JPH01212867A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH01212867A
JPH01212867A JP63037978A JP3797888A JPH01212867A JP H01212867 A JPH01212867 A JP H01212867A JP 63037978 A JP63037978 A JP 63037978A JP 3797888 A JP3797888 A JP 3797888A JP H01212867 A JPH01212867 A JP H01212867A
Authority
JP
Japan
Prior art keywords
valve
signal
opening degree
refrigerant flow
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63037978A
Other languages
Japanese (ja)
Other versions
JPH07107467B2 (en
Inventor
Takeshi Aoki
健 青木
Hiroyuki Kurihara
弘行 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63037978A priority Critical patent/JPH07107467B2/en
Publication of JPH01212867A publication Critical patent/JPH01212867A/en
Publication of JPH07107467B2 publication Critical patent/JPH07107467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To improve the response property of the opening and closing of an electric expansion valve, by a method wherein a pulse width modulating signal with a proper frequency, avoiding the resonance frequency of a spring, is produced based on the signals of a temperature sensor and a temperature setting unit while a valve opening degree regulating unit, which controls the opening degree of the valve by the pulse width modulating signal, is provided in the title device. CONSTITUTION:A valve opening degree regulating unit 15 receives signals from room temperature sensors 10, 11 and a temperature setting unit 20, setting the room temperatures at desired temperatures, and produces a pulse width modulating signal, in which an ON/OFF duty ratio is changed based on a relation between these signals, to control a refrigerant flow rate control valve 14. The refrigerant flow rate control valve 14 is provided with a characteristic, in which the hysteresis width of a magnetic core, magnetized by a solenoid constituting a part of the valve 14, is increased with respect to the smooth change of an impressing voltage, and the hysteresis width of the same becomes wider with respect to a periodic change as the period of the same becomes shorter, while this characteristics is one of reasons to delay the response property of valve opening degree changing with respect to a signal. Therefore, the frequency of the valve opening degree regulating unit 15 is set based on the consideration of the resonance frequency of a spring when the impressing voltage is changed periodically, in order to make the hysteresis width small.

Description

【発明の詳細な説明】 〔発明の目的〕 産業上の利用分野 本発明は、低温庫の温度を制御する冷凍装置に係り、詳
述すると冷媒流量を制御する冷媒流量制御弁の開度を変
化きせるための制御装置を改良した冷凍装置に関する。
[Detailed Description of the Invention] [Object of the Invention] Industrial Field of Application The present invention relates to a refrigeration system that controls the temperature of a low-temperature refrigerator. This invention relates to a refrigeration system with an improved control device for cooling.

従来の技術 冷媒流量を制御する弁としては、いくつかの種類のもの
があるが、中でもその応答性の面で優れている電気式膨
張弁がよく知られている。この電気式膨張弁としては、
モータによってその弁開度を調節するものや、弁と連接
するバネに加える力を変化させて弁開度を調節するもの
などがある。
2. Description of the Related Art There are several types of valves for controlling the flow rate of refrigerant, and among them, an electric expansion valve is well known for its excellent responsiveness. As this electric expansion valve,
There are those that use a motor to adjust the valve opening, and those that adjust the valve opening by changing the force applied to a spring connected to the valve.

本発明においては後者の弁を採用するものであり、後者
の弁としては特公昭60−56983号公報や特公昭6
0−34037号公報がある。特公昭60−56983
号公報にあっては、蒸発器出口側の温度の変化を電気信
号に変換し、この電気信号で弁の開度を調整するように
したものである。一方、特公昭6G−34037号公報
にあっては、圧縮機の始動時には、凝縮器入口部乃至中
間部に設けた第3の温度センサによる電気、信号が所定
値に達するまで電気式膨張弁を全開状態にする信号を制
御回路が出力するものである。
In the present invention, the latter valve is adopted, and examples of the latter valve include Japanese Patent Publication No. 60-56983 and Japanese Patent Publication No. 60-56983.
There is a publication No. 0-34037. Special Public Service No. 60-56983
In the publication, a change in temperature on the evaporator outlet side is converted into an electrical signal, and the opening degree of the valve is adjusted using this electrical signal. On the other hand, in Japanese Patent Publication No. 6G-34037, when the compressor is started, the electric expansion valve is operated until the electricity and signal from the third temperature sensor provided at the condenser inlet or intermediate portion reach a predetermined value. The control circuit outputs a signal to fully open the valve.

発明が解決しようとする課題 前記特公昭60−56983号公報では、膨張弁の開度
を変えるための電気信号としてどういう信号なのか詳細
に記述されておらず、そのコントローラが明示きれるも
のではない。一方、特公昭60−34037号公報では
、圧縮機が長時間停止した後で始動した場合にあって、
凝縮器に設けた温度センサの電気信号が所定値に達する
までは、膨張弁を全開状態にする信号を制御回路が出力
することで、極めて安定した始動を可能としたものであ
る。しかしながら、印加する電圧に対する膨張弁の応答
性を良好にすべく制御回路が構成されているものではな
い、したがって両公報においては、電気式膨張弁の信号
に対する応答性を速くするための改良が為されておらず
、温度変化に対する制御信号の変更が迅速に行なわれる
ものの、それが弁の開度変更速度に繁栄されていないと
いう問題があった。
Problems to be Solved by the Invention The aforementioned Japanese Patent Publication No. 60-56983 does not describe in detail what type of electrical signal is used to change the opening degree of the expansion valve, and the controller thereof cannot be specified. On the other hand, in Japanese Patent Publication No. 60-34037, when the compressor is started after being stopped for a long time,
The control circuit outputs a signal to fully open the expansion valve until the electric signal from the temperature sensor installed in the condenser reaches a predetermined value, making it possible to start the engine in an extremely stable manner. However, the control circuit is not configured to improve the responsiveness of the expansion valve to the applied voltage.Therefore, in both publications, improvements are made to improve the responsiveness of the electric expansion valve to signals. However, although the control signal is quickly changed in response to temperature changes, there is a problem in that it is not reflected in the speed at which the valve opening is changed.

そこで、本発明は電気式膨張弁において、弁に連接せる
バネに加える力をソレノイドにて発生させるものにあっ
て、弁の開閉の応答性の悪い原因がソレノイドにて磁化
きれる磁心のヒステリシスにあることに着目し、このヒ
ステリシス幅を小さくすることをその技術的課題とし、
このヒステリシス幅が小さくなる信号を送出する制御装
置(弁開度調整部)を有した冷凍装置を提供するもので
ある。
Therefore, the present invention is an electric expansion valve in which a solenoid generates a force to be applied to a spring connected to the valve, and the cause of the poor response of opening and closing the valve is the hysteresis of the magnetic core that is completely magnetized by the solenoid. Focusing on this, our technical challenge is to reduce this hysteresis width.
The object of the present invention is to provide a refrigeration system that includes a control device (valve opening adjustment section) that sends out a signal that reduces the hysteresis width.

〔発明の構成〕[Structure of the invention]

課題を解決するための手段 本発明は、圧縮機、凝縮器、減圧装置及び蒸発器を環状
に配管接続する冷凍装置を提供するものであって、電気
信号により弁と連接するバネに加わる力が変化してその
開度が制御きれ冷媒流量を制御する冷媒流量制御弁と、
冷凍装置にて冷却される室内の温度を検知する温度セン
サと、所望の室内温度を設定する温度設定部と、温度セ
ンサと温度設定部との信号に基づいて前記バネの共振周
波数を避けた適宜周波数によるパルス幅変調信号を生成
しこのパルス幅変調信号にて弁の開度を制御する弁開度
調整部とを設けたものである。
Means for Solving the Problems The present invention provides a refrigeration system in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected by pipes in an annular manner. a refrigerant flow control valve whose opening degree changes and controls the refrigerant flow rate;
a temperature sensor that detects the temperature in the room cooled by the refrigeration device; a temperature setting section that sets a desired indoor temperature; and an appropriate temperature sensor that avoids the resonance frequency of the spring based on signals from the temperature sensor and the temperature setting section. The valve opening adjustment section generates a frequency-based pulse width modulation signal and controls the valve opening using the pulse width modulation signal.

作用 ソレノイドに流す電流の向きを変化させることで、発生
する磁界により磁化諮れる磁心のヒステリシスは、電流
の向きを変化させる速さすなわち周波数に比例するもの
であり、この周波数としてバネの共振周波数を避け、で
きる限り共振周波数に近づけて小さくすることで、ヒス
テリシスの幅を小きなものにしている。
The hysteresis of the magnetic core, whose magnetization is determined by the magnetic field generated by changing the direction of the current flowing through the working solenoid, is proportional to the speed at which the direction of the current is changed, that is, the frequency, and this frequency is defined as the resonant frequency of the spring. The width of the hysteresis is made small by avoiding it and reducing it as close to the resonant frequency as possible.

実施例 以下本発明の実施例を第1図〜第4図を参照して説明す
る。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 4.

(1)は圧縮機(2)、四方弁(3)、室外側熱交換器
(以後凝縮器と称す)(4)、減圧装置としてのキャピ
ラリチューブ(5)及び膨張弁(6)、室内側熱交換器
(以後蒸発器と称す)(7)、アキュムレータ(8)等
を環状に配管接続した主冷媒流路(A)を有する冷凍装
置であって、四方弁(3)は冷却運転時において実線矢
印の方向に冷媒経路をとり、除霜□ 運転時において波
線矢印の方向に冷媒経路をとるように制御される。(9
)は冷却運転時蒸発器に空気を送って貯蔵室室内空気を
循環・冷却させる室内側送風機、(10)(11)は貯
蔵室内の温度を検知すべく冷却運転時における蒸発器(
7)への空気の吸込側、吹田側にそれぞれ配設される室
内温度センサ(前者を吸込温度センサ後者を吹田温度セ
ンサとする)であり、後述する弁開度調整部(15)に
検知温度に基づいた信号をそれぞれ送出する。尚、キャ
ピラリチューブ(5)及び膨張弁(6)には、それぞれ
逆止弁(12> (13)を並列接続しておく。
(1) is a compressor (2), a four-way valve (3), an outdoor heat exchanger (hereinafter referred to as a condenser) (4), a capillary tube as a pressure reducing device (5) and an expansion valve (6), an indoor side This is a refrigeration system having a main refrigerant flow path (A) in which a heat exchanger (hereinafter referred to as an evaporator) (7), an accumulator (8), etc. are connected in an annular manner, and the four-way valve (3) is closed during cooling operation. The refrigerant path is taken in the direction of the solid line arrow, and the refrigerant path is controlled to be taken in the direction of the dotted line arrow during defrosting □ operation. (9
) is an indoor fan that circulates and cools the air inside the storage room by sending air to the evaporator during cooling operation, and (10) and (11) are the evaporator (
7) are installed on the air suction side and the Suita side (the former is the suction temperature sensor and the latter is the Suita temperature sensor), and the detected temperature is sent to the valve opening adjustment section (15), which will be described later. A signal based on each signal is sent out. Note that a check valve (12> (13)) is connected in parallel to the capillary tube (5) and the expansion valve (6), respectively.

(14)は弁開度調整部(15)にてその開度が制御さ
れる冷媒流量制御弁であり、冷凍装置(1)(詳しくは
主冷媒流路(A))の低圧側(本例では冷却運転時にお
ける蒸発器(7)の出口側)に接続される。(B)は電
気信号によりその開閉が制御きれる電動弁(本例では電
磁弁を使用することから以下電磁弁と称す) (16)
、膨張弁(17)及び補助エバポレータ(以下補助エバ
と称す) <18)を直列接続し主冷媒流路(A)すな
わち膨張弁(6)、蒸発器(7)及び冷媒流量制御弁(
14)をバイパスする補助流路であって、冷却運転時に
おける凝縮器(4)の出口側(ここではキャピラリチュ
ーブの出口側)と蒸発器(7)の出口側(ここではアキ
ュムレータの入口側)との間に接続きれ、かつ補助エバ
(18)を凝縮器(4)の風下側に位置するように配設
させる。また電磁弁(16)は圧縮機(2)の吸込側(
ここではアキュムレータ(8)の出口側)に配設された
低圧スイッチ(19)により、その開閉が制御される。
(14) is a refrigerant flow rate control valve whose opening degree is controlled by a valve opening degree adjusting part (15), and is a refrigerant flow control valve on the low pressure side (in this example , it is connected to the outlet side of the evaporator (7) during cooling operation. (B) is an electric valve whose opening and closing can be controlled by electrical signals (hereinafter referred to as a solenoid valve as a solenoid valve is used in this example) (16)
, an expansion valve (17), and an auxiliary evaporator (hereinafter referred to as auxiliary evaporator) <18) are connected in series to form a main refrigerant flow path (A), that is, an expansion valve (6), an evaporator (7), and a refrigerant flow control valve (
14), the outlet side of the condenser (4) (here, the outlet side of the capillary tube) and the outlet side of the evaporator (7) (here, the inlet side of the accumulator) during cooling operation. and the auxiliary evaporator (18) is located on the leeward side of the condenser (4). In addition, the solenoid valve (16) is connected to the suction side (
Here, the opening and closing of the accumulator (8) is controlled by a low pressure switch (19) disposed on the outlet side of the accumulator (8).

本例では、圧縮機(2)の吸込側圧力が所定圧力P、以
下になったとき、低圧スイッチ(19)が閉じ、電磁コ
イル(図示せず)に通電きれ電磁弁(16)が開放状態
となり、吸込側圧力が一定圧力P! (Pa > pt
 )以上になったとき、低圧スイッチ(19)が開き電
磁コイルへの通電が停止して電磁弁(16)が閉本状態
となるようにしておく。また、冷媒流量制御弁(14)
は弁と連接するバネに加わる力を電気信号により変化さ
せて弁の開度が制御されるものであり、直流信号にて制
御するが、所定電圧(本例では12V)を印加したとき
全閉、零電圧を印加したとき全開となるもので、零電圧
と所定電圧との間の電圧を印加したとき印加電圧が小さ
くなればなるほどその開度が大きくなる。
In this example, when the suction side pressure of the compressor (2) falls below a predetermined pressure P, the low pressure switch (19) closes, the electromagnetic coil (not shown) is energized, and the electromagnetic valve (16) is opened. Therefore, the suction side pressure is a constant pressure P! (Pa > pt
), the low pressure switch (19) opens to stop energizing the electromagnetic coil, so that the electromagnetic valve (16) becomes closed. In addition, the refrigerant flow control valve (14)
The opening degree of the valve is controlled by changing the force applied to the spring connected to the valve using an electric signal.It is controlled by a DC signal, but when a predetermined voltage (12V in this example) is applied, the valve opens completely. When zero voltage is applied, the opening is fully open, and when a voltage between zero voltage and a predetermined voltage is applied, the smaller the applied voltage, the greater the degree of opening.

そして、この冷媒流量制御弁(14)は電磁式調節弁と
称きれるもので、第4図に示すような構造をなし、以下
その例を説明する(ただし冷却運転時の冷媒の流れをも
とに説明する)。弁本体(30)は、蒸発器出口側と接
続する冷媒流入部(31)と、四方弁(3)の入口側と
接続する冷媒流出部(32〉を有し、弁本体内を二本に
区画する隔壁(33)には両部(31)(32)を連通
する連通口(34)(35)が穿たれ、この連通口(3
4)(35)を開閉する弁座(36)(37)が弁軸(
38)に設けられており、一方の弁座(36)は流入部
側に、他方の弁座(37)は流出部側に位置している。
This refrigerant flow control valve (14) can be called an electromagnetic control valve, and has a structure as shown in Fig. 4, and an example will be explained below (based on the flow of refrigerant during cooling operation). ). The valve body (30) has a refrigerant inlet (31) connected to the evaporator outlet side and a refrigerant outlet (32>) connected to the inlet side of the four-way valve (3). The partitioning wall (33) is provided with communication ports (34) and (35) that communicate the two parts (31 and 32).
4) The valve seats (36) and (37) that open and close (35) are connected to the valve stem (
38), one valve seat (36) is located on the inlet side and the other valve seat (37) is located on the outflow side.

そして、弁座(36)(37)を開放する方向に付勢す
る圧縮されたフィルバネ(39)(40)がそれぞれ出
口側弁本体内に介設されている、一方、弁軸(38)の
頭部に設けられた作動体(41)は、電気信号により励
磁されるフィル(42)による磁力を受は軸を上下方向
に駆動キ辷る。また、弁座(36)(37)はフィル(
42)が非通電のとき全開であり、所定電圧が印加きれ
たとき全閉となり、印加電圧が小さくなると開方向に動
作する。従って、この冷媒流量制御弁(14)は全閉か
ら全開又はこの逆の動作が行なえる構造となっている。
Compressed fill springs (39) and (40) that bias the valve seats (36) and (37) in the direction of opening are respectively interposed in the outlet side valve body. An actuating body (41) provided on the head receives the magnetic force of a filter (42) excited by an electric signal, and drives the shaft in the vertical direction. Also, the valve seats (36) and (37) are filled with fill (
42) is fully open when not energized, fully closed when a predetermined voltage is applied, and operates in the open direction when the applied voltage becomes smaller. Therefore, this refrigerant flow rate control valve (14) has a structure that allows it to operate from fully closed to fully open or vice versa.

弁開度調整部(15)は、室内温度センサ(10)(1
1)及び室内温度を所望の温度に設定する温度設定部(
20)からの信号を受け、これらの信号の関係に基づき
オンオフデユーティ−比を変化させた電気信号(すなわ
ちパルス幅変調信号)を作成し、冷媒流量制御弁(14
)を制御するものであり、第1図にその一例を示してい
る。尚、冷媒流量制御弁(14)は、その一部を構成す
るソレノイドにて磁化される磁心が印加電圧の滑らかな
変化に対してはヒステリシス幅が大きくなり、また周期
的変化に対してはその周期が短くなるほどヒステリシス
幅が大きくなる特性を有しており、これが信号に対する
弁開度変更の応答性を遅らせる原因の一つであることか
ら、このヒステリシス幅を小さくするために、弁開度調
整部(15)は印加電圧を周期的に変化きせる場合にバ
ネの共振周波数をも考慮に入れて周波数を設定したもの
である。
The valve opening adjustment section (15) is connected to the indoor temperature sensor (10) (1
1) and a temperature setting section (
The refrigerant flow control valve (14) receives signals from the refrigerant flow control valve (14), generates an electric signal (i.e., pulse width modulation signal) with a varying on-off duty ratio based on the relationship between these signals, and
), an example of which is shown in FIG. Note that the refrigerant flow control valve (14) has a magnetic core that is magnetized by a solenoid, which is a part of the valve, and the hysteresis width becomes large when the applied voltage changes smoothly, and when the voltage changes periodically. The hysteresis width has a characteristic that the shorter the cycle, the larger the hysteresis width, and this is one of the reasons why the response of changing the valve opening to the signal is delayed. Therefore, in order to reduce the hysteresis width, the valve opening adjustment is carried out. In section (15), the frequency is set in consideration of the resonance frequency of the spring when the applied voltage is changed periodically.

(21)は温度設定部(20)からの信号と室内温度セ
ンサ(10)(11)の両信号とを受ける演算部で、室
内温度センサ(10)(11)による検知温度の平均温
度(これを室内温度と判断している)と設定温度とに基
づいてPID制御法による演算を行ない、その演算値を
例えば8ビツトの2進数信号に変換して出力端子群D(
D8〜01)より出力する。出力される信号をDデータ
と称す。演算部(21)はまた、出力端子−より基準ク
ロック(ここでは周波数2MHz)のパルスを送出して
いる。(22)は計数部であり、基準クロックパルスを
受け、適宜数で分周してクロックパルス(本例では64
分周して31.25K)Izのパルス)を作る分周器(
23)と、このクロックパルスを受け8ビツトの2進数
すなわち256段階に計゛数する計数器(24)とから
成り、計数器(24)は出力端子群Q(Q、〜Q、)よ
り8ビツトの2進数信号を出力する。この出力信号をP
データと称すが、Pデータの1周期は約17120とな
る。そして、(25)は演算部(21)の出力すなわち
Dデータと、計数部(22)の出力すなわちPデータと
を入力し、両データを比較してその比較結果に基づいて
Hiレベル信号(所定電圧VCCであり以後″H”信号
と称す)若しくはLoレベル信号(零電圧であり以後“
L”信号と称す)を出力する比較部である。尚、演算部
(21)、計数部(22)及び比較部(25)にて弁開
度調整部(15)を構成している。
(21) is a calculation unit that receives both the signal from the temperature setting unit (20) and the signals from the indoor temperature sensors (10) and (11). is determined to be the room temperature) and the set temperature using the PID control method, and the calculated value is converted to, for example, an 8-bit binary signal and sent to the output terminal group D (
Output from D8-01). The output signal is called D data. The arithmetic unit (21) also sends out a pulse of a reference clock (frequency: 2 MHz here) from the output terminal. (22) is a counting unit which receives the reference clock pulse, divides the frequency by an appropriate number, and divides the clock pulse (64 in this example).
Frequency divider (31.25K) Iz pulse)
23) and a counter (24) that receives this clock pulse and counts in 8-bit binary numbers, that is, 256 steps. Outputs a bit binary signal. This output signal is P
Although called data, one period of P data is approximately 17120. (25) inputs the output of the calculation section (21), that is, the D data, and the output of the counting section (22), that is, the P data, compares both data, and based on the comparison result, a Hi level signal (predetermined Voltage VCC (hereinafter referred to as "H" signal) or Lo level signal (zero voltage, hereinafter referred to as "H" signal)
This is a comparison section that outputs a signal (referred to as "L" signal).The calculation section (21), the counting section (22), and the comparison section (25) constitute a valve opening adjustment section (15).

弁開度調整部(15)の出力はスイッチング素子例えば
スイッチングトランジスタ(以下トランジスタと称す)
 (26)のベースに入力されており、このトランジス
タ(26)はエミッタが接地され、フレフタが冷媒流量
制御弁(詳しくは電磁コイル)(14)を介して所定電
圧源Vcc(= 12ボルト)に接続されている。そし
て、弁開度調整部(15)から出力されるパルス幅変調
信号における′H”信号のときトランジスタ(26)が
オンして電磁コイルに通電され、弁が閉じる方向に作動
し、“L”信号のときトランジスタ(26)がオフして
、弁が開く方向に作動する。このため弁は1周期の中で
全開と全閉との両方の動作をするように指示されるが、
機械的に追随できず、オンオフデユーティ−比から決ま
る平均電圧に対応した位置での弁開度で安定することと
なる。
The output of the valve opening adjustment section (15) is connected to a switching element such as a switching transistor (hereinafter referred to as a transistor).
(26), the emitter of this transistor (26) is grounded, and the flap is connected to a predetermined voltage source Vcc (= 12 volts) via a refrigerant flow control valve (more specifically, an electromagnetic coil) (14). It is connected. Then, when the pulse width modulation signal output from the valve opening adjustment section (15) is a 'H' signal, the transistor (26) is turned on, energizing the electromagnetic coil, operating the valve in the closing direction, and turning the signal 'L'. When the signal is received, the transistor (26) is turned off and the valve operates in the direction of opening.Therefore, the valve is instructed to operate both fully open and fully closed within one cycle.
It cannot be followed mechanically, and the valve opening becomes stable at a position corresponding to the average voltage determined by the on-off duty ratio.

以上の構成による冷凍装置の冷却運転時の動作を説明す
る(四方弁(3)による冷媒流路は実線矢印の方向であ
る)が、貯蔵室内には貯蔵物が適度に収容されており、
室内温度が設定温度を上回っているものとする。
The operation of the refrigeration system with the above configuration during cooling operation will be explained (the refrigerant flow path by the four-way valve (3) is in the direction of the solid arrow).
It is assumed that the indoor temperature is higher than the set temperature.

室内温度センサ(10)(11)からの信号により弁開
度調整部(15)が弁の開度を決定して信号を送出し冷
媒流量制御弁(14)の開度を変化させる。このとき、
圧縮機(2)から吐出された高圧ガス冷媒は、凝縮器(
4)で凝縮されて液化し、膨張弁(6)で減圧膨張され
、蒸発器(7)内を通過する際に室内空気と熱交換を行
ない、冷媒流量制御弁(14)で流量制御され、アキュ
ムレータ(8)を経て低圧ガス冷媒となって圧縮機(2
)へ戻る。冷媒はこの主冷媒流路(A)を循環すること
で、室内空気を冷却し、設定温度まで低下させる。
A valve opening degree adjusting section (15) determines the opening degree of the valve based on the signals from the indoor temperature sensors (10) and (11), and sends out a signal to change the opening degree of the refrigerant flow rate control valve (14). At this time,
The high pressure gas refrigerant discharged from the compressor (2) is passed through the condenser (
The refrigerant is condensed and liquefied in step 4), depressurized and expanded in an expansion valve (6), exchanges heat with indoor air as it passes through an evaporator (7), and its flow rate is controlled by a refrigerant flow control valve (14). After passing through the accumulator (8), it becomes a low-pressure gas refrigerant and is compressed by the compressor (2).
) Return to By circulating the refrigerant through this main refrigerant flow path (A), the indoor air is cooled down to the set temperature.

ここで、冷媒流量制御弁(14)及び弁開度調整部(1
5)の動作を説明すると、室内温度センサ(10)(1
1)からの信号を受け、演算部(21)が両検知信号の
平均をとり室内温度とし、設定温度との関係からPID
による演算を行ない、出力端子群りよりDデータを出力
する。このDデータとしては、室内温度と設定温度との
偏差が大きいとき高い値となり、小きいとき低い値とな
る。一方、計数部(22)では基準クロックよりクロッ
クパルスを作り、このクロックパルスを1周期Tにおい
て256段階で計数しくその1周期Tが本例では約1/
120となる)、出力端子群QよりPデータを出力する
。そして比較部(25)がDデータとPデータを比較し
てDデータがPデータより大きい(P<D)とき、“H
”信号を出力し、DデータがPデータ以下(P≧D)の
とき′L”信号を出力する。したがって偏差が大きいと
き1周期T中における“H”信号を出力する期間tは長
く偏差が小さくなるにつれて1H”信号の出力する期間
tは短くなる。すなわち、1周期Tにおける出力電圧V
Here, the refrigerant flow control valve (14) and the valve opening adjustment part (1
To explain the operation of 5), indoor temperature sensor (10) (1
1), the calculation unit (21) takes the average of both detection signals, determines the indoor temperature, and calculates the PID based on the relationship with the set temperature.
, and outputs D data from the output terminal group. This D data has a high value when the deviation between the indoor temperature and the set temperature is large, and a low value when it is small. On the other hand, the counting section (22) generates clock pulses from the reference clock, and counts these clock pulses in 256 steps in one period T. In this example, one period T is approximately 1/
120), and outputs P data from the output terminal group Q. Then, the comparison unit (25) compares the D data and the P data, and when the D data is larger than the P data (P<D), “H
When the D data is less than or equal to the P data (P≧D), a 'L' signal is output. Therefore, when the deviation is large, the period t in which the "H" signal is output during one period T is long, and as the deviation becomes small, the period t during which the 1H" signal is output is shortened. That is, the output voltage V in one period T
.

は、(Vl −VCCx t / T )であり、tの
長さが偏差に応じて比例変化するため、v8も偏差が大
きいとき大きな値をとり、偏差が小さいとき小聾な値を
とることとなる。
is (Vl - VCCx t / T), and since the length of t changes proportionally according to the deviation, v8 also takes a large value when the deviation is large, and takes a small value when the deviation is small. Become.

そして、トランジスタ(26)は”H”信号の出力きれ
ている期間tの間だけオンし、冷媒流量制御弁(14)
には1秒間に期間tずつ1/T回だけの通電が為される
。これは、実質的に[Vl−VccX t/T)の重圧
が冷媒流量制御弁(14)に印加され、この電圧V、に
基づいた開度で弁が停止することと同じである。
Then, the transistor (26) is turned on only during the period t during which the "H" signal is output, and the refrigerant flow control valve (14)
The current is applied only 1/T times for each period t in one second. This is essentially the same as applying a heavy pressure of [Vl-VccX t/T) to the refrigerant flow control valve (14) and stopping the valve at the opening degree based on this voltage V.

ただし、比較部(25)から出力される信号の周波数f
’(−1/T)が、冷媒流量制御弁(14)の弁と連接
するバネの共振周波数f、と等しくなると、制御弁自体
が共振してしまい弁としての本来の機能が果たせなくな
るため、バネの共振が起こらない範囲で、fをfLより
大きい中でもできる限りf、に近づけた値に設定してお
く(実施例中では120Hzとしている)。このように
設定しておくことで、弁に印加する電圧に対する弁開度
変更の応答性が向上する。
However, the frequency f of the signal output from the comparator (25)
When '(-1/T) becomes equal to the resonant frequency f of the spring connected to the refrigerant flow control valve (14), the control valve itself will resonate and will no longer be able to perform its original function as a valve. Within the range where resonance of the spring does not occur, f is set to a value that is larger than fL and as close to f as possible (120 Hz in the example). By setting in this way, the responsiveness of changing the valve opening degree to the voltage applied to the valve is improved.

一方、冷却運転の継続に伴ない室内温度が低下し、冷媒
流量制御弁(14)の開度も徐々に小さくなると、圧縮
機(2)の吸込側圧力は次第に低下してゆく。この吸込
側圧力が所定圧力P、以下になると、低圧スイッチ(1
9)が閉じ電磁弁(16)が開放状態となる。このため
、凝縮器(4)を通過した冷媒は主冷媒流路(A)と補
助流路(B)とに分流される。
On the other hand, as the cooling operation continues, the indoor temperature decreases and the opening degree of the refrigerant flow rate control valve (14) gradually decreases, so that the suction side pressure of the compressor (2) gradually decreases. When this suction side pressure falls below a predetermined pressure P, the low pressure switch (1
9) is closed and the solenoid valve (16) is opened. Therefore, the refrigerant that has passed through the condenser (4) is divided into the main refrigerant flow path (A) and the auxiliary flow path (B).

このとき、補助流路(B)における補助エバ(18)は
、凝縮器(4)の風下側に位置するため、凝縮器(4)
にて熱交換された暖かい空気により暖められ、同一流量
の冷媒が流れ込む場合でも、補助エバ(18)の蒸発温
度は蒸発器(7)の蒸発温度よりも高くなる。そして、
補助流路(B)に冷媒が流れ込むことでアキュムレータ
(8)への冷媒流量が増え、圧縮機(2)の吸込側圧力
は次第に高くなってゆく。また補助流路(B)に冷媒が
分流することで、主冷媒流路(A)へ流れる冷媒量が減
少して、蒸発器(7)の冷却能力は実質的に低下するこ
ととなり、室内温度の低下の度合いは少なくなり、結果
的に冷媒流量制御弁(14)の開度が小さくなることは
抑制される。この状態が継続し、吸込側圧力が次第に高
まり一定圧力P3以上になると、低圧スイッチ(19〉
が開放し電磁弁(16)が閉室して、補助流路(B)へ
の分流が絶たれ、再び主冷媒流路(A)だけによる冷却
運転に切り換わる。以下同様の動作を繰り返す。したが
って、圧縮機(2〉の吸込側圧力が所定圧力P1より大
幅に低下することは抑制され、このため圧縮機(2)を
停止することなく連続作動させられる。すなわち、圧縮
機(2)の低圧補償が行なえるとともに、圧縮機(2)
が停止しないことから、最も過負荷となる始動を少なく
し結果的に圧縮機(2)の寿命を延長することとなる。
At this time, since the auxiliary evaporator (18) in the auxiliary channel (B) is located on the leeward side of the condenser (4),
The evaporation temperature of the auxiliary evaporator (18) is higher than the evaporation temperature of the evaporator (7) even when the same flow rate of refrigerant flows into the auxiliary evaporator (18). and,
As the refrigerant flows into the auxiliary flow path (B), the flow rate of refrigerant to the accumulator (8) increases, and the pressure on the suction side of the compressor (2) gradually increases. Furthermore, by diverting the refrigerant to the auxiliary flow path (B), the amount of refrigerant flowing to the main refrigerant flow path (A) is reduced, and the cooling capacity of the evaporator (7) is substantially reduced, causing the indoor temperature to rise. The degree of decrease in is reduced, and as a result, the opening degree of the refrigerant flow rate control valve (14) is suppressed from becoming small. If this state continues and the suction side pressure gradually increases to a constant pressure P3 or higher, the low pressure switch (19)
is opened, the solenoid valve (16) is closed, the branch flow to the auxiliary flow path (B) is cut off, and the cooling operation is again switched to using only the main refrigerant flow path (A). The same operation is repeated below. Therefore, the suction side pressure of the compressor (2) is prevented from dropping significantly below the predetermined pressure P1, and therefore the compressor (2) can be operated continuously without stopping. In addition to providing low pressure compensation, the compressor (2)
Since the compressor (2) does not stop, the number of starts that cause the most overload is reduced, and as a result, the life of the compressor (2) is extended.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、冷媒流量制御弁に
送出される信号がパルス幅変調信号であることから、弁
の一部を構成しているソレノイドに流れる電流が周期的
に変化し、それに伴なう磁界の方向も周期的に変化する
。このとき、この磁界を受はバネを押圧する磁心はヒス
テリシスをもって動作するが、そのヒステリシスは電流
周期に反比例する。このためパルス幅変調信号の周波数
をバネの共振周波数を避けて、しかもこの共振周波数に
できる限り近づけた周波数に選定することで、ヒステリ
シスを小さくして、信号に対する弁開度変更の応答性を
良くしている。
As detailed above, according to the present invention, since the signal sent to the refrigerant flow control valve is a pulse width modulation signal, the current flowing through the solenoid that constitutes a part of the valve changes periodically. , the direction of the accompanying magnetic field also changes periodically. At this time, the magnetic core that receives this magnetic field and presses the spring operates with hysteresis, and the hysteresis is inversely proportional to the current cycle. Therefore, by selecting the frequency of the pulse width modulation signal to avoid the spring's resonant frequency and to be as close to this resonant frequency as possible, the hysteresis can be reduced and the response of changing the valve opening to the signal can be improved. are doing.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明の一実施例を示し、第1図は弁開度調整部
のブロック回路図、第2図は冷媒流量制御弁を配設した
冷媒回路図、第3図は弁開度調整部から出力きれるパル
ス幅変調信号の一例を示す信号波形図、第4図は冷媒流
量制御弁の概略断面図である。 (1)・・・冷凍装置、 (7)・・・蒸発器、 <1
o) 、 m)・・・温度センサ、 (14)・・・冷
媒流量制御弁、 (15)・・・弁開度調整部、 (2
0)・・・温度設定部。
Each figure shows an embodiment of the present invention. Figure 1 is a block circuit diagram of the valve opening adjustment section, Figure 2 is a refrigerant circuit diagram with a refrigerant flow control valve, and Figure 3 is a valve opening adjustment section. FIG. 4 is a signal waveform diagram showing an example of a pulse width modulated signal that can be output from the refrigerant flow rate control valve. (1)... Refrigeration device, (7)... Evaporator, <1
o), m)...Temperature sensor, (14)...Refrigerant flow rate control valve, (15)...Valve opening adjustment section, (2
0)...Temperature setting section.

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機、凝縮器、減圧装置及び蒸発器を環状に配管
接続する冷凍装置において、電気信号により弁と連接す
るバネに加わる力が変化してその開度が制御され冷媒流
量を制御する冷媒流量制御弁と、前記冷凍装置にて冷却
される室内の温度を検知する温度センサと、所望の室内
温度を設定する温度設定部と、前記温度センサと温度設
定部との信号に基づいて前記バネの共振周波数を避けた
適宜周波数によるパルス幅変調信号を生成し、この信号
を前記制御弁に出力する弁開度調整部とを設けたことを
特徴とする冷凍装置。
1. In a refrigeration system in which a compressor, a condenser, a pressure reducer, and an evaporator are connected by pipes in a ring, a refrigerant whose opening degree is controlled by changing the force applied to a spring connected to a valve by an electric signal and controlling the refrigerant flow rate. a flow rate control valve; a temperature sensor that detects the temperature in the room cooled by the refrigeration device; a temperature setting section that sets a desired indoor temperature; 1. A refrigeration system comprising: a valve opening adjustment section that generates a pulse width modulation signal with an appropriate frequency that avoids the resonance frequency of the control valve, and outputs this signal to the control valve.
JP63037978A 1988-02-19 1988-02-19 Refrigeration equipment Expired - Fee Related JPH07107467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037978A JPH07107467B2 (en) 1988-02-19 1988-02-19 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037978A JPH07107467B2 (en) 1988-02-19 1988-02-19 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH01212867A true JPH01212867A (en) 1989-08-25
JPH07107467B2 JPH07107467B2 (en) 1995-11-15

Family

ID=12512657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037978A Expired - Fee Related JPH07107467B2 (en) 1988-02-19 1988-02-19 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH07107467B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278970A (en) * 2005-03-30 2006-10-12 Brother Ind Ltd Device and method for controlling solenoid and thread tension device of sewing machine
WO2009047906A1 (en) * 2007-10-10 2009-04-16 Daikin Industries, Ltd. Air conditioner
WO2017054305A1 (en) * 2015-09-30 2017-04-06 山东博日明能源科技有限公司 Temperature-sensing and automatic on/off fire extinguishing device
CN111350865A (en) * 2020-04-10 2020-06-30 武汉格莱特控制阀有限公司 Electric valve with temperature measuring function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591957A (en) * 1982-06-25 1984-01-07 三菱重工業株式会社 Air conditioner for car
JPS6235179A (en) * 1985-08-07 1987-02-16 Kanbayashi Seisakusho:Kk Flow control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591957A (en) * 1982-06-25 1984-01-07 三菱重工業株式会社 Air conditioner for car
JPS6235179A (en) * 1985-08-07 1987-02-16 Kanbayashi Seisakusho:Kk Flow control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278970A (en) * 2005-03-30 2006-10-12 Brother Ind Ltd Device and method for controlling solenoid and thread tension device of sewing machine
JP4692044B2 (en) * 2005-03-30 2011-06-01 ブラザー工業株式会社 Sewing thread tension device
WO2009047906A1 (en) * 2007-10-10 2009-04-16 Daikin Industries, Ltd. Air conditioner
JP5056855B2 (en) * 2007-10-10 2012-10-24 ダイキン工業株式会社 Air conditioner
WO2017054305A1 (en) * 2015-09-30 2017-04-06 山东博日明能源科技有限公司 Temperature-sensing and automatic on/off fire extinguishing device
US10933269B2 (en) 2015-09-30 2021-03-02 Shandong Brightman Energytechnology Co., Ltd. Temperature-sensing and automatic on and off fire extinguishing device
CN111350865A (en) * 2020-04-10 2020-06-30 武汉格莱特控制阀有限公司 Electric valve with temperature measuring function

Also Published As

Publication number Publication date
JPH07107467B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US4962648A (en) Refrigeration apparatus
US5226472A (en) Modulated temperature control for environmental chamber
US4807445A (en) Refrigeration system
US6318100B1 (en) Integrated electronic refrigerant management system
JP2986469B2 (en) System with pulsed refrigerant flow for capacity control
US6253561B1 (en) Refrigerator with switching valve switching flow of refrigerant to one of refrigerant passages
JPH02143055A (en) Chilling unit and method of controlling chilling unit
JPH0526518A (en) Refrigerating cycle device
JPS6015215A (en) Air conditioner for vehicle
CN110513836A (en) Refrigeration system, air conditioner and control method of refrigeration system of air conditioner
GB2305744A (en) Valve controller
US8424328B2 (en) Suction valve pulse width modulation control based on evaporator or condenser pressure
JPH01212867A (en) Refrigerating device
JP2573022B2 (en) Refrigeration equipment
JPH01222164A (en) Refrigerating cycle control device
JPH07310850A (en) Step flow rate control valve
JP2004010023A (en) Control device of variable displacement compressor
JPS63204087A (en) Refrigerator
JPS6130127Y2 (en)
US6886355B2 (en) Air-conditioning system
JPH0136026B2 (en)
KR20050038293A (en) A valve control method of refrigerator
JP2008274756A (en) Control device of variable displacement compressor
JPH01314868A (en) Heat pump type heater-cooler
JPS5845480A (en) Defrosting controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees