JPH07139827A - Cooling and freezing device - Google Patents

Cooling and freezing device

Info

Publication number
JPH07139827A
JPH07139827A JP28910393A JP28910393A JPH07139827A JP H07139827 A JPH07139827 A JP H07139827A JP 28910393 A JP28910393 A JP 28910393A JP 28910393 A JP28910393 A JP 28910393A JP H07139827 A JPH07139827 A JP H07139827A
Authority
JP
Japan
Prior art keywords
cooling
refrigerant
refrigerating
operation mode
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28910393A
Other languages
Japanese (ja)
Inventor
Kohei Hattori
耕平 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP28910393A priority Critical patent/JPH07139827A/en
Publication of JPH07139827A publication Critical patent/JPH07139827A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a cooling capability of a refrigerant evaporator for use in cooling operation from being reduced by a method wherein the refrigerant is bypassed from an evaporating pressure adjusting valve under a single cooling operation mode. CONSTITUTION:A refrigerant evaporator 12 for use in cooling operation and a refrigerant evaporator 20 for use in a refrigerator are connected in parallel with one refrigerant compressor 2. An evaporating pressure adjusting valve 13 is connected to a low pressure side from an outlet port of the refrigerant evaporator 12 for use in cooling operation under a simultaneous cooling and refrigerating operation mode, a large amount of refrigerant is circulated within the refrigerant evaporator 20 for use in refrigerating operation with the refrigerant evaporator 12 for use in cooling operation under a metering action of the evaporating pressure adjusting valve 13 so as to improve a freezing capability. Refrigerant gas flowed out of the outlet port of the refrigerant evaporator 12 for use in cooling operation is passed through a bypassing flow passage 14 connected in parallel with the evaporating pressure adjusting valve 13 and then a cooling capability is improved by circulating a large amount of refrigerant within the refrigerant evaporator 12 for use in cooling operation under an arrangement in which an influence of the metering action of the evaporating pressure adjusting valve 13 is not applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば1つの冷媒圧
縮機に対して2つの冷媒蒸発器を並列接続した冷蔵車用
冷房冷蔵装置または冷凍車用冷房冷凍装置等に好適な冷
房冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling / refrigerating apparatus suitable for a refrigerating vehicle refrigerating apparatus or a refrigerating vehicle cooling / refrigerating apparatus in which two refrigerant evaporators are connected in parallel to one refrigerant compressor. It is a thing.

【0002】[0002]

【従来の技術】従来の技術として、図3にも示したよう
に、1つの冷媒圧縮機101に対して冷房用冷媒蒸発器
102と冷蔵用冷媒蒸発器103を並列接続した冷房冷
蔵装置100が知られている。この冷房冷蔵装置100
は、冷媒圧縮機101と、冷媒凝縮器104と、レシー
バ105と、冷房用膨張弁106、冷房用冷媒蒸発器1
02および蒸発圧力調整弁107を順に直列接続した冷
房ユニット108と、冷蔵用膨張弁109および冷蔵用
冷媒蒸発器103を順に直列接続した冷蔵ユニット11
0によって構成されている。
2. Description of the Related Art As a conventional technique, as shown in FIG. 3, a cooling and refrigerating apparatus 100 in which a cooling refrigerant evaporator 102 and a refrigerating refrigerant evaporator 103 are connected in parallel to one refrigerant compressor 101 is provided. Are known. This cooling / refrigerating apparatus 100
Is a refrigerant compressor 101, a refrigerant condenser 104, a receiver 105, a cooling expansion valve 106, a cooling refrigerant evaporator 1
02 and an evaporation pressure adjusting valve 107 connected in series in order, and a refrigeration unit 11 in which a refrigeration expansion valve 109 and a refrigeration refrigerant evaporator 103 are connected in series in order.
It is composed of 0s.

【0003】そして、冷房冷蔵装置100は、冷房ユニ
ット108と冷蔵ユニット110にそれぞれ電磁弁11
1、112を設けているので、冷房冷蔵同時運転モー
ド、冷房単独運転モードおよび冷蔵単独運転モードに選
択的に切り替えることができる。
In the cooling and refrigerating apparatus 100, the cooling unit 108 and the refrigerating unit 110 are respectively provided with solenoid valves 11 and 11.
Since 1 and 112 are provided, it is possible to selectively switch to the cooling / refrigerating simultaneous operation mode, the cooling only operation mode, and the cooling only operation mode.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の冷房
冷蔵装置100においては、冷蔵用冷媒蒸発器103の
冷凍能力を向上させるために、冷房用冷媒蒸発器102
の出口より低圧側に蒸発圧力調整弁107を接続して、
冷房用冷媒蒸発器102での蒸発温度を強制的に上げて
いる。これにより、冷房単独運転モード時には、蒸発圧
力調整弁を持たない冷凍サイクルと比較して、冷媒の流
量が少なくなるので、冷房用冷媒蒸発器102での蒸発
温度が下がらない。よって、冷房単独運転モード時に
は、冷房用冷媒蒸発器102の冷房能力が低下するとい
う問題点があった。
However, in the conventional cooling / refrigerating apparatus 100, in order to improve the refrigerating capacity of the refrigerating refrigerant evaporator 103, the cooling refrigerant evaporator 102 is provided.
The evaporation pressure control valve 107 is connected to the low pressure side from the outlet of
The evaporation temperature in the cooling refrigerant evaporator 102 is forcibly raised. As a result, in the cooling only operation mode, the flow rate of the refrigerant is smaller than that in the refrigeration cycle that does not have the evaporation pressure adjusting valve, so that the evaporation temperature in the cooling refrigerant evaporator 102 does not decrease. Therefore, in the cooling only operation mode, there is a problem that the cooling capacity of the cooling refrigerant evaporator 102 decreases.

【0005】この発明は、冷房単独運転モード時におけ
る冷房用冷媒蒸発器の冷房能力の低下を防止することが
可能な冷房冷凍装置の提供を目的とする。
An object of the present invention is to provide a cooling / refrigerating device capable of preventing a decrease in cooling capacity of a cooling refrigerant evaporator in a cooling only operation mode.

【0006】[0006]

【課題を解決するための手段】この発明は、冷房用膨張
弁、冷房用冷媒蒸発器および蒸発圧力調整弁を順に直列
接続してなる冷房ユニットと、冷凍用膨張弁および冷凍
用冷媒蒸発器を順に直列接続してなる冷凍ユニットと、
前記冷房ユニットおよび前記冷凍ユニットの両方に冷媒
を循環させる冷房冷凍同時運転モードと前記冷房ユニッ
トのみに冷媒を循環させる冷房単独運転モードとを切り
替える切替手段とを備え、冷媒凝縮器の出口と冷媒圧縮
機の吸入口との間に、前記冷房ユニットと前記冷凍ユニ
ットを並列接続してなる冷房冷凍装置において、前記冷
房ユニットは、前記冷房用冷媒蒸発器の出口と前記冷媒
圧縮機の吸入口との間で前記蒸発圧力調整弁に対して並
列接続された迂回流路、および冷房単独運転モード時に
前記迂回流路を開き、冷房冷凍同時運転モード時に前記
迂回流路を閉じる開閉手段を有する技術手段を採用し
た。
According to the present invention, there is provided a cooling unit in which a cooling expansion valve, a cooling refrigerant evaporator, and an evaporation pressure adjusting valve are sequentially connected in series, a freezing expansion valve and a freezing refrigerant evaporator. A refrigeration unit connected in series in order,
A cooling / refrigerating simultaneous operation mode in which a refrigerant is circulated in both the cooling unit and the refrigeration unit and a cooling single operation mode in which a refrigerant is circulated only in the cooling unit are provided, and an outlet of the refrigerant condenser and refrigerant compression are provided. In a cooling / refrigerating device in which the cooling unit and the refrigerating unit are connected in parallel between the inlet of the machine and the cooling unit, the cooling unit includes an outlet of the cooling refrigerant evaporator and an inlet of the refrigerant compressor. Between the bypass flow path connected in parallel to the evaporation pressure adjusting valve, and the opening and closing means for opening the bypass flow path in the single cooling operation mode and closing the bypass flow path in the simultaneous cooling and refrigeration operation mode. Adopted.

【0007】[0007]

【作用】この発明によれば、切替手段によって冷房冷凍
同時運転モードに切り替えられると、開閉手段が迂回流
路を閉じる。そして、冷媒圧縮機より吐出された冷媒ガ
スが冷媒凝縮器で凝縮し、冷房ユニットおよび冷凍ユニ
ットに共に供給される。なお、冷媒凝縮器の出口より流
出した冷媒は、蒸発圧力調整弁の絞り作用により主力的
に冷凍ユニット内に供給される。冷房ユニットに供給さ
れた冷媒は、冷房用膨張弁にて断熱膨張され、蒸発圧力
調整弁の絞り作用を受けた蒸発温度にて冷房用冷媒蒸発
器内で蒸発し、蒸発圧力調整弁を通って冷媒圧縮機に戻
される。一方、冷凍ユニットに供給された冷媒は、冷凍
用膨張弁にて断熱膨張され、冷房用冷媒蒸発器より低い
蒸発温度にて冷凍用冷媒蒸発器内で蒸発する。これによ
り、冷凍用冷媒蒸発器にて十分な冷凍能力が得られる。
According to the present invention, when the switching means switches to the simultaneous cooling / freezing operation mode, the opening / closing means closes the bypass passage. Then, the refrigerant gas discharged from the refrigerant compressor is condensed in the refrigerant condenser and supplied to both the cooling unit and the refrigeration unit. The refrigerant flowing out from the outlet of the refrigerant condenser is mainly supplied into the refrigeration unit by the throttling action of the evaporation pressure adjusting valve. The refrigerant supplied to the cooling unit is adiabatically expanded by the cooling expansion valve, evaporated in the cooling refrigerant evaporator at the evaporation temperature subjected to the throttling action of the evaporation pressure adjusting valve, and passes through the evaporation pressure adjusting valve. Returned to the refrigerant compressor. On the other hand, the refrigerant supplied to the refrigerating unit is adiabatically expanded by the freezing expansion valve and evaporated in the freezing refrigerant evaporator at an evaporation temperature lower than that of the cooling refrigerant evaporator. As a result, a sufficient refrigerating capacity can be obtained in the refrigerating refrigerant evaporator.

【0008】また、切替手段によって冷房単独運転モー
ドに切り替えられると、開閉手段が迂回流路を開く。そ
して、冷媒圧縮機より吐出された冷媒ガスが冷媒凝縮器
で凝縮し、冷房ユニットのみに供給される。冷房ユニッ
トに供給された冷媒は、冷房用膨張弁にて断熱膨張さ
れ、蒸発圧力調整弁の絞り作用の影響を受けることなく
冷房用冷媒蒸発器内で蒸発し、迂回流路を通って冷媒圧
縮機に戻される。したがって、冷房単独運転モード時に
は、蒸発圧力調整弁の絞り作用の影響を受けないため、
冷房用冷媒蒸発器内を通過する冷媒の流量が増えること
により、冷房用冷媒蒸発器での蒸発温度が冷房冷凍同時
運転モード時より下がる。これにより、冷房用冷媒蒸発
器にて十分な冷房能力が得られる。
When the switching means switches to the cooling only operation mode, the opening / closing means opens the bypass passage. Then, the refrigerant gas discharged from the refrigerant compressor is condensed in the refrigerant condenser and is supplied only to the cooling unit. The refrigerant supplied to the cooling unit is adiabatically expanded by the cooling expansion valve, evaporated in the cooling refrigerant evaporator without being affected by the throttling action of the evaporating pressure control valve, and passes through the bypass flow path to compress the refrigerant. Returned to the plane. Therefore, in the cooling only operation mode, since it is not affected by the throttling action of the evaporation pressure control valve,
As the flow rate of the refrigerant passing through the cooling refrigerant evaporator increases, the evaporation temperature in the cooling refrigerant evaporator falls below that in the simultaneous cooling / freezing operation mode. As a result, a sufficient cooling capacity can be obtained in the cooling refrigerant evaporator.

【0009】[0009]

【実施例】【Example】

〔実施例の構成〕次に、この発明の冷房冷凍装置を冷蔵
車用冷房冷蔵装置に適用した実施例に基づいて説明す
る。図1および図2はこの発明の一実施例を示したもの
で、図1は冷蔵車用冷房冷蔵装置を示した図である。こ
の冷蔵車用冷房冷蔵装置1は、1つの冷媒圧縮機2、1
つの冷媒凝縮器3、1つのレシーバ4、冷房ユニット5
および冷蔵ユニット6等から、冷蔵車のキャビン内の冷
房および冷蔵庫内の冷蔵の熱源としての冷凍サイクル7
を構成している。
[Configuration of Embodiment] Next, an explanation will be given based on an embodiment in which the cooling / refrigerating apparatus of the present invention is applied to a cooling / refrigerating apparatus for refrigerating vehicles. 1 and 2 show an embodiment of the present invention, and FIG. 1 is a view showing a refrigerating machine for refrigerating vehicles. This refrigeration vehicle cooling / refrigerating apparatus 1 includes one refrigerant compressor 2 and one refrigerant compressor 1.
One refrigerant condenser 3, one receiver 4, cooling unit 5
From the refrigeration unit 6 and the like, a refrigeration cycle 7 as a heat source for refrigeration in the cabin of the refrigeration vehicle and in the refrigerator
Are configured.

【0010】冷媒圧縮機2は、冷蔵車に搭載されたエン
ジンまたは電動モータ等の駆動装置(図示せず)によっ
て回転駆動され、吸入口より吸入した冷媒を圧縮して高
温、高圧のガス冷媒を吐出口より吐出する。なお、この
冷媒圧縮機2は、駆動装置の回転速度の上昇にしたがっ
て冷凍サイクル7中の冷媒の流量を増加させるものであ
る。また、冷媒圧縮機として駆動装置の回転速度が変化
しなくても、冷房負荷や冷凍負荷等の冷蔵車の熱負荷に
基づいて冷媒の流量を変更する可変容量式のものを用い
ても良い。
The refrigerant compressor 2 is rotatably driven by a drive device (not shown) such as an engine or an electric motor mounted on a refrigerating vehicle, and compresses the refrigerant sucked from the suction port to generate a high-temperature, high-pressure gas refrigerant. Discharge from the discharge port. The refrigerant compressor 2 increases the flow rate of the refrigerant in the refrigeration cycle 7 as the rotation speed of the drive device increases. Further, as the refrigerant compressor, a variable capacity type compressor that changes the flow rate of the refrigerant based on the heat load of the refrigerating vehicle such as the cooling load or the refrigerating load may be used even if the rotation speed of the drive device does not change.

【0011】冷媒凝縮器3は、冷蔵車の走行風を受け易
い場所に設置され、冷媒圧縮機2から流入したガス冷媒
をクーリングファン8の送風を受けて凝縮させる熱交換
器である。レシーバ4は、冷媒凝縮器3から流入した冷
媒を気液分離して一時的に蓄えておき、冷房負荷や冷凍
負荷等の冷蔵車の熱負荷に基づいて液冷媒のみを冷房ユ
ニット5または冷蔵ユニット6へ流出する。なお、気液
分離器としてのレシーバ4の代わりに、冷房ユニット5
の出口および冷蔵ユニット6の出口と冷媒圧縮機2の吸
入口との間にアキュームレータを配置しても良い。
The refrigerant condenser 3 is a heat exchanger that is installed in a place where the running air of the refrigerating vehicle is easily received and that condenses the gas refrigerant flowing from the refrigerant compressor 2 by receiving the airflow of the cooling fan 8. The receiver 4 separates the refrigerant that has flowed in from the refrigerant condenser 3 into gas-liquid and temporarily stores the refrigerant, and only the liquid refrigerant is cooled by the cooling unit 5 or the refrigeration unit based on the heat load of the refrigerating vehicle such as a cooling load or a freezing load. Outflow to 6. In addition, instead of the receiver 4 as a gas-liquid separator, a cooling unit 5
An accumulator may be arranged between the outlet of the refrigerant compressor 6 and the outlet of the refrigeration unit 6.

【0012】冷房ユニット5は、電磁式切替弁(以下電
磁弁と略す)9、電磁式開閉弁(以下電磁弁と略す)1
0、冷房用温度作動式膨張弁(以下冷房用膨張弁と略
す)11、冷房用冷媒蒸発器12および蒸発圧力調整弁
13を順に直列接続してなる。電磁弁9は、本発明の切
替手段であって、冷房ユニット5の入口に設置され、通
電されることにより開弁して冷房ユニット5内に冷媒を
循環させる。
The cooling unit 5 includes an electromagnetic switching valve (hereinafter abbreviated as electromagnetic valve) 9 and an electromagnetic on-off valve (hereinafter abbreviated as electromagnetic valve) 1.
0, a temperature-controlled expansion valve for cooling (hereinafter abbreviated as expansion valve for cooling) 11, a refrigerant evaporator for cooling 12, and an evaporation pressure adjusting valve 13 are connected in series in order. The solenoid valve 9 is the switching means of the present invention, is installed at the inlet of the cooling unit 5, and opens when energized to circulate the refrigerant in the cooling unit 5.

【0013】電磁弁10は、本発明の開閉手段であっ
て、迂回流路14に設置され、通電されることにより開
弁して迂回流路14内に冷媒を循環させる。迂回流路1
4は、冷房用冷媒蒸発器12の出口と蒸発圧力調整弁1
3の入口との間に分岐口を有し、蒸発圧力調整弁13の
出口と冷媒圧縮機2の吸入口との間に接続口を有し、蒸
発圧力調整弁13に対して並列接続された流路である。
The solenoid valve 10 is the opening / closing means of the present invention. The solenoid valve 10 is installed in the bypass passage 14 and opens when energized to circulate the refrigerant in the bypass passage 14. Detour flow path 1
4 is the outlet of the cooling refrigerant evaporator 12 and the evaporation pressure adjusting valve 1
3 has a branch port between the evaporating pressure adjusting valve 13 and the outlet of the evaporating pressure adjusting valve 13 and a suction port of the refrigerant compressor 2 and is connected in parallel to the evaporating pressure adjusting valve 13. It is a flow path.

【0014】冷房用膨張弁11は、小さな孔の開度を調
節する絞り弁(図示せず)、冷房用冷媒蒸発器12の出
口より流出した冷媒の温度を検出する感熱筒15、およ
びこの感熱筒15で検出した冷媒温度に相当する圧力を
本体側に伝えるキャピラリチューブ16等を備えてい
る。
The cooling expansion valve 11 includes a throttle valve (not shown) for adjusting the opening of a small hole, a heat-sensitive cylinder 15 for detecting the temperature of the refrigerant flowing out from the outlet of the cooling-refrigerant evaporator 12, and this heat-sensitive cylinder. A capillary tube 16 for transmitting a pressure corresponding to the refrigerant temperature detected by the cylinder 15 to the main body side is provided.

【0015】冷房用膨張弁11は、レシーバ4から流入
した高温、高圧の液冷媒を絞り弁の小さな孔から噴射さ
せることにより急激に膨張させるものである。また、冷
房用膨張弁11は、冷房用冷媒蒸発器12の出口で冷媒
の蒸発が完了するように、冷房用冷媒蒸発器12の出口
の過熱度に基づいて絞り弁の小さな孔の開度を調節して
冷凍サイクル7中の冷媒の流量を制御する。
The cooling expansion valve 11 rapidly expands by injecting the high-temperature, high-pressure liquid refrigerant flowing from the receiver 4 from a small hole of the throttle valve. Further, the cooling expansion valve 11 adjusts the opening degree of a small hole of the throttle valve based on the degree of superheat at the outlet of the cooling refrigerant evaporator 12 so that the evaporation of the refrigerant at the outlet of the cooling refrigerant evaporator 12 is completed. The flow rate of the refrigerant in the refrigeration cycle 7 is controlled to control the flow rate.

【0016】冷房用冷媒蒸発器12は、冷蔵車のフロン
ト側に設置されたダクト(図示せず)内に収められ、フ
ァン17の送風を受けて、冷房用膨張弁11の出口から
流入した霧状冷媒を蒸発させる熱交換器である。なお、
冷媒との熱交換によって冷却された空気は、ファン17
によって冷蔵車のキャビン内に吹き出されることによ
り、冷蔵車のキャビン内の室内温度が設定温度(例えば
25℃)となるように冷房される。
The cooling refrigerant evaporator 12 is housed in a duct (not shown) installed on the front side of the refrigerating vehicle, receives the air blown by the fan 17, and flows in from the outlet of the expansion valve 11 for cooling. It is a heat exchanger that evaporates the refrigerant. In addition,
The air cooled by heat exchange with the refrigerant is supplied to the fan 17
By being blown into the cabin of the refrigerating vehicle, the room temperature in the cabin of the refrigerating vehicle is cooled to a set temperature (for example, 25 ° C.).

【0017】蒸発圧力調整弁13は、冷房用冷媒蒸発器
12の出口より低圧側に接続され、図示しない絞り孔の
開度を調節して冷媒の流量を制御することにより冷房用
冷媒蒸発器12での蒸発圧力を設定値(例えば2.0kg
/cm2 )以上に保ち冷房用冷媒蒸発器12のフロストを
防止するものである。この蒸発圧力調整弁13は、冷房
冷蔵同時運転モードで運転されている時に、自身の絞り
作用により、レシーバ4の出口から主力的に冷蔵ユニッ
ト6へ冷媒が流れるようにする。
The evaporation pressure adjusting valve 13 is connected to a lower pressure side than the outlet of the cooling refrigerant evaporator 12, and controls the flow rate of the refrigerant by adjusting the opening of a throttle hole (not shown) to control the cooling refrigerant evaporator 12. Evaporation pressure at the set value (eg 2.0 kg
/ Cm 2 ) or more to prevent frost of the refrigerant evaporator 12 for cooling. When the evaporation pressure adjusting valve 13 is operated in the cooling / refrigerating simultaneous operation mode, the evaporating pressure of the evaporation force adjusting valve 13 causes the refrigerant to flow mainly from the outlet of the receiver 4 to the refrigerating unit 6.

【0018】冷蔵ユニット6は、本発明の冷凍ユニット
であって、電磁式切替弁(以下電磁弁と略す)18、冷
蔵用温度作動式膨張弁(以下冷蔵用膨張弁と略す)19
および冷蔵用冷媒蒸発器20を順に直列接続してなる。
電磁弁18は、本発明の切替手段であって、冷蔵ユニッ
ト6の入口に設置され、通電されることにより開弁して
冷蔵ユニット6内に冷媒を循環させる。
The refrigerating unit 6 is the refrigerating unit of the present invention, and includes an electromagnetic switching valve (hereinafter abbreviated as electromagnetic valve) 18, a temperature-controlled expansion valve for refrigeration (hereinafter abbreviated as expansion valve for refrigeration) 19
Further, the refrigerating refrigerant evaporator 20 is connected in series in order.
The solenoid valve 18 is the switching means of the present invention, is installed at the inlet of the refrigeration unit 6, and opens when energized to circulate the refrigerant in the refrigeration unit 6.

【0019】冷蔵用膨張弁19は、本発明の冷凍用膨張
弁であって、冷房用膨張弁11と同様に、絞り弁(図示
せず)、感熱筒21およびキャピラリチューブ22等を
備え、レシーバ4の出口から流入した高温、高圧の液冷
媒を膨張させる。また、冷蔵用膨張弁19は、冷蔵用冷
媒蒸発器20の出口の過熱度に基づいて絞り弁の小さな
孔の開度を調節して冷媒の流量を制御する。
The refrigerating expansion valve 19 is the freezing expansion valve of the present invention, and like the cooling expansion valve 11, is provided with a throttle valve (not shown), a heat sensitive cylinder 21, a capillary tube 22 and the like, and a receiver. The high-temperature, high-pressure liquid refrigerant flowing in from the outlet of No. 4 is expanded. The refrigeration expansion valve 19 controls the flow rate of the refrigerant by adjusting the opening degree of a small hole of the throttle valve based on the degree of superheat at the outlet of the refrigeration refrigerant evaporator 20.

【0020】冷蔵用冷媒蒸発器20は、本発明の冷凍用
冷媒蒸発器であって、冷蔵車のリヤ側に設置された冷蔵
庫(図示せず)内に収められ、ファン23の送風を受け
て、冷蔵用膨張弁19の出口から流入した霧状冷媒を蒸
発させる熱交換器である。なお、冷媒との熱交換によっ
て冷却された空気により、冷蔵車の冷蔵庫内の庫内温度
が設定温度(例えば5℃)以下となるように冷蔵され
る。ここで、冷蔵庫内には、一般に農産物、畜産物、水
産物等の冷蔵食品が収められる。
The refrigerating refrigerant evaporator 20 is the refrigerating refrigerant evaporator of the present invention. The refrigerating refrigerant evaporator 20 is housed in a refrigerator (not shown) installed on the rear side of the refrigerating vehicle and receives the air blown by the fan 23. , A heat exchanger that evaporates the atomized refrigerant that has flowed in from the outlet of the refrigeration expansion valve 19. The air cooled by heat exchange with the refrigerant is refrigerated so that the internal temperature of the refrigerator of the refrigerating vehicle is equal to or lower than a set temperature (for example, 5 ° C). Here, refrigerated foods such as agricultural products, livestock products, and marine products are generally stored in the refrigerator.

【0021】次に、冷蔵車用冷房冷蔵装置1の制御回路
について図2に基づいて説明する。各電磁弁9、10、
18の通電および通電停止の制御は制御回路24により
なされる。この制御回路24は、コンピュータ25、リ
レーコイル26〜28、リレースイッチ29〜31等よ
り構成されている。
Next, the control circuit of the refrigerating / cooling apparatus 1 for a refrigerating vehicle will be described with reference to FIG. Each solenoid valve 9, 10,
Control of energization and de-energization of 18 is performed by the control circuit 24. The control circuit 24 includes a computer 25, relay coils 26 to 28, relay switches 29 to 31 and the like.

【0022】コンピュータ25は、運転モード切替スイ
ッチ32の設定状態、室内温度センサ33の検出温度、
および庫内温度センサ34の検出温度に基づいてリレー
コイル26、27の通電制御を行う。運転モード切替ス
イッチ32は、レシーバ4の出口から流出した液冷媒を
冷房ユニット5のみに供給させる冷房単独運転モード、
レシーバ4の出口から流出した液冷媒を冷蔵ユニット6
のみに供給させる冷蔵単独運転モード、レシーバ4の出
口から流出した液冷媒を冷房ユニット5と冷蔵ユニット
6の両方に同時に供給させる冷房冷蔵同時運転モードを
切り替えるスイッチである。
The computer 25 uses the setting state of the operation mode changeover switch 32, the temperature detected by the room temperature sensor 33,
And the energization control of the relay coils 26 and 27 is performed based on the temperature detected by the internal temperature sensor 34. The operation mode changeover switch 32 is an independent cooling operation mode in which the liquid refrigerant flowing out from the outlet of the receiver 4 is supplied only to the cooling unit 5,
The liquid refrigerant flowing out from the outlet of the receiver 4 is stored in the refrigeration unit 6
It is a switch for switching between the refrigerating single operation mode in which only the refrigerating operation is performed and the liquid cooling medium flowing out from the outlet of the receiver 4 is simultaneously supplied to both the cooling unit 5 and the refrigerating unit 6 in the simultaneous cooling and refrigerating operation mode.

【0023】室内温度センサ33は、例えばサーミスタ
が使用され、冷蔵車のキャビン内の室内温度を検出し、
この検出温度を電気信号(例えば電圧値)に変換してコ
ンピュータ25に送る。庫内温度センサ34は、例えば
サーミスタが使用され、冷蔵車の冷蔵庫内の庫内温度を
検出し、この検出温度を電気信号(例えば電圧値)に変
換してコンピュータ25に送る。
The room temperature sensor 33 is, for example, a thermistor, and detects the room temperature in the cabin of the refrigerating vehicle.
This detected temperature is converted into an electric signal (for example, voltage value) and sent to the computer 25. The in-compartment temperature sensor 34 uses, for example, a thermistor, detects the in-compartment temperature in the refrigerator of the refrigerating car, converts the detected temperature into an electric signal (for example, voltage value), and sends it to the computer 25.

【0024】リレーコイル26は、通電されるとリレー
スイッチ29を閉成する。また、リレーコイル27は、
通電されるとリレースイッチ30を閉成する。そして、
リレーコイル28は、通電されるとリレースイッチ31
を開成する。リレースイッチ29は電磁弁9およびリレ
ースイッチ31に接続され、リレースイッチ30は電磁
弁18およびリレーコイル28に接続され、リレースイ
ッチ31は電磁弁10に接続されている。
The relay coil 26 closes the relay switch 29 when energized. Further, the relay coil 27 is
When energized, the relay switch 30 is closed. And
When the relay coil 28 is energized, the relay switch 31
Open up. The relay switch 29 is connected to the solenoid valve 9 and the relay switch 31, the relay switch 30 is connected to the solenoid valve 18 and the relay coil 28, and the relay switch 31 is connected to the solenoid valve 10.

【0025】ここで、コンピュータ25の作動を表1に
基づいて説明する。先ず、冷房単独運転モード時、室内
温度センサ33の検出温度が設定温度(例えば25℃)
以上に上昇している場合は、リレーコイル26をオン
し、リレーコイル27をオフして、表1に示したように
電磁弁9、10を通電し、電磁弁18への通電を停止す
る{冷房単独運転モード(A)}。また、室内温度セン
サ33の検出温度が設定温度より低下している場合は、
リレーコイル26、27を共にオフして、表1に示した
ように電磁弁9、10、18への通電を停止する{冷房
単独運転モード(B)}。
The operation of the computer 25 will be described below with reference to Table 1. First, in the cooling only operation mode, the detected temperature of the indoor temperature sensor 33 is the set temperature (for example, 25 ° C.).
If the temperature is rising above, the relay coil 26 is turned on, the relay coil 27 is turned off, the solenoid valves 9 and 10 are energized as shown in Table 1, and the energization to the solenoid valve 18 is stopped. Cooling only operation mode (A)}. When the temperature detected by the indoor temperature sensor 33 is lower than the set temperature,
Both the relay coils 26 and 27 are turned off to stop energizing the solenoid valves 9, 10 and 18 as shown in Table 1 (cooling independent operation mode (B)).

【0026】次に、冷蔵単独運転モード時、庫内温度セ
ンサ34の検出温度が設定温度(例えば5℃)以上に上
昇している場合は、リレーコイル26をオフし、リレー
コイル27をオンして、表1に示したように電磁弁18
のみを通電する{冷蔵単独運転モード(A)}。また、
庫内温度センサ34の検出温度が設定温度より低下して
いる場合は、リレーコイル26、27を共にオフして、
表1に示したように電磁弁9、10、18への通電を停
止する{冷蔵単独運転モード(B)}。
Next, in the refrigeration single operation mode, if the temperature detected by the internal temperature sensor 34 is higher than the set temperature (for example, 5 ° C.), the relay coil 26 is turned off and the relay coil 27 is turned on. As shown in Table 1, the solenoid valve 18
Only the current is energized {refrigerator alone operation mode (A)}. Also,
When the temperature detected by the internal temperature sensor 34 is lower than the set temperature, both the relay coils 26 and 27 are turned off,
As shown in Table 1, the energization of the solenoid valves 9, 10 and 18 is stopped {refrigeration single operation mode (B)}.

【0027】次に、冷房冷蔵同時運転モード時、室内温
度センサ33の検出温度および庫内温度センサ34の検
出温度が共に設定温度以上に上昇している場合は、リレ
ーコイル26、27を共にオンして、表1に示したよう
に電磁弁9、18を通電し、電磁弁10への通電を停止
する{冷房冷蔵同時運転モード(A)}。また、室内温
度センサ33の検出温度が設定温度以上に上昇してお
り、庫内温度センサ34の検出温度が設定温度より低下
している場合は、表1に示したように冷房単独運転モー
ド(A)と同様な制御を行う{冷房冷蔵同時運転モード
(B)}。
Next, in the cooling / refrigerating simultaneous operation mode, when both the temperature detected by the indoor temperature sensor 33 and the temperature detected by the internal temperature sensor 34 are higher than the set temperature, both relay coils 26 and 27 are turned on. Then, as shown in Table 1, the solenoid valves 9 and 18 are energized and the solenoid valve 10 is deenergized {cooling / refrigerating simultaneous operation mode (A)}. When the detected temperature of the indoor temperature sensor 33 is higher than the set temperature and the detected temperature of the inside temperature sensor 34 is lower than the set temperature, as shown in Table 1, the cooling single operation mode ( The same control as in A) is performed {cooling / refrigerating simultaneous operation mode (B)}.

【0028】そして、冷房冷蔵同時運転モード時、室内
温度センサ33の検出温度が設定温度より低下してお
り、庫内温度センサ34の検出温度が設定温度以上に上
昇している場合は、表1に示したように冷蔵単独運転モ
ード(A)と同様な制御を行う{冷房冷蔵同時運転モー
ド(C)}。また、室内温度センサ33の検出温度およ
び庫内温度センサ34の検出温度が共に設定温度に満た
ない場合は、リレーコイル26、27を共にオフして、
表1に示したように電磁弁9、10、18への通電を停
止する{冷房冷蔵同時運転モード(D)}。
When the temperature detected by the indoor temperature sensor 33 is lower than the set temperature and the temperature detected by the internal temperature sensor 34 is higher than the set temperature in the simultaneous cooling and refrigerating operation mode, Table 1 The same control as the refrigerating single operation mode (A) is performed as shown in {Cooling and refrigerating simultaneous operation mode (C)}. If the temperature detected by the room temperature sensor 33 and the temperature detected by the room temperature sensor 34 are both below the set temperature, both relay coils 26 and 27 are turned off,
As shown in Table 1, the energization of the solenoid valves 9, 10, 18 is stopped {cooling / refrigerating simultaneous operation mode (D)}.

【表1】 [Table 1]

【0029】ここで、表1において、電磁弁9、10、
18の○は開弁を表し、×は閉弁を表す。また、室内温
度センサ33、庫内温度センサ34の○は検出温度が設
定温度以上に上昇している状態を表し、×は検出温度が
設定温度より低下している状態を表す。
Here, in Table 1, the solenoid valves 9, 10,
The open circles in 18 represent open valves, and the open circles represent closed valves. Further, ◯ of the indoor temperature sensor 33 and the inside temperature sensor 34 represents a state in which the detected temperature is higher than the set temperature, and x represents a state in which the detected temperature is lower than the set temperature.

【0030】〔実施例の作用〕次に、冷蔵車用冷房冷蔵
装置1の作動を図1および図2に基づいて簡単に説明す
る。運転モード切替スイッチ32により冷房冷蔵同時運
転モードに切り替えられ、室内温度センサ33の検出温
度および庫内温度センサ34の検出温度が共に設定温度
以上に上昇している場合には、表1に示したように、電
磁弁9、18が通電されて電磁弁9、18が開弁し、電
磁弁10が閉弁するため、冷房冷蔵同時運転モード
(A)による制御が行われる。
[Operation of Embodiment] Next, the operation of the refrigerating / cooling apparatus 1 for a refrigerating vehicle will be briefly described with reference to FIGS. 1 and 2. When the operation mode changeover switch 32 is switched to the cooling / refrigerating simultaneous operation mode and both the temperature detected by the indoor temperature sensor 33 and the temperature detected by the in-compartment temperature sensor 34 are higher than the set temperature, the results are shown in Table 1. As described above, the solenoid valves 9 and 18 are energized, the solenoid valves 9 and 18 are opened, and the solenoid valve 10 is closed, so that the control in the cooling and refrigeration simultaneous operation mode (A) is performed.

【0031】このとき、冷媒圧縮機2から吐出された高
温、高圧の冷媒ガスは、冷媒凝縮器3に流入し、クーリ
ングファン8により吹き付けられる空気と熱交換して凝
縮して液冷媒となる。そして、その液冷媒は、レシーバ
4に一旦流入した後に冷房ユニット5および冷蔵ユニッ
ト6にそれぞれ流入する。
At this time, the high-temperature, high-pressure refrigerant gas discharged from the refrigerant compressor 2 flows into the refrigerant condenser 3 and exchanges heat with the air blown by the cooling fan 8 to be condensed and become a liquid refrigerant. Then, the liquid refrigerant once flows into the receiver 4, and then flows into the cooling unit 5 and the refrigeration unit 6, respectively.

【0032】冷房ユニット5に流入した液冷媒は、電磁
弁9を通過して冷房用膨張弁11内に流入し、この冷房
用膨張弁11を通過する際に小さな孔から噴射すること
により急激に断熱膨張して低温、低圧の霧状冷媒とな
る。そして、この霧状冷媒は、冷房用冷媒蒸発器12内
に流入し、ファン17により吹き付けられる空気と熱交
換して蒸発して冷媒ガスとなり、電磁弁10が閉弁して
いるので蒸発圧力調整弁13内を通って冷媒圧縮機2に
戻される。
The liquid refrigerant flowing into the cooling unit 5 flows through the electromagnetic valve 9 into the cooling expansion valve 11, and when it passes through the cooling expansion valve 11, it is rapidly injected by being injected from a small hole. Adiabatically expands to a low-temperature, low-pressure atomized refrigerant. Then, the atomized refrigerant flows into the cooling refrigerant evaporator 12, exchanges heat with the air blown by the fan 17 to evaporate to become a refrigerant gas, and since the electromagnetic valve 10 is closed, the evaporation pressure is adjusted. It is returned to the refrigerant compressor 2 through the inside of the valve 13.

【0033】なお、蒸発圧力調整弁13の絞り作用によ
り、冷房用冷媒蒸発器12での蒸発圧力は高めに設定さ
れ、蒸発温度は強制的に上げられている。このため、冷
房用冷媒蒸発器12内を通過する冷媒の流量は少なくな
っており、冷蔵車のキャビン内の冷房能力がやや抑えら
れている。
By the throttle action of the evaporation pressure adjusting valve 13, the evaporation pressure in the cooling refrigerant evaporator 12 is set high, and the evaporation temperature is forcibly raised. Therefore, the flow rate of the refrigerant passing through the cooling refrigerant evaporator 12 is small, and the cooling capacity in the cabin of the refrigerating vehicle is somewhat suppressed.

【0034】一方、冷蔵ユニット6内に流入した液冷媒
は、電磁弁18を通過して冷蔵用膨張弁19内に流入
し、この冷蔵用膨張弁19を通過する際に小さな孔から
噴射することにより急激に断熱膨張して低温、低圧の霧
状冷媒となる。そして、この霧状冷媒は、冷蔵用冷媒蒸
発器20内に流入し、ファン23により吹き付けられる
冷蔵庫内の空気と熱交換して蒸発して冷媒ガスとなり、
冷媒圧縮機2に戻される。
On the other hand, the liquid refrigerant flowing into the refrigerating unit 6 passes through the electromagnetic valve 18 into the refrigerating expansion valve 19, and is jetted from a small hole when passing through the refrigerating expansion valve 19. Rapidly adiabatically expands to a low-temperature, low-pressure atomized refrigerant. Then, the atomized refrigerant flows into the refrigerating refrigerant evaporator 20, exchanges heat with the air in the refrigerator blown by the fan 23 and evaporates to become refrigerant gas,
It is returned to the refrigerant compressor 2.

【0035】以上の作動を継続することにより、冷蔵車
のキャビン内が冷房され、冷蔵庫内が冷蔵される。ま
た、蒸発圧力調整弁13により冷房ユニット5の冷房用
冷媒蒸発器12での蒸発温度を強制的に上げているた
め、レシーバ4より流出した液冷媒は主力的に冷蔵ユニ
ット6内に流入する。これにより、冷蔵用冷媒蒸発器2
0において十分な冷凍能力が得られる。
By continuing the above operation, the inside of the cabin of the refrigerating vehicle is cooled and the inside of the refrigerator is refrigerated. Further, since the evaporation pressure adjusting valve 13 forcibly raises the evaporation temperature in the cooling refrigerant evaporator 12 of the cooling unit 5, the liquid refrigerant flowing out from the receiver 4 mainly flows into the refrigeration unit 6. As a result, the refrigerating refrigerant evaporator 2
At 0, a sufficient refrigerating capacity is obtained.

【0036】運転モード切替スイッチ32により冷蔵単
独運転モードに切り替えられ、庫内温度センサ34の検
出温度が設定温度(例えば5℃)以上に上昇している場
合には、表1に示したように、電磁弁18のみが通電さ
れて電磁弁18のみが開弁し、電磁弁9、10が共に閉
弁するため、冷蔵単独運転モード(A)による制御が行
われる。
When the refrigeration single operation mode is switched by the operation mode changeover switch 32 and the temperature detected by the internal temperature sensor 34 is higher than the set temperature (for example, 5 ° C.), as shown in Table 1. Since only the solenoid valve 18 is energized and only the solenoid valve 18 is opened and the solenoid valves 9 and 10 are both closed, the control in the refrigeration single operation mode (A) is performed.

【0037】これにより、冷媒圧縮機2から吐出された
冷媒ガスは、冷媒凝縮器3で凝縮し、レシーバ4で気液
分離した後に、液冷媒のみが電磁弁9が閉弁しているの
で、冷蔵ユニット6のみに流入する。したがって、冷蔵
用冷媒蒸発器20内を通過する冷媒の流量が多くなり、
冷蔵用冷媒蒸発器20での蒸発圧力や蒸発温度はさらに
下がり、冷凍能力が向上する。
As a result, the refrigerant gas discharged from the refrigerant compressor 2 is condensed in the refrigerant condenser 3 and separated into gas and liquid by the receiver 4, and then only the liquid refrigerant is closed by the solenoid valve 9. Only flows into the refrigeration unit 6. Therefore, the flow rate of the refrigerant passing through the refrigerating refrigerant evaporator 20 increases,
The evaporation pressure and evaporation temperature in the refrigerating refrigerant evaporator 20 are further lowered, and the refrigerating capacity is improved.

【0038】運転モード切替スイッチ32により冷房単
独運転モードに切り替えられ、室内温度センサ33の検
出温度が設定温度(例えば25℃)以上に上昇している
場合には、表1に示したように、電磁弁9、10が通電
されて、電磁弁9、10が開弁し、電磁弁18が閉弁す
るため、冷房単独運転モード(A)による制御が行われ
る。
When the operation mode changeover switch 32 is used to switch to the cooling only operation mode and the temperature detected by the indoor temperature sensor 33 rises above the set temperature (for example, 25 ° C.), as shown in Table 1, The solenoid valves 9 and 10 are energized, the solenoid valves 9 and 10 are opened, and the solenoid valve 18 is closed, so that control in the cooling only operation mode (A) is performed.

【0039】これにより、冷媒圧縮機2から吐出された
冷媒ガスは、冷媒凝縮器3で凝縮し、レシーバ4で気液
分離した後に、液冷媒のみが電磁弁18が閉弁している
ので、冷房ユニット5のみに流入する。
As a result, the refrigerant gas discharged from the refrigerant compressor 2 is condensed in the refrigerant condenser 3 and separated into gas and liquid by the receiver 4, and only the liquid refrigerant is closed by the electromagnetic valve 18, so that Only flows into the cooling unit 5.

【0040】冷房ユニット5に流入した液冷媒は、電磁
弁9を通過して冷房用膨張弁11内に流入し、この冷房
用膨張弁11を通過する際に断熱膨張した後に冷房用冷
媒蒸発器12内に流入する。そして、冷房用冷媒蒸発器
12内に流入した冷媒は、蒸発圧力調整弁13の絞り作
用の影響を受けることなく、空気と熱交換して蒸発して
冷媒ガスとなる。
The liquid refrigerant flowing into the cooling unit 5 flows through the electromagnetic valve 9 into the cooling expansion valve 11, and adiabatically expands when passing through the cooling expansion valve 11 and then the cooling refrigerant evaporator. Flows into 12. Then, the refrigerant that has flowed into the cooling refrigerant evaporator 12 exchanges heat with air to be evaporated into refrigerant gas without being affected by the throttling action of the evaporation pressure adjusting valve 13.

【0041】冷房用冷媒蒸発器12より流出した冷媒ガ
スは、電磁弁10が開弁しているので迂回流路14を通
って冷媒圧縮機2に戻される。また、冷房単独運転モー
ド時には、蒸発圧力調整弁13の絞り作用の影響を受け
ないので、冷房用冷媒蒸発器12内を通過する冷媒の流
量が多くなり、冷房用冷媒蒸発器12での蒸発圧力や蒸
発温度は冷房冷蔵同時運転モード時より下がる。
The refrigerant gas flowing out from the cooling refrigerant evaporator 12 is returned to the refrigerant compressor 2 through the bypass passage 14 because the electromagnetic valve 10 is open. Further, in the cooling only operation mode, the flow rate of the refrigerant passing through the inside of the cooling refrigerant evaporator 12 is increased because it is not affected by the throttling action of the evaporation pressure adjusting valve 13, and the evaporation pressure in the cooling refrigerant evaporator 12 is increased. The evaporation temperature is lower than that in the simultaneous cooling and refrigeration operation mode.

【0042】〔実施例の効果〕以上のように、冷蔵車用
冷房冷蔵装置1は、冷房単独運転モード時に蒸発圧力調
整弁13の絞り作用の影響を全く受けない単独の冷凍サ
イクルと同等に作動する。これにより、蒸発圧力調整弁
107で強制的に冷房用冷媒蒸発器102での蒸発温度
を上げ、冷房能力を低下させていた従来の冷房冷蔵装置
100と比較して、冷房用冷媒蒸発器12での蒸発温度
を下げることができ、蒸発圧力調整弁107を持たない
単独の冷凍サイクルと同等にまで冷房能力を向上するこ
とができる。また、冷媒圧縮機2内に戻される冷媒量が
増えることにより、冷媒と共に冷凍サイクル7内を循環
する冷凍機油の冷媒圧縮機2内への戻り量も増える。よ
って、冷媒圧縮機2内の焼き付き等を防止することがで
きる。
[Effects of Embodiment] As described above, the refrigerating machine 1 for refrigerating vehicles operates in the same manner as a single refrigerating cycle which is not affected by the throttling action of the evaporative pressure adjusting valve 13 in the cooling single operation mode. To do. As a result, in the cooling refrigerant evaporator 12, as compared with the conventional cooling and refrigerating apparatus 100 in which the evaporation pressure in the cooling refrigerant evaporator 102 is forcibly raised by the evaporation pressure adjusting valve 107 and the cooling capacity is lowered. The evaporation temperature can be lowered, and the cooling capacity can be improved to the same level as a single refrigeration cycle without the evaporation pressure adjusting valve 107. Further, as the amount of refrigerant returned to the refrigerant compressor 2 increases, the amount of refrigerating machine oil circulating in the refrigeration cycle 7 together with the refrigerant to the refrigerant compressor 2 also increases. Therefore, seizure and the like in the refrigerant compressor 2 can be prevented.

【0043】なお、冷房単独運転モード時の冷凍機油の
戻し量の低下を防止する他の方法として、冷房用膨張弁
11の絞り弁が絞り過ぎても冷凍機油を冷媒圧縮機2へ
戻すためのブリードポートやノッチを冷房用膨張弁11
の絞り弁に設ける方法も従来からあるが、ブリードポー
トおよびノッチの径や個数を最適なものにする選定作業
が非常に複雑化してしまう。これに対して、この実施例
では冷房単独運転モード時に蒸発圧力調整弁13を迂回
する迂回流路14と、この迂回流路14を開閉する電磁
弁10とを設けるだけで冷凍機油の戻し量の低下を防止
できるので、そのようなブリードポートやノッチを設け
る必要もないので、選定作業を行う必要はない。
As another method for preventing a decrease in the amount of refrigerating machine oil returned in the cooling only operation mode, a method for returning refrigerating machine oil to the refrigerant compressor 2 even if the throttle valve of the cooling expansion valve 11 is excessively throttled. Bleed port and notch to expansion valve 11 for cooling
Although there is a conventional method of providing the throttle valve in No. 2, the selection work for optimizing the diameter and number of bleed ports and notches becomes very complicated. On the other hand, in this embodiment, the bypass flow path 14 bypassing the evaporation pressure adjusting valve 13 in the cooling only operation mode and the solenoid valve 10 opening / closing the bypass flow path 14 are provided to reduce the return amount of the refrigerating machine oil. Since it is possible to prevent the deterioration, it is not necessary to provide such a bleed port or notch, so that it is not necessary to perform selection work.

【0044】また、従来の技術として、冷房ユニット、
冷蔵ユニットにそれぞれ配した2つの電磁弁を所定時間
(例えば10秒間)毎にオン、オフして冷房用冷媒蒸発
器と冷蔵用冷媒蒸発器に交互に間欠的に冷媒を循環させ
るFIR式冷凍サイクルがある。ところが、このような
FIR式冷凍サイクルでは、コンピュータによる2つの
電磁弁の制御方法が複雑化するという不具合がある。こ
れに対して、この実施例では、電磁弁10、18の作動
が逆になるように制御すれば良いため、コンピュータ2
5による電磁弁9、18の制御方法が非常に簡易とな
り、安価となる。
As a conventional technique, a cooling unit,
FIR type refrigerating cycle in which two electromagnetic valves respectively arranged in the refrigerating unit are turned on and off at predetermined time intervals (for example, 10 seconds) to circulate the refrigerant alternately between the cooling refrigerant evaporator and the refrigerating refrigerant evaporator alternately. There is. However, in such an FIR type refrigeration cycle, there is a problem that the method of controlling the two solenoid valves by the computer becomes complicated. On the other hand, in this embodiment, since the operations of the solenoid valves 10 and 18 may be controlled to be reversed, the computer 2
The method of controlling the solenoid valves 9 and 18 by 5 is very simple and inexpensive.

【0045】〔変形例〕この実施例では、本発明を冷蔵
車用冷房冷蔵装置1に適用したが、本発明を冷凍車用冷
房冷凍装置に適用しても良く、また冷蔵または製氷の熱
源に冷凍サイクルを利用したアイスメーカ付き冷蔵庫を
車室内に備える車両用冷房冷蔵装置に適用しても良い。
[Modification] In this embodiment, the present invention is applied to the refrigerating machine 1 for refrigerating vehicles, but the present invention may be applied to a refrigerating apparatus for refrigerating vehicles, or as a heat source for refrigeration or ice making. The refrigerator with an ice maker using a refrigeration cycle may be applied to a vehicle cooling and refrigerating device provided in a vehicle compartment.

【0046】この実施例では、冷房冷蔵同時運転モード
と冷房単独運転モードとを切り替える切替手段として冷
房ユニット5の入口側および冷蔵ユニット6の入口側に
それぞれ電磁弁9、18を設けたが、冷房ユニット5中
および冷蔵ユニット6中であればどこに切替手段を設け
ても良い。なお、電磁弁9を廃止して電磁弁18のみを
設けても良い。また、冷房ユニット5と冷蔵ユニット6
との分岐点または接続点に三方切替弁を設けても良い。
In this embodiment, the solenoid valves 9 and 18 are provided at the inlet side of the cooling unit 5 and the inlet side of the cooling unit 6, respectively, as switching means for switching between the simultaneous cooling and refrigerating operation mode and the independent cooling operation mode. The switching means may be provided anywhere in the unit 5 and the refrigeration unit 6. The solenoid valve 9 may be omitted and only the solenoid valve 18 may be provided. In addition, the cooling unit 5 and the refrigeration unit 6
A three-way switching valve may be provided at a branch point or a connection point with.

【0047】この実施例では、迂回流路14を開閉する
開閉手段として電磁弁10を設けたが、開閉手段として
迂回流路14の分岐点または接続点に三方切替弁を設け
ても良い。また、電磁弁9、10、18の代わりに、手
動操作により開閉する弁装置等を使用しても良い。
In this embodiment, the solenoid valve 10 is provided as the opening / closing means for opening / closing the bypass passage 14, but a three-way switching valve may be provided at the branch point or the connection point of the bypass passage 14 as the opening / closing means. Further, instead of the solenoid valves 9, 10, 18, a valve device or the like that opens and closes by manual operation may be used.

【0048】この実施例では、指示手段としての運転モ
ード切替スイッチ32により運転モードを指示するよう
にしたが、冷房負荷や冷凍負荷を検出する検出手段を設
けて、この検出手段の検出値に応じて自動的に運転モー
ドを選択するようにしても良い。
In this embodiment, the operation mode changeover switch 32 as the instruction means is used to instruct the operation mode. However, a detection means for detecting the cooling load or the refrigeration load is provided, and the detection value of the detection means is detected. Alternatively, the operation mode may be automatically selected.

【0049】[0049]

【発明の効果】この発明は、冷房冷凍同時運転モード時
に冷房用冷媒蒸発器の出口より低圧側に蒸発圧力調整弁
を接続し、蒸発圧力調整弁の絞り作用により冷房用冷媒
蒸発器での蒸発温度を上げている。このため、冷媒凝縮
器の出口より流出した冷媒は主力的に冷凍ユニットに供
給されるので、冷凍用冷媒蒸発器の冷凍能力を向上する
ことができる。
According to the present invention, the evaporation pressure adjusting valve is connected to the low pressure side from the outlet of the cooling refrigerant evaporator in the simultaneous cooling / refrigeration operation mode, and the evaporation in the cooling refrigerant evaporator is performed by the throttling action of the evaporation pressure adjusting valve. Raising the temperature. Therefore, the refrigerant flowing out from the outlet of the refrigerant condenser is mainly supplied to the refrigeration unit, so that the refrigerating capacity of the refrigerant evaporator for refrigeration can be improved.

【0050】また、この発明は、冷房用冷媒蒸発器の出
口より低圧側に蒸発圧力調整弁を接続していても、冷房
単独運転モード時に蒸発圧力調整弁より迂回させて冷媒
を循環させることにより、冷房用冷媒蒸発器が蒸発圧力
調整弁の絞り作用の影響を受けない。このため、冷房単
独運転モード時に冷房用冷媒蒸発器での蒸発温度を下げ
ることができるので、冷房用冷媒蒸発器にて十分な冷房
能力を得ることができる。
Further, according to the present invention, even when the evaporation pressure adjusting valve is connected to the low pressure side from the outlet of the cooling refrigerant evaporator, the refrigerant is circulated by bypassing the evaporation pressure adjusting valve in the cooling only operation mode. The cooling refrigerant evaporator is not affected by the throttling action of the evaporation pressure adjusting valve. Therefore, since the evaporation temperature in the cooling refrigerant evaporator can be lowered in the cooling only operation mode, it is possible to obtain a sufficient cooling capacity in the cooling refrigerant evaporator.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示した構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】この発明の一実施例に用いた制御回路を示した
ユニット図である。
FIG. 2 is a unit diagram showing a control circuit used in an embodiment of the present invention.

【図3】従来の技術として用いた冷房冷蔵装置を示した
構成図である。
FIG. 3 is a configuration diagram showing a cooling and refrigerating apparatus used as a conventional technique.

【符号の説明】[Explanation of symbols]

1 冷蔵車用冷房冷蔵装置(冷房冷凍装置) 2 冷媒圧縮機 3 冷媒凝縮器 5 冷房ユニット 6 冷蔵ユニット(冷凍ユニット) 7 冷凍サイクル 9 電磁弁(切替手段) 10 電磁弁(開閉手段) 11 冷房用膨張弁 12 冷房用冷媒蒸発器 13 蒸発圧力調整弁 14 迂回流路 18 電磁弁(切替手段) 19 冷蔵用膨張弁(冷凍用膨張弁) 20 冷蔵用冷媒蒸発器(冷凍用冷媒蒸発器) 32 運転モード切替スイッチ 1 Refrigerator Refrigerator (Refrigerator / Refrigerator) 2 Refrigerant Compressor 3 Refrigerant Condenser 5 Refrigerator Unit 6 Refrigerator Unit (Refrigerator Unit) 7 Refrigeration Cycle 9 Solenoid Valve (Switching Means) 10 Electromagnetic Valve (Opening / Closing Means) 11 For Cooling Expansion valve 12 Refrigerant evaporator for cooling 13 Evaporation pressure adjustment valve 14 Detour flow path 18 Electromagnetic valve (switching means) 19 Expansion valve for refrigeration (expansion valve for refrigeration) 20 Refrigerant evaporator for refrigeration (refrigeration evaporator for refrigeration) 32 Operation Mode selector switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷房用膨張弁、冷房用冷媒蒸発器および蒸
発圧力調整弁を順に直列接続してなる冷房ユニットと、
冷凍用膨張弁および冷凍用冷媒蒸発器を順に直列接続し
てなる冷凍ユニットと、前記冷房ユニットおよび前記冷
凍ユニットの両方に冷媒を循環させる冷房冷凍同時運転
モードと前記冷房ユニットのみに冷媒を循環させる冷房
単独運転モードとを切り替える切替手段とを備え、 冷媒凝縮器の出口と冷媒圧縮機の吸入口との間に、前記
冷房ユニットと前記冷凍ユニットを並列接続してなる冷
房冷凍装置において、 前記冷房ユニットは、前記冷房用冷媒蒸発器の出口と前
記冷媒圧縮機の吸入口との間で前記蒸発圧力調整弁に対
して並列接続された迂回流路、および冷房単独運転モー
ド時に前記迂回流路を開き、冷房冷凍同時運転モード時
に前記迂回流路を閉じる開閉手段を有することを特徴と
する冷房冷凍装置。
1. A cooling unit comprising a cooling expansion valve, a cooling refrigerant evaporator and an evaporation pressure adjusting valve connected in series in order.
A refrigerating unit in which a freezing expansion valve and a refrigerating refrigerant evaporator are sequentially connected in series, a cooling / refrigerating simultaneous operation mode in which a refrigerant is circulated in both the cooling unit and the refrigerating unit, and a refrigerant is circulated only in the cooling unit. A cooling / refrigerating apparatus comprising: a switching unit that switches between an independent cooling operation mode, and the cooling unit and the refrigeration unit connected in parallel between an outlet of the refrigerant condenser and an inlet of the refrigerant compressor. The unit has a bypass flow path connected in parallel to the evaporation pressure adjusting valve between the outlet of the cooling refrigerant evaporator and the suction port of the refrigerant compressor, and the bypass flow path in the cooling only operation mode. A cooling / refrigerating apparatus having an opening / closing means that opens and closes the bypass passage in the simultaneous cooling / refrigerating operation mode.
JP28910393A 1993-11-18 1993-11-18 Cooling and freezing device Pending JPH07139827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28910393A JPH07139827A (en) 1993-11-18 1993-11-18 Cooling and freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28910393A JPH07139827A (en) 1993-11-18 1993-11-18 Cooling and freezing device

Publications (1)

Publication Number Publication Date
JPH07139827A true JPH07139827A (en) 1995-06-02

Family

ID=17738835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28910393A Pending JPH07139827A (en) 1993-11-18 1993-11-18 Cooling and freezing device

Country Status (1)

Country Link
JP (1) JPH07139827A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062718A1 (en) * 2002-01-24 2003-07-31 Daikin Industries, Ltd. Refrigerating device
WO2013084738A1 (en) * 2011-12-09 2013-06-13 サンデン株式会社 Air conditioning device for vehicle
JP2015203535A (en) * 2014-04-15 2015-11-16 富士電機株式会社 Cooling device
JP2020085382A (en) * 2018-11-28 2020-06-04 株式会社デンソー Refrigeration cycle device
JP2021042910A (en) * 2019-09-12 2021-03-18 康和 杉谷 Refrigeration cycle device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062718A1 (en) * 2002-01-24 2003-07-31 Daikin Industries, Ltd. Refrigerating device
US6938430B2 (en) 2002-01-24 2005-09-06 Daikin Industries, Ltd. Refrigerating device
WO2013084738A1 (en) * 2011-12-09 2013-06-13 サンデン株式会社 Air conditioning device for vehicle
JPWO2013084738A1 (en) * 2011-12-09 2015-04-27 サンデン株式会社 Air conditioner for vehicles
US9784486B2 (en) 2011-12-09 2017-10-10 Sanden Holdings Corporation Mechanism for controlling refrigerant in a vehicle air conditioning apparatus
JP2015203535A (en) * 2014-04-15 2015-11-16 富士電機株式会社 Cooling device
JP2020085382A (en) * 2018-11-28 2020-06-04 株式会社デンソー Refrigeration cycle device
JP2021042910A (en) * 2019-09-12 2021-03-18 康和 杉谷 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP4984453B2 (en) Ejector refrigeration cycle
JP4600208B2 (en) Cycle using ejector
US20160313054A1 (en) Refrigerator and method for controlling a refrigerator
US5634347A (en) Method of controlling a transport refrigeration system without refrigerant modulation
US7475557B2 (en) Refrigerator
EP1418392A2 (en) Cooling apparatus
JP2012030603A (en) Vehicle air conditioner
JPS6326830B2 (en)
JPH07139827A (en) Cooling and freezing device
JP4333586B2 (en) Refrigeration cycle apparatus and control method thereof
JP2000304397A (en) Cold and warm storage cabinet
JPH06174319A (en) Air conditioner for vehicle
JPS6315513B2 (en)
JP3954835B2 (en) refrigerator
JPH10315753A (en) Refrigerating and air-conditioning device
KR19980083062A (en) Integrated refrigeration unit of air conditioner and refrigerator
JPH10129244A (en) Air conditioner provided with cold accumulator
JP2003139459A (en) Refrigerator
JP2002195726A5 (en)
JP2002195726A (en) Refrigerator
JP2924057B2 (en) Refrigeration equipment
JP2780993B2 (en) Refrigerated transport vehicle
JPH06241583A (en) Freezer device
JPH0524418B2 (en)
JPS624623A (en) Refrigerating cycle device for vehicle