JPS591957A - Air conditioner for car - Google Patents

Air conditioner for car

Info

Publication number
JPS591957A
JPS591957A JP10848682A JP10848682A JPS591957A JP S591957 A JPS591957 A JP S591957A JP 10848682 A JP10848682 A JP 10848682A JP 10848682 A JP10848682 A JP 10848682A JP S591957 A JPS591957 A JP S591957A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
compressor
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10848682A
Other languages
Japanese (ja)
Inventor
秋元 良作
矢頭 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10848682A priority Critical patent/JPS591957A/en
Publication of JPS591957A publication Critical patent/JPS591957A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は車両用空調装置に関する。[Detailed description of the invention] The present invention relates to a vehicle air conditioner.

従来の自動車用空調装置においては、第1図系統図に示
すように、エンジンlによシミ磁りラッチを介して冷媒
圧縮機(以下コンプレッサという)2を駆動し、コンプ
レッサ2から吐出される高温高圧の冷媒は、コンデンサ
4でエンジン駆動のファン8によ多送風される空気で冷
却液化し、レシーバ5に一時貯えられ、レシーバ5に貯
えられた高温高圧の液冷媒は負荷に応じて開度が定まる
膨張弁6によシ膨張し、エバポレータ7内で蒸発気化し
、コンプレッサ2へ吸へされる。
In a conventional automobile air conditioner, as shown in the system diagram in Figure 1, an engine l drives a refrigerant compressor (hereinafter referred to as a compressor) 2 through a magnetic latch, and the high temperature discharged from the compressor 2 is The high-pressure refrigerant is cooled and liquefied in the condenser 4 by air blown by an engine-driven fan 8, and is temporarily stored in the receiver 5. It is expanded by the expansion valve 6 where the amount is determined, is evaporated in the evaporator 7, and is sucked into the compressor 2.

こ\で9’、9,10,11.12はこれら機器を接続
する配管でおる。
Here, 9', 9, 10, 11.12 are the pipes that connect these devices.

このような冷媒回路の運転制御は、エノくボレータ温度
又はエバポレータ吹出温度が所定温度でオンオフするサ
ーモスタット14によシはソ一定となるよう電磁クラッ
チ3をオンオンさせてコンプレッサ2を駆動停止するこ
とによシ行なわれ、送風機13によシ導入された空気は
エバポレータ7で冷却され、冷風となってヒータ16へ
導入され、ヒータ16は一般にはエンジンlの冷却水を
熱源として導入パイプ17および出口バイブ18によυ
ヒータ16へ温水が導入され、エノ(ボレータフから吹
出された冷風は、エアミックスダンパー19の開度に応
じてヒータ16を通過し加熱された温風と、ヒータ16
を)(イノ(スする冷風とに分流し、さらにヒータ16
の下流で、この冷風と温風が混合し、適温となって車内
20へ吹出される。
The operation control of such a refrigerant circuit is carried out by turning on and turning on the electromagnetic clutch 3 to stop driving the compressor 2 so that the temperature of the evaporator or the evaporator outlet temperature remains constant using a thermostat 14 that turns on and off at a predetermined temperature. The air introduced by the blower 13 is cooled by the evaporator 7, and is introduced into the heater 16 as cold air. 18yo υ
Hot water is introduced into the heater 16, and the cold air blown from the eno (bore tuff) passes through the heater 16 according to the opening degree of the air mix damper 19 and is mixed with the heated warm air and the heater 16.
)(inno(su)), and then the heater 16
The cold air and the warm air are mixed downstream and are blown into the vehicle interior 20 at an appropriate temperature.

その際、エアミックスダンパー 19の開度は乗員によ
シ操作されるが、最近はエアミックスダンパー19の開
度を車内温度が設定値となるように自動コントロールす
るものもある○こ\で、15はサーモスタット14の感
熱部である。
At this time, the opening degree of the air mix damper 19 is operated by the passenger, but recently there are some models that automatically control the opening degree of the air mix damper 19 so that the temperature inside the vehicle is at the set value. 15 is a heat sensitive part of the thermostat 14.

しかしながら、このような空調システムはエバポレータ
7で冷却された冷風を車内温度が適温となるようにヒー
タで再加熱し車内へ吹出すこと\なシ、ヒータでの再熱
分はエバポレータでの冷却が無駄な運転となシ、省エネ
ルギに反し、かつエバポレータ温度又はその吹出空気温
度を一定とするためコンプレッサを頻繁にオンオンする
ので電磁クラッチの耐久性およびコンプレッサのオンオ
フによるドライバビリティ−の悪化が生ずる。
However, in such an air conditioning system, the cold air cooled by the evaporator 7 is reheated by a heater and blown into the car so that the temperature inside the car becomes an appropriate temperature, and the reheated air by the heater is not cooled by the evaporator. The compressor is frequently turned on and off in order to keep the evaporator temperature or the temperature of the air blown from the evaporator constant, which is contrary to energy saving and wasteful operation, which deteriorates the durability of the electromagnetic clutch and the drivability due to the turning on and off of the compressor.

本発明はこのような事情に鑑みて提案されたもので、省
エネルギを図ると\もに、電磁クラッチの耐久力を高め
、ドライバビリティの悪化を避ける車両用空調装置を提
供することを目的とし、冷媒圧縮機、凝縮器、膨張弁。
The present invention was proposed in view of the above circumstances, and aims to provide a vehicle air conditioner that not only saves energy but also increases the durability of the electromagnetic clutch and avoids deterioration of drivability. , refrigerant compressor, condenser, expansion valve.

蒸発器よシなる冷媒回路を具えた車両用空調装置におい
て、→制◆溌餐→吐記蒸発器と上記冷媒圧縮機との間の
冷媒回路に冷媒流量制御弁を挿入し、上記冷媒流量制御
弁を空調負荷によ量制御するようにしたことを特徴とす
る。
In a vehicle air conditioner equipped with a refrigerant circuit such as an evaporator, a refrigerant flow control valve is inserted into the refrigerant circuit between the evaporator and the refrigerant compressor to control the refrigerant flow rate. The valve is characterized in that the amount is controlled according to the air conditioning load.

本発明の一実施例を図面について説明すると、第2図は
その系統図、第3図は第2図の冷媒制御弁を示す拡大断
面図、第4図は第2図のコントローラを示す回路図、第
5図は第2図における上流センサーおよびポテンショメ
ータ29の冷媒制御弁開度と電気抵抗との関係を示す線
図である。
An embodiment of the present invention will be explained with reference to the drawings. Fig. 2 is a system diagram thereof, Fig. 3 is an enlarged cross-sectional view showing the refrigerant control valve shown in Fig. 2, and Fig. 4 is a circuit diagram showing the controller shown in Fig. 2. , FIG. 5 is a diagram showing the relationship between the refrigerant control valve opening degree and electrical resistance of the upstream sensor and potentiometer 29 in FIG. 2.

上図において、第1図と同一の記号はそれぞれ同図と同
一の部材を示し、まず第2〜3図において、レシーバ5
から流入する高圧液化冷媒は、膨張弁6で急激に膨張し
、エバポレータ7で蒸発気化し、冷媒制御弁21を経て
コンプレッサ2へ吸入される。
In the above figure, the same symbols as in Fig. 1 indicate the same members as in the same figure, and first, in Figs.
The high-pressure liquefied refrigerant flowing from the refrigerant is rapidly expanded by the expansion valve 6, vaporized by the evaporator 7, and sucked into the compressor 2 via the refrigerant control valve 21.

こ\で、冷媒制御弁21は後述するコントローラ24に
よシエバポレータの上流側(車内又は車外気中に設けて
もよい)空気温度を検出する上流センサー23の信号に
応じて制御され、上流センサー23の温度が高いとその
開度が犬となシ、上流センサー23の温度が低いと開度
が小となる。22はエバボレータフの温度又はその近傍
温度(吹出空気温度でもよい)を検出するセンサーで、
エバポレータ温度又はその近傍温度が所定温度(こ\で
はフロスト防止する約0°Cの温度)となると、コント
ローラ24によυ電磁クラッチ3をオフすることによシ
コングレツサ2をオフするサーモ回路を構成する。25
はクーラを作動させるエアコンスイッチ、26は開度の
変化によシ流量を制御するバタフライバルブで、そのシ
ャフト26′は冷媒漏れを防止するメカニカルシール2
7を介して電動モータ28に直結されると\もにバルブ
開度を検出するポテンションメータ(ロータリタイプの
可変抵抗器)29とも連結され、コントローラ24によ
る電動モータ28の回動によりパルプ開度を変えて冷媒
流量をコントロールし5冷媒制御弁21の弁体をバタフ
ライバルブで構成することによシその操作力が軽減され
て有利である。上流センサー23およびポテンショメー
タ29は第5図に示すような特性を有し、それぞれの抵
抗値の和が常に一定値となるようにコントローラ24お
よび電動モータ28を介して冷媒制御弁21の開度を制
御する。
Here, the refrigerant control valve 21 is controlled by a controller 24, which will be described later, in response to a signal from an upstream sensor 23 that detects the air temperature on the upstream side of the evaporator (which may be provided in the air inside the car or outside the car). When the temperature of the upstream sensor 23 is high, the opening degree becomes small, and when the temperature of the upstream sensor 23 is low, the opening degree becomes small. 22 is a sensor that detects the temperature of the evaporator tough or a temperature near it (the temperature of the blown air may also be used);
When the evaporator temperature or the temperature near it reaches a predetermined temperature (in this case, a temperature of about 0°C to prevent frosting), a thermo circuit is configured that turns off the electromagnetic clutch 3 by the controller 24, thereby turning off the converter 2. . 25
2 is an air conditioner switch that operates the cooler, 26 is a butterfly valve that controls the flow rate by changing the opening degree, and its shaft 26' is a mechanical seal 2 that prevents refrigerant leakage.
7 is directly connected to the electric motor 28, it is also connected to a potentiometer (rotary type variable resistor) 29 that detects the valve opening, and the rotation of the electric motor 28 by the controller 24 changes the pulp opening. By controlling the refrigerant flow rate by changing the refrigerant flow rate and configuring the valve body of the refrigerant control valve 21 as a butterfly valve, it is advantageous to reduce the operating force. The upstream sensor 23 and the potentiometer 29 have characteristics as shown in FIG. 5, and the opening degree of the refrigerant control valve 21 is controlled via the controller 24 and the electric motor 28 so that the sum of their respective resistance values is always a constant value. Control.

すなわち、第4図において、上流センサー23およびポ
テンションメータ29の合成抵抗とコントローラ24の
固定抵抗R1とによる分岐点Aの分岐電圧VAが比較器
OPIおよびOF2に入力し、固定抵抗R2およびR3
,R4によシ決定される基準電圧と比較し、例えば、分
岐電圧VAが高いと(冷房負をそれぞれオンし、Tr3
をオフさせ、電動モータ28へ+12Vを印加する。
That is, in FIG. 4, the branch voltage VA at the branch point A due to the combined resistance of the upstream sensor 23 and potentiometer 29 and the fixed resistor R1 of the controller 24 is input to the comparators OPI and OF2, and the branch voltage VA is input to the comparators OPI and OF2,
, R4, for example, if the branch voltage VA is high (cooling negative is turned on, Tr3
is turned off and +12V is applied to the electric motor 28.

その際、比較器OP2はオフで、トランジスタTr4.
Tr5はそれぞれオフし、Tr6がオンとなシミ動モー
タ28のアース側となることによシミ動モータ28は冷
媒制御弁開度を閉じる方向に作動し、したがって、これ
に連動するポテンションメータ29の抵抗値が小となシ
、分岐電圧VAが低下し、比較器OPlはオフとなり電
動モータはオフとなる。
At this time, comparator OP2 is off and transistors Tr4.
Tr5 is turned off, and Tr6 is turned on and becomes the ground side of the shimmo motor 28, so that the shimmo motor 28 operates in the direction of closing the refrigerant control valve opening, and therefore the potentiometer 29 interlocked with this When the resistance value of is small, the branch voltage VA decreases, the comparator OPl is turned off, and the electric motor is turned off.

次ニ、冷房負荷が増大し、上流センサー23の温度が上
昇すると、その抵抗は小さくなシ。
Second, when the cooling load increases and the temperature of the upstream sensor 23 rises, its resistance decreases.

分岐電圧VAが低下し、比較器OP2がオンとなり、ト
ランジスタT r 4.  T r 5がオンし、Tr
6はオフとなシ、電動モータ28へ+12Vが印加され
、その際、他端のトランジスタTr3はオン状態でアー
ス側となるため電動モータ28は冷媒制御弁21を開く
ように作動し、よってポテンショメータ29の抵抗が増
大し、分岐電圧VAが上昇し比較器OP2の作動はオフ
となシミ動モータ28は停止する。
Branch voltage VA decreases, comparator OP2 turns on, and transistor T r 4. Tr 5 turns on and Tr
6 is off, +12V is applied to the electric motor 28, and at this time, the transistor Tr3 at the other end is on and connected to the ground side, so the electric motor 28 operates to open the refrigerant control valve 21, and therefore the potentiometer 29 increases, the branch voltage VA rises, the operation of the comparator OP2 is turned off, and the shimming motor 28 stops.

一方、冷媒制御弁21の弁開度が犬きくなシ、冷媒流量
が増大すると、冷房能力が増大し、エバポレータ温度が
低下し、70スト近傍の温度まで低下すると、エバポレ
ータセンサー22の抵抗値が増大し1分岐点Bの分岐電
圧VBが上昇し、比較器OP3がオフとなシ、トランジ
スタT r 7.  Tr8をオフとして電磁クラッチ
3をオフとし、コンプレッサ2を停止せしめ、これにょ
シェバポレータのフロストを防止する。
On the other hand, when the valve opening degree of the refrigerant control valve 21 increases and the refrigerant flow rate increases, the cooling capacity increases and the evaporator temperature decreases.When the temperature drops to around 70 strokes, the resistance value of the evaporator sensor 22 increases. 1, the branch voltage VB of the branch point B rises, the comparator OP3 turns off, and the transistor T r7. The Tr8 is turned off, the electromagnetic clutch 3 is turned off, the compressor 2 is stopped, and frosting of the vaporizer is prevented.

膨張弁6の感熱部6′はエバポレータ出口と冷媒制御弁
21の間の冷媒温度に近い管温度を検出し、エバポレー
タ出口での冷媒過熱度が最適となるよう膨張弁6の一開
朋を制御することによシ冷媒流入量のコントロールを行
なう。つ!シ、冷媒流量制御弁21の弁開度が小さくな
ると、エバポレータ内の蒸発圧力が上昇し、膨張弁開度
が前の状態と変わらないと液バツク状態となるため膨張
弁感熱部6′の温度が低下し、その内部圧力が低下し膨
張弁の弁開度を閉じるように作動し、逆の場合は弁開度
を開くように作動し、これによっても冷媒流量がコント
ロールされることになる。
The heat sensitive part 6' of the expansion valve 6 detects the pipe temperature close to the refrigerant temperature between the evaporator outlet and the refrigerant control valve 21, and controls the opening degree of the expansion valve 6 so that the degree of superheating of the refrigerant at the evaporator outlet is optimized. By doing this, the amount of refrigerant inflow is controlled. One! When the opening degree of the refrigerant flow control valve 21 becomes smaller, the evaporation pressure inside the evaporator increases, and if the expansion valve opening degree remains unchanged from the previous state, a liquid back-up state occurs, so the temperature of the expansion valve heat-sensitive part 6' increases. decreases, its internal pressure decreases, and the expansion valve operates to close the valve opening.In the opposite case, it operates to open the valve opening, and the refrigerant flow rate is also controlled by this.

このような装置によれば、上流センサー23により冷房
負荷が大きいとき、つまシ上流センサ一温度が高いとき
、冷媒制御弁21の弁開度が大となり、冷媒流量を増加
して冷房能力を増加せしめ、冷房負荷が低下すると、つ
まり上流センサ一温度が低下すると、冷媒制御弁21の
°弁開度を小さくし、冷媒流量を減少して冷房能力を低
下させることができる。
According to such a device, when the cooling load is large according to the upstream sensor 23 and when the temperature of the upstream sensor 1 is high, the valve opening of the refrigerant control valve 21 increases, increasing the refrigerant flow rate and increasing the cooling capacity. However, when the cooling load decreases, that is, when the temperature of the upstream sensor decreases, the degree of opening of the refrigerant control valve 21 is reduced, the refrigerant flow rate is reduced, and the cooling capacity is reduced.

その際、コンプレッサの駆動動力はその仕事量、つまシ
冷媒流量によってはy決定され。
At that time, the driving power of the compressor is determined by the amount of work and the flow rate of the refrigerant.

冷房負荷に応じて冷媒流量を最適状態にコントロールす
ることによシコンプレツサ動力を最適状態に保ち、従来
のシステムにおけるような無駄な動力を省くことが可能
となシ、省エネルギ運転を行なうと\もに、冷媒流量制
御範囲では、エバポレータ温度が上昇しフロスト温度に
至らないのでコンプレッサの連続運転が可能となシ、従
来のシステムにおけるようなコンプレッサの頻繁なオン
オフによる不具合を解消するとと\なる。また、冷媒制
御弁21が全開の時、エバポレータ温度がフロスト点に
なると自動的にコンプレッサをオフすること\なシ、こ
れらのコントロールはすべて自動的に行なわれ、かつ、
車内温度を快適に保つに適度な冷房能力制御を行なうこ
とによシ乗員の操作が省略され、安全運転に役立つ。
By controlling the refrigerant flow rate to the optimum state according to the cooling load, it is possible to maintain the compressor power in the optimum state and eliminate unnecessary power that is used in conventional systems. Second, in the refrigerant flow rate control range, the evaporator temperature rises and does not reach the frost temperature, allowing continuous operation of the compressor, which eliminates problems caused by frequent turning on and off of the compressor as in conventional systems. In addition, when the refrigerant control valve 21 is fully open, the compressor is automatically turned off when the evaporator temperature reaches the frost point, and all these controls are performed automatically.
By controlling the cooling capacity appropriately to maintain a comfortable temperature inside the vehicle, the operation by the occupants is omitted, contributing to safe driving.

なお、上記実施例において、冷房負荷が小さく冷媒制御
弁開度が小となると、コンプレッサへの吸入圧力が低下
し過ぎ、真空運転になる慣れがあるので、これを防止す
るために、コンプレッサ吸入圧力が所定圧以下でオンと
なる保護装置を設けると実際的である。
In addition, in the above embodiment, when the cooling load is small and the refrigerant control valve opening is small, the suction pressure to the compressor decreases too much and there is a tendency to operate in a vacuum, so in order to prevent this, the compressor suction pressure It is practical to provide a protection device that turns on below a predetermined pressure.

要するに本発明によれば、冷媒圧縮機、凝縮機、膨張弁
、蒸発器よシなる冷媒回路を具えた車両用空調装置にお
いて、上記蒸発器と上記冷媒圧縮機との間の冷媒回路に
冷媒流量制御弁を挿入し、上記冷媒流量制御弁を空調負
荷により制御するようにしたことによシ、省エネルギ、
耐久性、ドライバビリティ良好な車両用空調装置を得る
から本発明は産業上極めて有益なものである。
In short, according to the present invention, in a vehicle air conditioner equipped with a refrigerant circuit including a refrigerant compressor, a condenser, an expansion valve, and an evaporator, a refrigerant flow rate is provided in the refrigerant circuit between the evaporator and the refrigerant compressor. By inserting a control valve and controlling the refrigerant flow rate control valve according to the air conditioning load, energy savings can be achieved.
The present invention is extremely useful industrially because it provides a vehicle air conditioner with good durability and drivability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の自動車用空調装置の系統図、第2図は本
発明の一実施例を示す系統図、第3図は第2図の冷媒制
御弁を示す拡大断面図、第4図は第9図のコントローラ
を示す回路図。 第5図は第2図における上流センサーおよびポテンショ
ンメータ29の冷媒制御弁開度と電気抵抗との関係を示
す線図である。 l・・エンジン、2・・コンプレッサ、3・・電磁クラ
ッチ、4・・コンデンサ、5・・レシーバ、6・・膨張
弁、6′・・感熱部、7・・エバポレータ、8−71:
/、9. 9’、  10゜11.12・・配管、16
・・ヒータ、17・・導水パイプ% 18・・出口バイ
ブ、19・・エアミックスダンパー、20・・車内、2
1・・冷媒制御弁、22・・センサー、23・・上流セ
ンサー%24・・コントローラ、25・−エアコンスイ
ッチ、26・・バタフライバルブ、26′・・シャフト
、27・・メカニカルシール、28・・電動モータ、2
9・・ポテンショメータ、 OPI、OF2・・比較器、 Trl、Tr2.Tr3.’rr51  Tr6゜Tr
7.Tr8・・トランジスタ、 復代理人 弁理士  塚 本 正 文
Fig. 1 is a system diagram of a known automobile air conditioner, Fig. 2 is a system diagram showing an embodiment of the present invention, Fig. 3 is an enlarged sectional view showing the refrigerant control valve of Fig. 2, and Fig. 4 is a system diagram showing an embodiment of the present invention. 10 is a circuit diagram showing the controller of FIG. 9. FIG. FIG. 5 is a diagram showing the relationship between the refrigerant control valve opening degree and electrical resistance of the upstream sensor and potentiometer 29 in FIG. 2. l...Engine, 2...Compressor, 3...Electromagnetic clutch, 4...Condenser, 5...Receiver, 6...Expansion valve, 6'...Heat sensitive part, 7...Evaporator, 8-71:
/, 9. 9', 10゜11.12...Piping, 16
...Heater, 17..Water pipe% 18..Exit vibe, 19..Air mix damper, 20..Inside the car, 2
1...Refrigerant control valve, 22...Sensor, 23...Upstream sensor% 24...Controller, 25...-Air conditioner switch, 26...Butterfly valve, 26'...Shaft, 27...Mechanical seal, 28... electric motor, 2
9...Potentiometer, OPI, OF2...Comparator, Trl, Tr2. Tr3. 'rr51 Tr6゜Tr
7. Tr8...transistor, sub-agent patent attorney Masafumi Tsukamoto

Claims (1)

【特許請求の範囲】[Claims] 冷媒圧縮機、凝縮器、膨張弁、蒸発器よシなる冷媒回路
を具えた車両用空調装置において、上記蒸発器と上記冷
媒圧縮機との間の冷媒回路に冷媒流量制御弁を挿入し、
上記冷媒流量制御弁を空調負荷によ量制御するようにし
たことを特徴とする車両用空調装置。
In a vehicle air conditioner equipped with a refrigerant circuit including a refrigerant compressor, a condenser, an expansion valve, and an evaporator, a refrigerant flow control valve is inserted into the refrigerant circuit between the evaporator and the refrigerant compressor,
An air conditioner for a vehicle, characterized in that the refrigerant flow rate control valve is configured to control the amount according to the air conditioning load.
JP10848682A 1982-06-25 1982-06-25 Air conditioner for car Pending JPS591957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10848682A JPS591957A (en) 1982-06-25 1982-06-25 Air conditioner for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10848682A JPS591957A (en) 1982-06-25 1982-06-25 Air conditioner for car

Publications (1)

Publication Number Publication Date
JPS591957A true JPS591957A (en) 1984-01-07

Family

ID=14485976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10848682A Pending JPS591957A (en) 1982-06-25 1982-06-25 Air conditioner for car

Country Status (1)

Country Link
JP (1) JPS591957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208666A (en) * 1988-02-15 1989-08-22 Sanyo Electric Co Ltd Refrigerating plant
JPH01210760A (en) * 1988-02-19 1989-08-24 Sanyo Electric Co Ltd Cooler
JPH01212867A (en) * 1988-02-19 1989-08-25 Sanyo Electric Co Ltd Refrigerating device
JPH01266468A (en) * 1988-04-15 1989-10-24 Sanyo Electric Co Ltd Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208666A (en) * 1988-02-15 1989-08-22 Sanyo Electric Co Ltd Refrigerating plant
JPH01210760A (en) * 1988-02-19 1989-08-24 Sanyo Electric Co Ltd Cooler
JPH01212867A (en) * 1988-02-19 1989-08-25 Sanyo Electric Co Ltd Refrigerating device
JPH01266468A (en) * 1988-04-15 1989-10-24 Sanyo Electric Co Ltd Refrigerator

Similar Documents

Publication Publication Date Title
US6523361B2 (en) Air conditioning systems
US4590772A (en) Air conditioning system for vehicle
KR100279134B1 (en) Automotive air conditioning system
US6513341B2 (en) Air conditioning systems and methods for vehicles
US5560217A (en) Air conditioning system of heat pump type
US4590892A (en) Cooling system for vehicle
US10508588B2 (en) Cooling device for internal combustion engine
JPS62205816A (en) Air conditioner for automobile
JPS6015215A (en) Air conditioner for vehicle
US5477700A (en) Air conditioning system which can be used in an electric car
EP0681933B1 (en) Air conditioning system of heat pump type
US4383574A (en) Air conditioning system for automotive vehicles having discharge air temperature control function
JPS591957A (en) Air conditioner for car
JPS61101660A (en) Fuel cooling device for motorcar
JP3369851B2 (en) Heat pump type air conditioner for automobiles
AU706361B2 (en) Air conditioning system for a motor vehicle
JP3949291B2 (en) Air conditioner for electric vehicles
JPS5897522A (en) Refrigeration cycle control unit for car
JPS6194811A (en) Heat pump type heating cooling device for vehicle
JPS5919602Y2 (en) Vehicle air conditioner
JPS6330937Y2 (en)
JP3831162B2 (en) Automotive air conditioner
JPS62279228A (en) Intake air cooler for internal combustion engine
JPS6249205B2 (en)
JPS6234810Y2 (en)