテイングを実施した。
Example 2: A commercially available ISO P-30 cemented carbide model number SPU422 was used as a substrate (7), and cubic boron nitride was coated using the same apparatus as in Example 1.

熱陰極を兼ねる熱電子放射材(5)と、超硬合金上面
(すくい面)との間隔を25mmに保持し、反応槽内を1×
10-6Torr以下に排気した後、第1表に示した組成の原料
ガス、流量、圧力、マイクロ波電力、DC電力、フイラメ
ント温度、基材表面温度でコーテイングを実施した。
The distance between the thermionic emission material (5), which also serves as a hot cathode, and the upper surface (rake surface) of the cemented carbide is maintained at 25 mm, and the inside of the reaction tank is 1 ×.
After evacuating to 10 -6 Torr or less, coating was performed with the raw material gas having the composition shown in Table 1, the flow rate, the pressure, the microwave power, the DC power, the filament temperature, and the substrate surface temperature.

まずH2のみを導入口(3)及びノズル(6)より導入
し、フイラメントを所定温度に上げた後、マイクロ波電
力、DC電力を投入してマイクロ波プラズマ、DCプラズマ
を形成させた後、基材表面温度が所定温度となる様に基
材支持台を加熱 又は冷却してから、B源、N源を同時に流し、所定圧力
に微調整し、反応をスタートさせる。
First, only H 2 is introduced from the inlet (3) and the nozzle (6), the filament is heated to a predetermined temperature, and then microwave power and DC power are input to form microwave plasma and DC plasma, Heat the base material support so that the base material surface temperature reaches the specified temperature. Alternatively, after cooling, the B source and the N source are caused to flow at the same time, and the pressure is finely adjusted to a predetermined pressure to start the reaction.

約3時間のコーテイングを行つた後、得られたコーテイ
ング膜をX線回折した結果を第1表に併記して示した。
The results of X-ray diffraction of the obtained coating film after coating for about 3 hours are shown in Table 1.

No.1〜No.14の試料のうち、No.1は基材表面温度が高い
ため六方晶BNが得られたものと考えられる。No.4は逆に
基材表面温度が低いために非晶質BNが得られたものと思
われる。さらにNo.8ではフイラメント温度が低すぎたた
めに、非晶質BNが得られたものと判断される。それ以外
は立方晶BNが合成された。
Of the No. 1 to No. 14 samples, it is considered that No. 1 obtained hexagonal BN because the substrate surface temperature was high. On the contrary, in No. 4, it is considered that amorphous BN was obtained because the substrate surface temperature was low. Furthermore, in No. 8, the filament temperature was too low, so it is considered that amorphous BN was obtained. Other than that, cubic BN was synthesized.

これらのコーテイングチツプを用いて下記の条件にて切
削試験を実施した。
Using these coating chips, a cutting test was conducted under the following conditions.

被削材:SCM415(HRC=60)、切削速度:150m/min、送り:
0.1mm/rev、ホルダー:FR21R−44A、切削時間:15min 切削試験後のフランク摩耗はNo.2が0.08mm、No.3が0.12
mm、No.5が0.09mm、No.6が0.11mm、No.7が0.15mm、No.9
が0.12mm、No.11が0.11mm、No.12が0.13mm、No.13が0.1
3mm、No.14が0.09mmであつた。No.10は膜厚が厚いため
かコーテイング膜が剥離した。
Work Material: SCM415 (HR C = 60), Cutting Speed: 150m / min, Feed:
0.1 mm / rev, Holder: FR21R-44A, Cutting time: 15 min The flank wear after cutting test is 0.08 mm for No. 2 and 0.12 for No. 3.
mm, No. 5 is 0.09 mm, No. 6 is 0.11 mm, No. 7 is 0.15 mm, No. 9
Is 0.12 mm, No. 11 is 0.11 mm, No. 12 is 0.13 mm, No. 13 is 0.1
3mm, No.14 was 0.09mm. The coating film peeled off probably because No. 10 had a large film thickness.

一方比較のための未被覆の超硬合金は1分間の寿命しか
なかつた。
On the other hand, the uncoated cemented carbide for comparison had a life of only 1 minute.

(発明の効果) 以上説明した様に本発明の製造方法によれば、硼素源ガ
スをマイクロ波プラズマの形成により活性化し、窒素源
ガスをDCプラズマにより活性化し、さらに両者を同時に
燃陰極を兼ねる高温加熱した熱電子放射材によつて熱活
性化させ、基材表面上で混合させることにより、非晶質
相や六方晶窒化硼素をほとんど含まず、かつ結晶性に優
れた立方晶窒化硼素の合成が可能となつた。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, the boron source gas is activated by the formation of microwave plasma, the nitrogen source gas is activated by the DC plasma, and both of them simultaneously serve as the fuel cathode. By thermally activating it with a thermionic emission material heated at high temperature and mixing it on the surface of the base material, a cubic boron nitride containing almost no amorphous phase or hexagonal boron nitride and having excellent crystallinity is formed. It was possible to synthesize.

又本発明の合成装置によれば、本発明の製造方法が簡
易、確実に行える。
Further, according to the synthesizing apparatus of the present invention, the manufacturing method of the present invention can be carried out simply and reliably.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を実施するのに用いる装置の一例
を示す正面図である。 (1)……マイクロ波導波管、(2)……例えば2.45GH
zのマイクロ波発振機、(3)……B源原料ガス導入
口、(4)……反応槽例えば透明石英反応管、(5)…
…熱電子放射材、(6)……N源原料ガス導入ノズル、
(7)……基材、(8)……基材支持台、(9)……冷
却媒体流通管(又は支持台加熱用ヒーターリード線)、
(10)……真空排気口、(11)……絶縁シール、(12)
……熱電子放射材加熱用電源(AC)、(13)……DC電源
FIG. 1 is a front view showing an example of an apparatus used for carrying out the method of the present invention. (1) …… Microwave waveguide, (2) …… For example 2.45GH
Microwave oscillator of z, (3) ... B source gas inlet, (4) ... reaction tank such as transparent quartz reaction tube, (5) ...
… Thermionic emission material, (6) …… N source material gas introduction nozzle,
(7) ... Substrate, (8) ... Substrate support, (9) ... Coolant flow pipe (or heater heating wire for support),
(10) …… Vacuum exhaust port, (11) …… Insulation seal, (12)
...... Thermionic emission material heating power supply (AC), (13) …… DC power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】硬質窒化硼素を気相中より合成する硬質窒
化硼素の気相合成方法において、窒素源と硼素源を各々
独立して活性化し、400℃以上1200℃以下に保持した基
材上で活性化された硼素源と窒素源を混合し、基材上に
硬質窒化硼素を生成させるものであつて、硼素源である
原料ガスをマイクロ波プラズマにより活性化し、窒素源
は原料ガス導入ノズルとその前方に配置した1400℃以上
に高温加熱した熱電子放射材との間でDCプラズマを形成
することによつて活性化し且つ高温加熱した熱電子放射
材により、硼素源、窒素源の原料ガスを熱活性化するこ
とをプラズマ活性化に加えて併用することを特徴とする
硬質窒化硼素の製造方法。
1. A method for synthesizing hard boron nitride from a gas phase, comprising: activating a nitrogen source and a boron source independently and maintaining the temperature at 400 ° C. to 1200 ° C. A hard boron nitride is produced on a substrate by mixing a boron source and a nitrogen source activated by the above. A raw material gas as a boron source is activated by microwave plasma, and the nitrogen source is a raw material gas introduction nozzle. The source gas of the boron source and the nitrogen source is activated by forming DC plasma between the high temperature heated thermionic emission material heated to 1400 ° C. or higher and the high temperature heated thermionic emission material placed in front of it and the high temperature heated thermionic emission material. A method for producing hard boron nitride, characterized in that thermal activation of is used together with plasma activation.
【請求項2】基材の表面温度は、マイクロ波プラズマの
強度、DCプラズマの強度、及び熱電子放射材の温度と大
きさ、熱電子放射材と基材との位置関係に左右されず独
立して表面温度が決定できるように基材支持台を加熱又
は冷却できる特許請求の範囲第(1)項記載の硬質窒化
硼素の製造方法。
2. The surface temperature of the substrate is independent of the intensity of microwave plasma, the intensity of DC plasma, the temperature and size of the thermionic emission material, and the positional relationship between the thermionic emission material and the substrate. The method for producing hard boron nitride according to claim (1), wherein the substrate support can be heated or cooled so that the surface temperature can be determined.
【請求項3】反応槽(4)内に、窒化硼素を形成するた
めの基材(7)が設置される基材支持台(8)と、この
基材支持台の前方に位置する熱電子放射材(5)と、こ
れら基材支持台と熱電子放射材の間付近で開口し且つそ
の開口より反応槽内に導入される窒素源ガスを活性化す
るためのDCプラズマを熱電子放射材との間で形成する窒
素源ガスノズル(6)とを設け、一方反応槽(4)壁側
に、基材支持台の前方に位置して硼素源ガス導入口
(3)を設け且つ反応槽外に、反応槽によつて垂直に貫
通されて上記ガス導入口より反応槽内に導入される硼素
源ガスを活性化するためのマイクロ波プラズマを形成す
るマイクロ波導波管(1)を設けたことを特徴とする硬
質窒化硼素の製造方法に用いる合成装置。
3. A base material support (8) in which a base material (7) for forming boron nitride is installed in a reaction tank (4), and thermoelectrons located in front of the base material support base. The radiation material (5) and a DC plasma for activating the nitrogen source gas which is opened near the base material support and the thermionic emission material and which is introduced into the reaction tank through the opening are thermionic emission material. And a nitrogen source gas nozzle (6) formed between the reaction vessel (4) and the reaction vessel (4), the boron source gas inlet (3) is provided in front of the base material support on the wall side and outside the reaction vessel. A microwave waveguide (1) for forming a microwave plasma for activating a boron source gas which is vertically penetrated by the reaction tank and introduced into the reaction tank through the gas introduction port. A synthetic apparatus for use in a method for producing hard boron nitride, characterized in that.
【請求項4】基材支持台(8)が、マイクロ波プラズマ
の強度、DCプラズマの強度、及び熱電子放射材の温度と
大きさ、熱電子放射材と基材との位置関係に左右されず
独立して表面温度が決定できるように、ヒーターを備え
た特許請求の範囲第(3)項記載の硬質窒化硼素の製造
方法に用いる合成装置。
4. A base material support base (8) depends on the intensity of microwave plasma, the intensity of DC plasma, the temperature and size of the thermionic emission material, and the positional relationship between the thermionic emission material and the substrate. A synthesizing apparatus used in the method for producing hard boron nitride according to claim (3), which is provided with a heater so that the surface temperature can be independently determined.
【請求項5】基材支持台(8)が、マイクロ波プラズマ
の強度、DCプラズマの強度、及び熱電子放射材の温度と
大きさ、熱電子放射材と基材との位置関係に左右されず
独立して表面温度が決定できるように、冷却媒体が導入
される様構成された特許請求の範囲第(3)項記載の硬
質窒化硼素の製造方法に用いる合成装置。
5. A base material support base (8) depends on the intensity of microwave plasma, the intensity of DC plasma, the temperature and size of the thermionic emission material, and the positional relationship between the thermionic emission material and the substrate. A synthesizing apparatus for use in the method for producing hard boron nitride according to claim (3), wherein a cooling medium is introduced so that the surface temperature can be independently determined.
JP2210387A 1987-02-02 1987-02-02 Method for producing hard boron nitride and synthesizer used therefor Expired - Fee Related JPH07110993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210387A JPH07110993B2 (en) 1987-02-02 1987-02-02 Method for producing hard boron nitride and synthesizer used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210387A JPH07110993B2 (en) 1987-02-02 1987-02-02 Method for producing hard boron nitride and synthesizer used therefor

Publications (2)

Publication Number Publication Date
JPS63190170A JPS63190170A (en) 1988-08-05
JPH07110993B2 true JPH07110993B2 (en) 1995-11-29

Family

ID=12073550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210387A Expired - Fee Related JPH07110993B2 (en) 1987-02-02 1987-02-02 Method for producing hard boron nitride and synthesizer used therefor

Country Status (1)

Country Link
JP (1) JPH07110993B2 (en)

Also Published As

Publication number Publication date
JPS63190170A (en) 1988-08-05

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
US5096740A (en) Production of cubic boron nitride films by laser deposition
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
Singh et al. Hollow cathode plasma assisted chemical vapor deposition of diamond
US4556416A (en) Process and apparatus for manufacturing fine powder
EP0304201A1 (en) Process for making diamond doped diamond and diamond-cubic boron nitride composite films
JPS5927753B2 (en) Diamond synthesis method
US4714625A (en) Deposition of films of cubic boron nitride and nitrides of other group III elements
US5624719A (en) Process for synthesizing diamond in a vapor phase
JPS62202897A (en) Production of diamond
JPS6184379A (en) Production of high-hardness boron nitride film
JPH07110993B2 (en) Method for producing hard boron nitride and synthesizer used therefor
JPS59232991A (en) Production of thin diamond film
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPH0733580B2 (en) Method for producing cubic boron nitride film
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS6369972A (en) Production of cubic boron nitride film
JPH0649637B2 (en) High hardness boron nitride synthesis method
JPH0667797B2 (en) Diamond synthesis method
JPH0419197B2 (en)
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JP2762561B2 (en) Method of synthesizing diamond film
JPS6335495A (en) Diamond vapor phase synthesizer of high-efficiency

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees