JPH07107467B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH07107467B2
JPH07107467B2 JP63037978A JP3797888A JPH07107467B2 JP H07107467 B2 JPH07107467 B2 JP H07107467B2 JP 63037978 A JP63037978 A JP 63037978A JP 3797888 A JP3797888 A JP 3797888A JP H07107467 B2 JPH07107467 B2 JP H07107467B2
Authority
JP
Japan
Prior art keywords
valve
signal
temperature
refrigerant flow
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63037978A
Other languages
Japanese (ja)
Other versions
JPH01212867A (en
Inventor
健 青木
弘行 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63037978A priority Critical patent/JPH07107467B2/en
Publication of JPH01212867A publication Critical patent/JPH01212867A/en
Publication of JPH07107467B2 publication Critical patent/JPH07107467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 産業上の利用分野 本発明は、低温庫の温度を制御する冷凍装置に係り、詳
述すると冷媒流量を制御する冷媒流量制御弁の開度を変
化させるための制御装置を改良した冷凍装置に関する。
The present invention relates to a refrigerating apparatus for controlling the temperature of a low-temperature storage, and more specifically to changing the opening degree of a refrigerant flow control valve for controlling the refrigerant flow rate. The present invention relates to a refrigeration system having an improved control device.

従来の技術 冷媒流量を制御する弁としては、いくつかの種類のもの
があるが、中でもその応答性の面で優れている電気式膨
張弁がよく知られている。この電気式膨張弁としては、
モータによってその弁開度を調節するものや、弁と連接
するバネに加える力を変化させて弁解度を調節するもの
などがある。本発明においては後者の弁を採用するもの
であり、後者の弁としては特公昭60−56983号公報や特
公昭60−34037号公報がある。特公昭60−56983号公報に
あっては、蒸発器出口側の温度の変化を電気信号に変換
し、この電気信号で弁の開度を調整するようにしたもの
である。一方、特公昭60−34037号公報にあっては、圧
縮機の始動時には、凝縮器入口部乃至中間部に設けた第
3の温度センサによる電気信号が所定値に達するまで電
気式膨張弁を全開状態にする信号を制御回路が出力する
ものである。
2. Description of the Related Art There are several types of valves for controlling the flow rate of a refrigerant, and among them, an electric expansion valve that is excellent in its responsiveness is well known. For this electric expansion valve,
There are ones that adjust the valve opening degree by a motor, and one that adjusts the valve resolution by changing the force applied to the spring that is connected to the valve. In the present invention, the latter valve is adopted, and as the latter valve, there are JP-B-60-56983 and JP-B-60-34037. In Japanese Patent Publication No. 60-56983, the change in temperature at the outlet side of the evaporator is converted into an electric signal, and the opening degree of the valve is adjusted by this electric signal. On the other hand, according to Japanese Patent Publication No. 60-34037, at the time of starting the compressor, the electric expansion valve is fully opened until the electric signal from the third temperature sensor provided at the condenser inlet or intermediate portion reaches a predetermined value. The control circuit outputs a signal for setting the state.

発明が解決しようとする課題 前記特公昭60−56983号公報では膨張弁の開度を変える
ための電気信号としてどういう信号なのか詳細に記述さ
れておらず、そのコントローラが明示されるものではな
い。一方、特公昭60−34037号公報では、圧縮機が長時
間停止した後で始動した場合にあって、凝縮器に設けた
温度センサの電気信号が所定値に達するまでは、膨張弁
を全開状態にする信号を制御回路が出力することで、極
めて安定した始動を可能としたものである。しかしなが
ら、印加する電圧に対する膨張弁の応答性を良好にすべ
く制御回路が構成されているものではない。したがって
両公報においては、電気式膨張弁の信号に対する応答性
を速くするための改良が為されておらず、温度変化に対
する制御信号の変更が迅速に行なわれるものの、それが
弁の開度変更速度に繁栄されていないという問題があっ
た。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In Japanese Patent Publication No. 60-56983, what kind of signal is used as an electric signal for changing the opening of the expansion valve is not described in detail, and its controller is not specified. On the other hand, in JP-B-60-34037, when the compressor is started after being stopped for a long time, the expansion valve is fully opened until the electric signal of the temperature sensor provided in the condenser reaches a predetermined value. The control circuit outputs a signal indicating that the start is extremely stable. However, the control circuit is not configured to improve the response of the expansion valve to the applied voltage. Therefore, in both publications, no improvement is made to speed up the response of the electric expansion valve to the signal, and although the control signal is quickly changed with respect to the temperature change, it is the valve opening change speed. There was a problem that was not prosperous.

そこで、本発明は電気式膨張弁において、弁に連接せる
バネに加える力をソレノイドにて発生させるものにあっ
て、弁の開閉の応答性の悪い原因がソレノイドにて磁化
される磁心のヒステリシスにあることに着目し、このヒ
ステリシス幅を小さくすることをその技術的課題とし、
このヒステリシス幅が小さくなる信号を送出する制御装
置(弁開度調整部)を有した冷凍装置を提供するもので
ある。
Therefore, in the present invention, in the electric expansion valve, the force applied to the spring connected to the valve is generated by the solenoid, and the cause of the poor response of opening and closing of the valve is the hysteresis of the magnetic core magnetized by the solenoid. Paying attention to the fact that it is a technical issue to reduce this hysteresis width,
It is intended to provide a refrigerating apparatus having a control device (valve opening adjustment unit) that sends out a signal with which the hysteresis width becomes small.

〔発明の構成〕[Structure of Invention]

課題を解決するための手段 本発明は、圧縮機、凝縮器、減圧装置及び蒸発器を環状
に配管接続する冷凍装置を提供するものであって、電気
信号により弁と連接するバネに加わる力が変化してその
開度が制御され冷媒流量を制御する冷媒流量制御弁と、
冷凍装置にて冷却される室内の温度を検知する温度セン
サと、所望の室内温度を設定する温度設定部と、温度セ
ンサと温度設定部との信号に基づいて前記バネの共振周
波数を避けてしかもこの共振周波数の近傍の周波数によ
るパルス幅変調信号を生成しこのパルス幅変調信号にて
弁の開度を制御する弁開度調整部とを設けたものであ
る。
Means for Solving the Problem The present invention provides a refrigeration apparatus in which a compressor, a condenser, a decompression device, and an evaporator are connected by pipes in an annular shape, and a force applied to a spring connected to a valve by an electric signal is applied. A refrigerant flow rate control valve that controls the refrigerant flow rate by changing its opening degree,
A temperature sensor that detects the temperature of the room cooled by the refrigeration system, a temperature setting unit that sets a desired room temperature, and avoids the resonance frequency of the spring based on signals from the temperature sensor and the temperature setting unit. There is provided a valve opening adjustment unit that generates a pulse width modulation signal with a frequency near the resonance frequency and controls the opening of the valve with the pulse width modulation signal.

作用 ソレノイドに流す電流の向きを変化させることで、発生
する磁界により磁化される磁心のヒステリシスは、電流
の向きを変化させる速さすなわち周波数に比例するもの
であり、この周波数としてバネの共振周波数を避けて、
しかもこの共振周波数にできる限り近づけた周波数(共
振周波数の近傍の周波数)に選定することで、ヒステリ
シスの幅を小さなものにしている。
The hysteresis of the magnetic core magnetized by the magnetic field generated by changing the direction of the current flowing through the solenoid is proportional to the speed at which the direction of the current changes, that is, the frequency, and the resonance frequency of the spring is used as this frequency. Avoid,
Moreover, the width of the hysteresis is made small by selecting the frequency as close as possible to this resonance frequency (frequency near the resonance frequency).

実施例 以下本発明の実施例を第1図〜第4図を参照して説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

(1)は圧縮機(2)、四方弁(3)、室外側熱交換器
(以後凝縮器と称す)(4)、減圧装置としてのキャピ
ラリチューブ(5)及び膨張弁(6)、室内側熱交換器
(以後蒸発器と称す)(7)、アキュムレータ(8)等
を環状に配管接続した主冷媒流路(A)を有する冷凍装
置であって、四方弁(3)は冷却運転時において実線矢
印の方向に冷媒経路をとり、除霜運転時において波線矢
印の方向に冷媒経路をとるように制御される。(9)は
冷却運転時蒸発器に空気を送って貯蔵室室内空気を循環
・冷媒させる室内側送風機、(10)(11)は貯蔵室内の
温度を検知すべく冷却運転時における蒸発器(7)への
空気の吸込側、吹出側にそれぞれ配設される室内温度セ
ンサ(前者を吸込温度センサ後者を吹出温度センサとす
る)であり、後述する弁開度調整部(15)に検知温度に
基づいた信号をそれぞれ送出する。尚、キャピラリチュ
ーブ(5)及び膨張弁(6)には、それぞれ逆止弁(1
2)(13)を並列接続しておく。
(1) is a compressor (2), a four-way valve (3), an outdoor heat exchanger (hereinafter referred to as a condenser) (4), a capillary tube (5) as a decompressor and an expansion valve (6), indoor side A refrigeration system having a main refrigerant flow path (A) in which a heat exchanger (hereinafter referred to as an evaporator) (7), an accumulator (8), and the like are connected in an annular pipe, and a four-way valve (3) is used in a cooling operation. It is controlled to take the refrigerant path in the direction of the solid arrow and take the refrigerant path in the direction of the broken arrow during the defrosting operation. (9) is an indoor blower that sends air to the evaporator during cooling operation to circulate / refrigerate the air in the storage room, and (10) and (11) are evaporators (7) during cooling operation to detect the temperature in the storage room. ) Is an indoor temperature sensor (the former is the intake temperature sensor and the latter is the outlet temperature sensor) provided on the air intake side and the air outlet side, respectively. The signal based on each is transmitted. The capillary tube (5) and the expansion valve (6) have check valves (1
2) Connect (13) in parallel.

(14)は弁開度調整部(15)にてその開度が制御される
冷媒流量制御弁であり、冷凍装置(1)(詳しくは主冷
媒流路(A))の低圧側(本例では冷却運転時における
蒸発器(7)の出口側)に接続される。(B)は電気信
号によりその開閉が制御される電動弁(本例では電磁弁
を使用することから以下電磁弁と称す)(16)、膨張弁
(17)及び補助エバポレータ(以下補助エバと称す)
(18)を直列接続し主冷媒流路(A)すなわち、膨張弁
(6)、蒸発器(7)及び冷媒流量制御弁(14)をバイ
パスする補助流路であって、冷却運転時における凝縮器
(4)の出口側(ここではキャビラリチューブの出口
側)と蒸発器(7)の出口側(ここではアキュームレー
タの入口側)との間に接続され、かつ補助エバ(18)を
凝縮器(4)の風下側に位置するように配設させる。ま
た電磁弁(16)は圧縮器(2)の吸込側(ここではアキ
ュムレータ(8)の出口側に配設された低圧スイッチ
(19)により、その開閉が制御される。本例では、圧縮
機(2)の吸込側圧力が所定圧力P1以下になったとき、
低圧スイッチ(19)が閉じ、電磁コイル(図示せず)に
通電され電磁弁(16)が開放状態となり、吸込側圧力が
一定圧力P2(P2>P1)以上になったとき、低圧スイッチ
(19)が開き電磁コイルへの通電が停止して電磁弁(1
6)が閉塞状態となるようにしておく。また、冷媒流量
制御弁(14)は弁と連接するバネに加わる力を電気信号
により変化させて弁の開度が制御されるものであり、直
流信号にて制御するが、所定電圧(本例では12V)を印
加したとき全閉、零電圧を印加したとき全開となるもの
で、電圧と所定電圧との間の電圧を印加したとき印加電
圧が小さくなればなるほどその開度が大きくなる。
Reference numeral (14) is a refrigerant flow rate control valve whose opening is controlled by a valve opening adjusting section (15), and is on the low pressure side of the refrigeration system (1) (more specifically, the main refrigerant flow path (A)) (this example). Then, it is connected to the outlet side of the evaporator (7) during the cooling operation. (B) is a motor-operated valve whose opening and closing is controlled by an electric signal (in the present example, a solenoid valve is used, henceforth referred to as a solenoid valve) (16), an expansion valve (17) and an auxiliary evaporator (hereinafter referred to as an auxiliary evaporator). )
(18) is a main refrigerant flow path (A) that is connected in series, that is, an auxiliary flow path that bypasses the expansion valve (6), the evaporator (7) and the refrigerant flow control valve (14), and is used for condensation during cooling operation. Is connected between the outlet side of the vessel (4) (here the outlet side of the capillary tube) and the outlet side of the evaporator (7) (here the inlet side of the accumulator), and the auxiliary evaporator (18) is connected to the condenser. It is arranged so as to be located on the leeward side of (4). The opening / closing of the solenoid valve (16) is controlled by a low pressure switch (19) arranged on the suction side of the compressor (2) (here, on the outlet side of the accumulator (8). In this example, the compressor When the suction side pressure of (2) becomes less than the predetermined pressure P 1 ,
When the low-pressure switch (19) is closed, the electromagnetic coil (not shown) is energized, the solenoid valve (16) is opened, and the suction side pressure exceeds a certain pressure P 2 (P 2 > P 1 ) The switch (19) opens and the solenoid coil is de-energized and the solenoid valve (1
Keep 6) closed. The refrigerant flow control valve (14) controls the opening of the valve by changing the force applied to the spring connected to the valve by an electric signal, and is controlled by a DC signal. 12V), it is fully closed when a voltage of 0V is applied, and it is fully opened when a voltage of zero is applied. When a voltage between a voltage and a predetermined voltage is applied, the opening becomes larger as the applied voltage becomes smaller.

そして、この冷媒流量制御弁(14)は電磁式調節弁と称
されるもので、第4図に示すような構造をなし、以下そ
の例を説明する(ただし冷却運転時の冷媒の流れをもと
に説明する)。弁本体(30)は、蒸発器出口側と接続す
る冷媒流入部(31)と、四方弁(3)の入口側と接続す
る冷媒流出部(32)を有し、弁本体内を二室に区画する
隔壁(33)には両部(31)(32)を連通する連通口(3
4)(35)が穿たれ、この連通口(34)(35)を開閉す
る弁座(36)(37)が弁軸(38)に設けられており、一
方の弁座(36)は流入部側に、他方の弁座(37)は流出
部側に位置している。そして、弁座(36)(37)を開放
する方向に付勢する圧縮されたコイルバネ(39)(40)
がそれぞれ出口側弁本体内に介設されている、一方、弁
軸(38)の頭部に設けられた作動体(41)は、電気信号
により励磁されるコイル(42)による磁力を受け軸を上
下方向に駆動させる。また、弁座(36)(37)はコイル
(42)が非通電のとき全開であり、所定電圧が印加され
たとき全閉となり、印加電圧が小さくなると開方向に動
作する。従って、この冷媒流量制御弁(14は全閉から全
開又はこの逆の動作が行なえる構造となっている。
The refrigerant flow control valve (14) is called an electromagnetic control valve and has a structure as shown in FIG. 4, and an example thereof will be described below (however, the flow of the refrigerant during the cooling operation is also described. And explained). The valve body (30) has a refrigerant inflow part (31) connected to the evaporator outlet side and a refrigerant outflow part (32) connected to the inlet side of the four-way valve (3), and the valve body is divided into two chambers. The partition wall (33) to be partitioned divides the communication port (3) that connects both parts (31) (32).
4) (35) is drilled, and valve seats (36) (37) that open and close the communication ports (34) (35) are provided on the valve shaft (38), and one valve seat (36) flows in. And the other valve seat (37) is located on the outflow side. Then, the compressed coil springs (39) (40) that urge the valve seats (36) (37) in the opening direction.
Are provided in the outlet side valve body, respectively, while the actuating body (41) provided on the head of the valve shaft (38) receives the magnetic force of the coil (42) excited by an electric signal. Drive vertically. Further, the valve seats (36) (37) are fully opened when the coil (42) is not energized, fully closed when a predetermined voltage is applied, and operate in the opening direction when the applied voltage becomes small. Therefore, the refrigerant flow control valve (14 has a structure capable of performing an operation from fully closed to fully open or vice versa.

弁開度調整部(15)は、室内温度センサ(10)(11)及
び室内温度を所望の温度に設定する温度設定部(20)か
らの信号を受け、これらの信号の関係に基づきオンオフ
デューティー比を変化させた電気信号(すなわちパルス
幅変調信号)を作成し、冷媒流量制御弁(14)を制御す
るものであり、第1図にその一例を示している。尚、冷
媒流量制御弁(14)は、その一部を構成するソレノイド
にて磁化される磁心が印加電圧の滑らかな変化に対して
はヒステリシス幅が大きくなり、また周囲的変化に対し
てはその周期が短くなるほどヒステリシス幅が大きくな
る特性を有しており、これが信号に対する弁開度変更の
応答性を遅らせる原因の一つであることから、このヒス
テリシス幅を小さくするために、弁開度調整部(15)は
印加電圧を周期的に変化させる場合にバネの共振周波数
をも効力に入れて周波数を設定したものである。
The valve opening adjustment section (15) receives signals from the indoor temperature sensors (10) and (11) and a temperature setting section (20) that sets the indoor temperature to a desired temperature, and based on the relationship between these signals, the on / off duty is set. An electric signal (that is, a pulse width modulation signal) with a changed ratio is created to control the refrigerant flow control valve (14), and an example thereof is shown in FIG. The refrigerant flow rate control valve (14) has a magnetic core magnetized by a solenoid which forms a part thereof, and has a large hysteresis width with respect to a smooth change in the applied voltage, and has a large hysteresis width with respect to a surrounding change. As the cycle becomes shorter, the hysteresis width becomes larger, which is one of the causes of delaying the response of the valve opening change to the signal.Therefore, in order to reduce this hysteresis width, the valve opening adjustment The part (15) sets the frequency by taking into consideration the resonance frequency of the spring when the applied voltage is changed periodically.

(21)は温度設定部(20)からの信号と室内温度センサ
(10)(11)の両信号とを受ける演算部で、室内温度セ
ンサ(10)(11)による検知温度の平均温度(これを室
内温度と判断している)と設定温度とに基づいてPID制
御法による演算を行ない、その演算値を例えば8ビット
の2進数信号に変換して出力端子群D(D0〜D7)より出
力する。出力される信号をDデータの称す。演算部(2
1)はまた、出力端子φより基準クロック(ここでは周
波数2MHz)のパルスを送出している。(22)は計数部で
あり、基準クロックパルスを受け、適宜数で分周してス
ロックパルス(本例では64分周して31,25KHzのパルス)
を作る分周器(23)と、このクロックパルスを受け8ビ
ットの2進数すなわち256段階に計数する計数器(24)
とから成り、計数器(24)は出力端子群Q(Q0〜Q7)よ
り8ビットの2進数信号を出力する。この出力信号をP
データと称すが、Pデータの1周期は約1/120となる。
そして、(25)は演算部(21)の出力すなわちDデータ
と、計数部(22)の出力すなわちPデータとを入力し、
両データを比較してその比較結果に基づいてHiレベル信
号(所定電圧Vccであり以後“H"信号と称す)若しくはL
oレベル信号(零電圧であり以後“L"信号と称す)を出
力する比較部である。尚、演算部(21)、計数部(22)
及び比較部(25)にて弁開度調整部(15)を構成してい
る。
Reference numeral (21) is a calculation unit that receives both the signal from the temperature setting unit (20) and the signals from the indoor temperature sensors (10) and (11). The average temperature detected by the indoor temperature sensors (10) and (11) Is determined as the room temperature) and the set temperature, a calculation is performed by the PID control method, the calculated value is converted into, for example, an 8-bit binary signal, and the output terminal group D (D 0 to D 7 ). Output more. The output signal is referred to as D data. Arithmetic unit (2
In 1), the pulse of the reference clock (here, the frequency is 2 MHz) is sent from the output terminal φ. (22) is a counter, which receives a reference clock pulse and divides it by an appropriate number to generate a slock pulse (in this example, it is divided by 64 to generate a pulse of 31,25 KHz)
Frequency divider (23) and a counter (24) that receives this clock pulse and counts it in 8-bit binary numbers, that is, 256 steps
The counter (24) outputs an 8-bit binary signal from the output terminal group Q (Q 0 to Q 7 ). This output signal is P
Although referred to as data, one cycle of P data is about 1/120.
Then, (25) inputs the output of the calculation unit (21), that is, D data, and the output of the counting unit (22), that is, P data,
The two data are compared and a Hi level signal (predetermined voltage V cc , hereinafter referred to as "H" signal) or L based on the comparison result.
This is a comparison unit that outputs a level signal (zero voltage, which will be referred to as “L” signal hereafter). The arithmetic unit (21) and the counting unit (22)
Further, the valve opening adjustment section (15) is configured by the comparison section (25).

弁開度調整部(15)の出力はスイッチング素子例えばス
イッチングトランジスタ(以下トランジスタと称す)
(26)のベースに入力されており、このトランジスタ
(26)はエミッタが接地され、コレクタが冷媒流量制御
弁(詳しくは電磁コイル)(14)を介して所定電圧源V
cc(=12ボルト)に接続されている。そして、弁開度調
整部(15)から出力されるパルス幅変調信号における
“H"信号のときトランジスタ(26)がオンして電磁コイ
ルに通電され、弁が閉じる方向に作動し、“L"信号のと
きトランジスタ(26)がオフして、弁が開く方向に作動
する。このため弁は1周期の中で全開と全閉との両方の
動作をするように指示されるが、機械的に追随できず、
オンオフデューティー比から決まる平均電圧に対応した
位置での弁開度で安定することとなる。
The output of the valve opening adjustment unit (15) is a switching element, for example, a switching transistor (hereinafter referred to as a transistor).
It is input to the base of (26), the emitter of this transistor (26) is grounded, and the collector is connected to a predetermined voltage source V via a refrigerant flow control valve (more specifically, electromagnetic coil) (14).
It is connected to cc (= 12 volts). When the "H" signal in the pulse width modulation signal output from the valve opening adjustment section (15), the transistor (26) is turned on and the electromagnetic coil is energized, and the valve operates in the closing direction. When a signal is given, the transistor (26) is turned off and the valve operates in the opening direction. For this reason, the valve is instructed to perform both full open and full close operations within one cycle, but it cannot follow mechanically,
The valve opening at the position corresponding to the average voltage determined by the on / off duty ratio stabilizes.

以上の構成による冷凍装置の冷却運転時の動作を説明す
る{四方弁(3)による冷媒流路は実線矢印の方向であ
る}が、貯蔵室内には貯蔵物が適度に収容されており、
室内温度が設定温度を上回っているものとする。
Although the operation during the cooling operation of the refrigerating device having the above-described configuration will be described {the refrigerant flow path by the four-way valve (3) is in the direction of the solid line arrow}, the stored matter is appropriately accommodated in the storage chamber,
It is assumed that the room temperature exceeds the set temperature.

室内温度センサ(10)(11)からの信号により弁開度調
整部(15)が弁の開度を決定して信号を送出し冷媒流量
制御弁(14)の開度を変化させる。このとき、圧縮機
(2)から吐出された高圧ガス冷媒は、凝縮器(4)で
凝縮されて液化し、膨張弁(6)で減圧膨張され、蒸発
器(7)内を通過する際に室内空気と熱交換を行ない、
冷媒流量制御弁(14)で流量制御され、アキュムレータ
(8)を経て低圧ガス冷媒となって圧縮機(2)へ戻
る。冷媒はこの主冷媒流路(A)を循環することで、室
内空気を冷却し、設定温度まで低下させる。
A valve opening adjustment section (15) determines the opening of the valve based on the signals from the indoor temperature sensors (10) and (11) and sends a signal to change the opening of the refrigerant flow control valve (14). At this time, the high-pressure gas refrigerant discharged from the compressor (2) is condensed in the condenser (4), liquefied, decompressed and expanded in the expansion valve (6), and passed through the evaporator (7). Exchanges heat with indoor air,
The flow rate is controlled by the refrigerant flow rate control valve (14), passes through the accumulator (8), becomes a low-pressure gas refrigerant, and returns to the compressor (2). The refrigerant circulates in the main refrigerant channel (A) to cool the room air and reduce the temperature to the set temperature.

ここで、冷媒流量制御弁(14)及び弁開度調整部(15)
の動作を説明すると、室内温度センサ(10)(11)から
の信号を受け、演算部(21)が両検知信号の平均をとり
室内温度とし、設定温度との関係からPIDによる演算を
行ない、出力端子群DよりDデータを出力する。このD
データとしては、室内温度と設定温度との偏差が大きい
とき低い値となり、小さいとき高い値となる。一方、計
数部(22)では基準クロックよりクロクパルスを作り、
このクロックパルスを1周期Tにおいて256段階で計数
し(その1周期Tが本例では約1/120となる)、出力端
子群QよりPデータを出力する。そして比較部(25)が
DデータとPデータを比較してDデータがPデータより
大きい(P<D)とき、“L"信号を出力し、Dデータが
Pデータ以下(P≧D)のとき“H"信号を出力する。し
たがって偏差が大きいとき1周期T中における“H"信号
を出力する期間tは長く偏差が小さくなるにつれて“H"
信号の出力する期間tは短くなる。すなわち、1周期T
における出力電圧Vtは、〔Vt=Vcc×t/T〕であり、tの
長さが偏差に応じて比例変化するため、Vtも偏差が大き
いとき大きな値をとり、偏差が小さいとき小さな値をと
ることとなる。
Here, the refrigerant flow control valve (14) and the valve opening adjustment section (15)
The operation of (1) receives the signals from the indoor temperature sensors (10) (11), the arithmetic unit (21) takes the average of both detection signals as the indoor temperature, and calculates the PID from the relationship with the set temperature. D data is output from the output terminal group D. This D
The data has a low value when the deviation between the indoor temperature and the set temperature is large, and a high value when the deviation is small. On the other hand, the counter (22) creates a clock pulse from the reference clock,
This clock pulse is counted in 256 steps in one cycle T (one cycle T is about 1/120 in this example), and P data is output from the output terminal group Q. Then, the comparing section (25) compares the D data with the P data, and when the D data is larger than the P data (P <D), outputs an “L” signal, and the D data is equal to or less than the P data (P ≧ D). At this time, the "H" signal is output. Therefore, when the deviation is large, the period t during which the "H" signal is output in one cycle T is long, and the "H" becomes longer as the deviation becomes smaller.
The period t during which the signal is output becomes shorter. That is, one cycle T
The output voltage V t at is [V t = V cc × t / T], and the length of t changes proportionally according to the deviation. Therefore, V t also has a large value when the deviation is large, and the deviation is small. Sometimes it takes a small value.

そして、トランジスタ(26)は、“H"信号の出力されて
いる期間tの間だけオンし、冷媒流量制御弁(14)には
1秒間に期間tずつ1/T回だけの通電が為される。これ
は、実質的に〔Vt=Vcc×t/T〕の電圧が冷媒流量制御弁
(14)に印加され、この電圧Vtに基づいた開度で弁が停
止することと同じである。
Then, the transistor (26) is turned on only during the period t during which the "H" signal is output, and the refrigerant flow control valve (14) is energized only 1 / T times for each period t per second. It This is substantially the same as when a voltage of [V t = V cc × t / T] is applied to the refrigerant flow control valve (14) and the valve stops at the opening based on this voltage V t. .

ただし、比較部(25)から出力される信号の周波数f
(=1/T)が、冷媒流量制御弁(14)の弁と連接するバ
ネの共振周成数fLと等しくなると、制御弁自体が共振し
てしまい弁としての本来の機能が果たせなくなるため、
バネの共振が起こらない範囲で、fをfLより大きい中で
もできる限りfLに近づけた値に設定しておく(実施例中
では120Hzとしている)。このように設定しておくこと
で、弁に印加する電圧に対する弁開度変更の応答性が向
上する。
However, the frequency f of the signal output from the comparison unit (25)
When (= 1 / T) becomes equal to the resonance frequency f L of the spring connected to the valve of the refrigerant flow control valve (14), the control valve resonates and the original function as a valve cannot be achieved. ,
Within a range in which spring resonance does not occur, f is set to a value that is as close to f L as possible, even if it is larger than f L (120 Hz in the embodiment). By setting in this way, the responsiveness of changing the valve opening degree with respect to the voltage applied to the valve is improved.

一方、冷却運転の継続に伴ない室温温度が低下し、冷媒
流量制御弁(14)の開度も徐々に小さくなると、圧縮機
(2)の吸込側圧力は次第に低下していく。この吸込側
圧力が所定圧力P1以下になると、低圧スイッチ(19)が
閉じ電磁弁(16)が開放状態となる。このため、凝縮器
(4)を通過した冷媒は主冷媒流路(A)と補助流路
(B)とに分流される。このとき、補助流路(B)にお
ける補助エバ(18)は、凝縮器(4)の風下側に位置す
るため、凝縮器(4)にて熱交換された暖かい空気によ
り暖められ、同一流量の冷媒が流れ込む場合でも、補助
エバ(18)の蒸発温度は蒸発器(7)の蒸発温度よりも
高くなる。そして、補助流路(B)に冷媒が流れ込むこ
とでアキュムレータ(8)への冷媒流量が増え、圧縮機
(2)の吸込側圧力は次第に高くなってゆく。また補助
流路(B)に冷媒が分流することで、主冷媒流路(A)
へ流れる冷媒量が減少して、蒸発器(7)の冷却能力は
実質的に低下することとなり、室内温度の低下の度合い
は少なくなり、結果的に冷媒流量制御弁(14)の開度が
小さくなることは抑制される。この状態が継続し、吸込
側圧力が次第に高まり一定圧力P2以上になると、低圧ス
イッチ(19)が開放し電磁弁(16)が閉塞して、補助流
路(B)への分流が絶たれ、再び主冷媒流路(A)だけ
による冷却運転に切り換わる以下同様の動作を切り返
す。したがって、圧縮機(2)の吸込側圧力が所定圧力
P1より大幅に低下することは抑制され、このため圧縮機
(2)を停止することなく連続作動させられる。すなわ
ち、圧縮機(2)の低圧補償が行なえるとともに、圧縮
機(2)が停止しないことから、最も過負荷となる始動
を少なくし結果的に圧縮機(2)の寿命を延長すること
となる。
On the other hand, when the room temperature decreases as the cooling operation continues and the opening of the refrigerant flow control valve (14) also gradually decreases, the suction side pressure of the compressor (2) gradually decreases. When the suction side pressure becomes equal to or lower than the predetermined pressure P 1 , the low pressure switch (19) is closed and the solenoid valve (16) is opened. Therefore, the refrigerant that has passed through the condenser (4) is divided into the main refrigerant passage (A) and the auxiliary passage (B). At this time, since the auxiliary evaporator (18) in the auxiliary flow path (B) is located on the leeward side of the condenser (4), it is warmed by the warm air heat-exchanged in the condenser (4) and has the same flow rate. Even when the refrigerant flows in, the evaporation temperature of the auxiliary evaporator (18) becomes higher than the evaporation temperature of the evaporator (7). Then, as the refrigerant flows into the auxiliary flow path (B), the refrigerant flow rate to the accumulator (8) increases, and the suction side pressure of the compressor (2) gradually increases. In addition, by splitting the refrigerant in the auxiliary flow path (B), the main refrigerant flow path (A)
The amount of refrigerant flowing into the evaporator (7) is reduced, and the cooling capacity of the evaporator (7) is substantially reduced, the degree of decrease in the indoor temperature is reduced, and as a result, the opening of the refrigerant flow control valve (14) is reduced. It is suppressed from becoming small. When this state continues and the suction side pressure gradually rises to a certain pressure P 2 or more, the low pressure switch (19) opens and the solenoid valve (16) closes, and the diversion to the auxiliary flow path (B) is cut off. Then, the same operation is repeated again by switching to the cooling operation using only the main refrigerant flow path (A). Therefore, the suction side pressure of the compressor (2) is the predetermined pressure.
Significantly lower than P 1 is suppressed, so that the compressor (2) can be continuously operated without stopping. That is, the low pressure compensation of the compressor (2) can be performed, and since the compressor (2) does not stop, the most overloaded start can be reduced and the life of the compressor (2) can be extended as a result. Become.

〔発明の効果〕〔The invention's effect〕

以上記述したように本発明によれば、冷媒流量制御弁に
送出される信号がパルス幅変調信号であることから、弁
の一部を構成しているソレノイドに流れる電流が周期的
に変化し、それに伴なう磁界の方向も周期的に変化す
る。このとき、この磁界を受けバネを押圧する磁心はヒ
ステリシスをもって動作するが、そのヒステリシスは電
流周期に反比例する。このためパルス幅変調信号の周波
数をバネの共振周波数を避けて、しかもこの共振周波数
にできる限り近づけた周波数(共振周波数の近傍の周波
数)に設定することで、ヒステリシスを小さくして、信
号に対する弁開度変更の応答性を良くしている。
As described above, according to the present invention, since the signal sent to the refrigerant flow control valve is the pulse width modulation signal, the current flowing through the solenoid forming a part of the valve changes periodically, The direction of the magnetic field accompanying it also changes periodically. At this time, the magnetic core that receives this magnetic field and presses the spring operates with hysteresis, which hysteresis is inversely proportional to the current cycle. For this reason, the frequency of the pulse width modulated signal is set so as to avoid the resonance frequency of the spring and to be as close as possible to this resonance frequency (frequency near the resonance frequency), thereby reducing hysteresis and making the valve Improves responsiveness of opening change.

【図面の簡単な説明】[Brief description of drawings]

各図は本発明の一実施例を示し、第1図は弁開度調整部
のブロック回路図、第2図は冷媒流量制御弁を配設した
冷媒回路図、第3図は弁開度調整部から出力されるパル
ス幅変調信号の一例を示す信号波形図、第4図は冷媒流
量制御弁の概略断面図である。 (1)……冷凍装置、(7)……蒸発器、(10),(1
1)……温度センサ、(14)……冷媒流量制御弁、(1
5)……弁開度調整部、(20)……温度設定部。
Each drawing shows one embodiment of the present invention, FIG. 1 is a block circuit diagram of a valve opening adjusting section, FIG. 2 is a refrigerant circuit diagram in which a refrigerant flow control valve is arranged, and FIG. FIG. 4 is a signal waveform diagram showing an example of the pulse width modulation signal output from the section, and FIG. 4 is a schematic sectional view of the refrigerant flow control valve. (1) …… Refrigerator, (7) …… Evaporator, (10), (1
1) ... Temperature sensor, (14) ... Refrigerant flow control valve, (1
5) …… Valve opening adjustment section, (20) …… Temperature setting section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、減圧装置及び蒸発器を環
状に配管接続する冷凍装置において、電気信号により弁
を連接するバネに加わる力が変化してその開度が制御さ
れ冷媒流量を制御する冷媒流量制御弁と、前記冷凍装置
にて冷却される室内の温度を検知する温度センサと、所
望の室内温度を設定する温度設定部と、前記温度センサ
と温度設定部との信号に基づいて前記バネの共振周波数
を避けてしかもこの共振周波数の近傍の周波数によるパ
ルス幅変調信号を生成し、この信号を前記制御弁に出力
する弁開度調整部とを設けたことを特徴とする冷凍装
置。
In a refrigeration system in which a compressor, a condenser, a decompression device, and an evaporator are connected in an annular pipe, the force applied to a spring connecting the valves is changed by an electric signal to control the opening thereof to control the refrigerant flow rate. A refrigerant flow rate control valve for controlling, a temperature sensor for detecting the temperature of the room cooled by the refrigerating apparatus, a temperature setting unit for setting a desired room temperature, and a signal of the temperature sensor and the temperature setting unit. And a valve opening adjusting section for generating a pulse width modulation signal at a frequency near the resonance frequency of the spring while avoiding the resonance frequency of the spring and outputting this signal to the control valve. apparatus.
JP63037978A 1988-02-19 1988-02-19 Refrigeration equipment Expired - Fee Related JPH07107467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037978A JPH07107467B2 (en) 1988-02-19 1988-02-19 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037978A JPH07107467B2 (en) 1988-02-19 1988-02-19 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH01212867A JPH01212867A (en) 1989-08-25
JPH07107467B2 true JPH07107467B2 (en) 1995-11-15

Family

ID=12512657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037978A Expired - Fee Related JPH07107467B2 (en) 1988-02-19 1988-02-19 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH07107467B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692044B2 (en) * 2005-03-30 2011-06-01 ブラザー工業株式会社 Sewing thread tension device
ES2716469T3 (en) * 2007-10-10 2019-06-12 Daikin Ind Ltd Air conditioner
CN105107128B (en) * 2015-09-30 2018-01-09 山东博日明能源科技有限公司 Temperature-sensitive opens and closes extinguishing device certainly
CN111350865A (en) * 2020-04-10 2020-06-30 武汉格莱特控制阀有限公司 Electric valve with temperature measuring function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591957A (en) * 1982-06-25 1984-01-07 三菱重工業株式会社 Air conditioner for car
JPS6235179A (en) * 1985-08-07 1987-02-16 Kanbayashi Seisakusho:Kk Flow control device

Also Published As

Publication number Publication date
JPH01212867A (en) 1989-08-25

Similar Documents

Publication Publication Date Title
JP2624618B2 (en) Refrigerator capable of changing function of compartment and control method thereof
US20130025304A1 (en) Loading and unloading of compressors in a cooling system
US4962648A (en) Refrigeration apparatus
JPH0526518A (en) Refrigerating cycle device
JPS61143662A (en) Air-cooling refrigerating device for car
JPH062926A (en) Operation controller for air conditioner
JPH0522145B2 (en)
JPH0861790A (en) Air conditioner
JPH07107467B2 (en) Refrigeration equipment
JPH0527018B2 (en)
JPH05622B2 (en)
JPH03260561A (en) Air conditioner
JP2003329354A (en) Controller for refrigerator-freezer
JPH11281221A (en) Cooler of open show case
JP2573022B2 (en) Refrigeration equipment
JP3286817B2 (en) Multi-room air conditioner
JPH07139827A (en) Cooling and freezing device
JP2701664B2 (en) Electric valve drive control device for air conditioner
JPH09273819A (en) Refrigerating cycle
JPS61276660A (en) Controller for capacity of air conditioner
JPS63204087A (en) Refrigerator
JPH09159292A (en) Controller for air conditioner
JPH0113977Y2 (en)
JPS6321457A (en) Refrigeration cycle device
JPS59183255A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees