JPS624623A - Refrigerating cycle device for vehicle - Google Patents

Refrigerating cycle device for vehicle

Info

Publication number
JPS624623A
JPS624623A JP14274785A JP14274785A JPS624623A JP S624623 A JPS624623 A JP S624623A JP 14274785 A JP14274785 A JP 14274785A JP 14274785 A JP14274785 A JP 14274785A JP S624623 A JPS624623 A JP S624623A
Authority
JP
Japan
Prior art keywords
cooling
refrigerant
refrigeration
evaporator
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14274785A
Other languages
Japanese (ja)
Other versions
JPH0144527B2 (en
Inventor
Hidekazu Usada
英一 羽佐田
Keizo Futamura
啓三 二村
Satoshi Inayoshi
稲吉 悟志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP14274785A priority Critical patent/JPS624623A/en
Publication of JPS624623A publication Critical patent/JPS624623A/en
Publication of JPH0144527B2 publication Critical patent/JPH0144527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression

Abstract

PURPOSE:To allow a refrigerator to be independently operated regardless of the actuation of a switch for cooling by configurating a device in such a way that the device is provided with such items as a medium circuit for cooling having an evaporator, a control valve which controls the medium flow to the medium circuit, and a means of controlling the closing operation of the said valve, and the medium flow to the evaporator is suspended when the refrigerator is separately operated. CONSTITUTION:Refrigeration medium circuits 8 and 80 for cooling are arranged in parallel with a refrigeration medium circuit 16 for refrigeration. When both refrigerating and cooling are being operated simultaneously, the intermittent make and break action of solenoids 7 and 70 allows the medium to flow into evaporators 5 and 50 for cooling and into an evaporator 18 for refrigerating one after the other permitting the function of both cooling and refrigerating to be available simultaneously. On the other hand, when the refrigerating is being separately operated, the suspension of the medium flow to the evaporators 5 and 50 with the solenoids 7 and 70 closed and with the operation of a compressor intermitted, allows the refrigeration to be accomplished while the capacity of the compressor is set so as to correspond to the cooling capacity of a refrigerator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷房機能及び冷蔵庫機能を併有する車両用冷
凍サイクル装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vehicular refrigeration cycle device that has both a cooling function and a refrigerator function.

〔従来の技術 従来のこの種の冷凍サイクル装置は、例えば特開昭58
−11370号公報において提案されているように、冷
房用冷凍サイクルの受液器出口側から冷蔵用冷媒回路(
冷蔵用減圧装置及び冷蔵用蒸発器を含む)を分岐して、
冷房用蒸発器と冷蔵用蒸発器に交互に冷媒を流すことに
より、冷蔵用蒸発器において製氷可能な一21℃程度の
低温の蒸発温度を得るようにしている。
[Prior art] A conventional refrigeration cycle device of this type is disclosed in, for example, Japanese Patent Application Laid-open No. 58
As proposed in Publication No. 11370, the refrigerant circuit for refrigeration (
(including a refrigeration pressure reducing device and a refrigeration evaporator),
By alternately flowing the refrigerant into the cooling evaporator and the refrigeration evaporator, an evaporation temperature as low as about -21° C., which allows ice to be made, is obtained in the refrigeration evaporator.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記従来装置では、冷蔵庫を作動させる場合
には、まず冷房用スイッチを投入して冷房装置を作動状
態とし、その後冷蔵庫スイッチを投入する必要がある。
However, in the above-mentioned conventional device, when operating the refrigerator, it is necessary to first turn on the cooling switch to put the cooling device into an operating state, and then turn on the refrigerator switch.

従って、春秋期のごとく冷房装置を作動させる必要が少
ない中間シーズンにも、冷蔵庫の機能を欲する場合には
、冷房装置を作動せざるを得ないという問題点があった
Therefore, there is a problem in that even in the mid-season when there is little need to operate the air conditioner, such as in spring and autumn, if the function of a refrigerator is desired, the air conditioner must be operated.

本発明は上記点に鑑みてなされたもので、冷房用スイッ
チの投入の有無にかかわらず、冷蔵庫を独立に作動させ
得る車両用冷凍サイクル装置を提供することを目的とす
る。
The present invention has been made in view of the above points, and an object of the present invention is to provide a refrigeration cycle device for a vehicle that can independently operate a refrigerator regardless of whether or not a cooling switch is turned on.

〔問題点を解決するための手段] 本発明は1−記目的を達成するために、(al車両エン
ジンによって駆動される圧縮機と、(b)前記圧縮機の
冷媒吸入側に設けられ、冷房用減圧装置および冷房用蒸
発器を有する冷房用冷媒回路と、 (e)前記圧縮機の冷媒吸入側に、前記冷房用冷媒回路
と並列に設けられ、冷蔵用減圧装置および冷蔵用蒸発器
を有する冷蔵用冷媒回路と、(d)前記冷房用冷媒回路
への冷媒流れを制御する電気制御弁と、 (e)冷房スイッチおよび冷蔵庫スイッチがともに投入
される冷房冷蔵同時運転時に前記電気制御弁を断続的に
開閉制御する第1の制御手段と、(fl冷蔵庫スイッチ
のみが投入される冷蔵単独運転時に、前記第1の制御手
段からの信号に基づいて前記圧縮機の運転を断続制御す
る第2の制御手段と、 (gl冷房スイッチのみが投入される冷房単独運転時に
、前記電気制御弁を開いて前記冷房用蒸発器に冷媒を流
通可能とし、一方、冷蔵庫スイッチのみが投入される冷
蔵単独運転時には、前記電気制御弁を閉じて前記冷房用
蒸発器への冷媒流れを遮断する第3の制御手段とを備え
るという技術的手段を採用する。
[Means for Solving the Problems] In order to achieve the object 1-, the present invention includes (a) a compressor driven by an al vehicle engine; (e) a cooling refrigerant circuit provided on the refrigerant suction side of the compressor in parallel with the cooling refrigerant circuit and having a refrigeration pressure reduction device and a refrigeration evaporator; (d) an electric control valve that controls the flow of refrigerant to the cooling refrigerant circuit; and (e) an electric control valve that turns on and off the electric control valve during simultaneous cooling and refrigerating operation when both the cooling switch and the refrigerator switch are turned on. a first control means for controlling the opening and closing of the compressor; a control means; (during independent cooling operation when only the cooling switch is turned on, the electric control valve is opened to allow refrigerant to flow to the cooling evaporator; on the other hand, during independent cooling operation when only the refrigerator switch is turned on); and a third control means for closing the electric control valve to cut off the flow of refrigerant to the cooling evaporator.

〔作用〕[Effect]

上記の技術的手段によれば、冷房スイッチおよび冷蔵庫
スイッチを投入する冷房冷蔵同時運転時には、第1の制
御手段により電気制御弁を断続的に開閉制御することに
より、冷房用蒸発器と冷蔵用蒸発器に交互に冷媒を流通
させ、冷房作用と冷蔵作用を同時に発揮できる。
According to the above technical means, during simultaneous cooling/refrigeration operation in which the cooling switch and the refrigerator switch are turned on, the first control means intermittently controls opening and closing of the electric control valve, thereby controlling the cooling evaporator and the refrigeration evaporator. By circulating refrigerant alternately through the container, it is possible to achieve cooling and refrigeration effects at the same time.

一方、冷蔵庫スイッチのみを投入して、冷蔵単独運転を
設定した時には、第3の制御手段により電気制御弁を閉
じて冷房用蒸発器への冷媒流れを遮断して冷房作用を停
止するとともに、第2の制御手段により圧縮機の運転を
断続することにより、冷蔵庫冷却能力に対応した圧縮機
能力を設定して、冷蔵作用を発揮できる。
On the other hand, when only the refrigerator switch is turned on and refrigeration independent operation is set, the third control means closes the electric control valve to cut off the flow of refrigerant to the cooling evaporator and stop the cooling action. By intermittent operation of the compressor by the control means 2, the compression function corresponding to the refrigerator cooling capacity can be set, and the refrigeration effect can be exerted.

〔実施例〕〔Example〕

以下本発明を図に示す一実施例に基づいて説明する。 The present invention will be explained below based on an embodiment shown in the drawings.

第1図は本発明をワゴン車用ツインクーラと知合せて実
施した場合の冷凍サイクルを示しており、1は冷媒の圧
縮・吐出を行う圧縮機で、図示しない車両走行用エンジ
ンの駆動力を電磁クラッチ11を介して受けて作動する
ようになっている。2はこの圧縮機1より吐出された高
温高圧のガス冷媒を冷却して凝縮する凝縮器、3は凝縮
器2で凝縮した冷媒を受けて液冷媒のみ導出する受液器
である。Aは車室内前部のインパネ下部に設置されるフ
ロント側冷房ユニットであり、4は液冷媒を低温低圧の
霧状に減圧膨張させる冷房用減圧装置、5は冷房用蒸発
器である。減圧装置4は冷房用蒸発器5の出口側に配設
された感温筒4aからの信号圧力(蒸発器出口の冷媒温
度に応じた圧力)に応じて絞り量を可変とする温度作動
式膨張弁よりなり、冷房用蒸発器5出口での冷媒過熱度
が一定となるように冷媒流量を制御する。フロント側冷
房ユニットAは車室内もしくは車室外の空気を送風機6
で吸入し、その吸入空気を蒸発器5で冷却した後、図示
しないヒータユニットを経由して車室内前面の中央及び
左右に設けた上方吹出口(図示せず)より前席の乗員頭
部に向けて吹出すようになっている。7は電磁弁で、上
記減圧装置4゜蒸発器5を有する冷房用冷媒回路8の冷
媒の流れを制御する。9は冷房用蒸発器5を通過した冷
風の温度を感知するサーミスタからなる温度センサであ
る。Bは車室内の助手席後方の床下等に設−され、車室
内後席の乗員を冷房するリヤ側冷房ユニ・ノドであり、
フロント側と同様の機器(40゜40a、50.60,
70,80.90)を有している。フロント側とリヤ側
の冷房用冷媒回路8と80は互いに並列に接続されてい
る。
Fig. 1 shows a refrigeration cycle when the present invention is implemented in conjunction with a twin cooler for a wagon. 1 is a compressor that compresses and discharges refrigerant, and the driving force of the vehicle running engine (not shown) is It is operated by receiving power via an electromagnetic clutch 11. 2 is a condenser that cools and condenses the high-temperature, high-pressure gas refrigerant discharged from the compressor 1, and 3 is a liquid receiver that receives the refrigerant condensed in the condenser 2 and draws out only liquid refrigerant. A is a front side cooling unit installed at the lower part of the instrument panel in the front part of the vehicle interior, 4 is a cooling pressure reducing device that decompresses and expands liquid refrigerant into a low-temperature, low-pressure mist, and 5 is a cooling evaporator. The pressure reducing device 4 is a temperature-activated expansion device that changes the amount of throttling in accordance with the signal pressure (pressure according to the refrigerant temperature at the evaporator outlet) from a temperature-sensitive cylinder 4a disposed on the outlet side of the cooling evaporator 5. It is composed of a valve and controls the flow rate of the refrigerant so that the degree of superheating of the refrigerant at the outlet of the cooling evaporator 5 is constant. The front cooling unit A blows air from inside the vehicle or outside the vehicle using a blower 6.
After the intake air is cooled by the evaporator 5, it is passed through a heater unit (not shown) to the head of the passenger in the front seat through upper air outlets (not shown) provided at the center and left and right sides of the front of the vehicle interior. It is designed to blow out towards the target. A solenoid valve 7 controls the flow of refrigerant in the cooling refrigerant circuit 8 having the pressure reducing device 4 and the evaporator 5. A temperature sensor 9 is a thermistor that detects the temperature of the cold air that has passed through the cooling evaporator 5. B is a rear side cooling unit installed under the floor behind the passenger seat in the vehicle interior, and cools the passengers in the rear seats of the vehicle interior.
Equipment similar to the front side (40°40a, 50.60,
70,80.90). The front and rear cooling refrigerant circuits 8 and 80 are connected in parallel to each other.

100は両温度センサ9,90の検出信号が人力される
冷房用制御装置で、フロント側の冷風温度が設定温度以
下に低下すると温度センサ9からの信号を受けて電磁弁
7への通電を遮断して、電磁弁7を開弁し、またリヤ側
の冷風温度が設定温度以下に低下すると、温度センサ9
0からの信号を受けて電磁弁70への通電を遮断して電
磁弁70を閉弁するように構成されている。つまり、制
′4′n装置100は2つの冷房用冷媒回路8,8oへ
の冷媒の流れを独立に制御して、蒸発器5,5゜への霜
付きを防止する。更に、制御装置100は2つの電磁弁
7.70への通電を同時に遮断したときにはリレー11
8を開状態に駆動して電磁クラッチ11への通電を遮断
し、圧縮機1を停止するように構成されている。なお、
I4は自動車エンジンのイグニッションスイッチ、15
は車載の電源バッテリである。16は上記2つの冷房用
冷媒回路8.80と並列に設けられた冷蔵用冷媒回路で
あり、この回路16の途中には、冷媒の流れる方向に順
次、冷蔵用減圧装置をなす定圧膨張弁17、冷蔵用蒸発
器18.逆止弁19が接続されている。
Reference numeral 100 denotes a cooling control device in which the detection signals of both temperature sensors 9 and 90 are inputted manually, and when the temperature of the cold air on the front side drops below the set temperature, the energization to the solenoid valve 7 is cut off in response to the signal from the temperature sensor 9. When the solenoid valve 7 is opened and the temperature of the rear cold air drops below the set temperature, the temperature sensor 9
The electromagnetic valve 70 is configured to receive a signal from the electromagnetic valve 70 and cut off current to the electromagnetic valve 70 to close the electromagnetic valve 70. In other words, the control device 100 independently controls the flow of refrigerant to the two cooling refrigerant circuits 8, 8o to prevent frost from forming on the evaporators 5, 5°. Further, when the control device 100 simultaneously cuts off the power to the two solenoid valves 7.70, the control device 100 activates the relay 11.
The compressor 1 is configured to be driven to an open state to cut off power to the electromagnetic clutch 11 and stop the compressor 1. In addition,
I4 is the ignition switch of a car engine, 15
is the vehicle's power battery. Reference numeral 16 denotes a refrigerant circuit for refrigeration, which is provided in parallel with the two refrigerant circuits 8 and 80 for cooling. In the middle of this circuit 16, constant pressure expansion valves 17 forming a decompression device for refrigeration are sequentially installed in the direction in which the refrigerant flows. , refrigeration evaporator 18. A check valve 19 is connected.

定圧膨張弁1弘低圧側の圧力が設定値以下となると開き
、かつ低圧、側を一定圧カに制御しうるタイプの膨張弁
であり、本実施例では冷媒としてR−12が用いられ、
定圧膨張弁17の設定開弁圧力は0.5 kglcra
G (蒸発温度−21”C)に選定されている。
Constant pressure expansion valve 1 This is a type of expansion valve that opens when the pressure on the low pressure side is below a set value and can control the low pressure side to a constant pressure. In this example, R-12 is used as the refrigerant.
The set valve opening pressure of the constant pressure expansion valve 17 is 0.5 kglcra
G (evaporation temperature -21"C).

上記の冷蔵庫用の蒸発器18は、冷凍用蒸発器部18a
と冷蔵用蒸発器部18bとに区分されており、前者18
aは冷凍室20内に設置され、後者18bは冷蔵室21
内に設置されている。この冷蔵室2I内には、送風機2
2、サーミスタからなる温度センサ23が設置されてい
る。この温度センサ23は冷蔵室21内で送風空気流が
直接当たらないような位置に設けられ、冷蔵室21内の
温度を検出する。Cは冷凍冷蔵庫の全体を示しており、
この冷凍冷蔵庫Cの具体的構造は、前述した特開昭58
−11370号公報記載のものと同様である。
The above-described evaporator 18 for a refrigerator includes a freezing evaporator section 18a.
and a refrigerating evaporator section 18b, the former 18
a is installed in the freezer compartment 20, and the latter 18b is installed in the refrigerator compartment 21.
is installed inside. Inside this refrigerator compartment 2I, there is a blower 2.
2. A temperature sensor 23 made of a thermistor is installed. This temperature sensor 23 is provided in the refrigerator compartment 21 at a position where it is not directly hit by the blown air flow, and detects the temperature inside the refrigerator compartment 21 . C shows the whole refrigerator-freezer,
The specific structure of this refrigerator-freezer C is described in Japanese Patent Application Laid-open No. 58
It is the same as that described in JP-11370.

200は冷蔵庫用制御装置で、冷蔵庫スイッチ24の開
閉信号及び温度センサ23の検出信号に基づいて送風機
22及び電磁クラッチ11の作動を制御するとともに、
冷房用制御装置100を介して電磁弁7.70の開閉を
制御する。
Reference numeral 200 denotes a refrigerator control device that controls the operation of the blower 22 and the electromagnetic clutch 11 based on the opening/closing signal of the refrigerator switch 24 and the detection signal of the temperature sensor 23.
The opening and closing of the electromagnetic valves 7 and 70 are controlled via the cooling control device 100.

第2図は上記制御装置100,200を含む電気回路全
体を示すもので、最初に冷房用制御装置100について
説明する。101.102はエンジン回転数が設定値以
上か否かを判別する第1゜第2比較器で、点火装置25
が発生するパルス信号を直流電圧に変換する周波数−電
圧変換回路103から人力信号が加えられる。104は
フロント側冷房ユニッl−Aの温度センサ9の検出温度
が設定値以上か否かを判別する第3比較器、105はリ
ヤ側冷房ユニットBの温度センサ9oの検出温度が設定
値以上か否かを判別する第4比較器、106〜111は
アンド回路、112はオア回路、113〜116はトラ
ンジスタである。117は自動車エンジンのアイドル回
転数を上昇させるアイドルアップ装置の電磁弁である。
FIG. 2 shows the entire electric circuit including the control devices 100 and 200. First, the cooling control device 100 will be explained. Reference numerals 101 and 102 are first and second comparators that determine whether or not the engine speed is above a set value;
A human power signal is applied from a frequency-voltage conversion circuit 103 that converts the pulse signal generated by the frequency-voltage conversion circuit 103 into a DC voltage. 104 is a third comparator that determines whether the temperature detected by the temperature sensor 9 of the front side cooling unit l-A is higher than or equal to the set value, and 105 is a third comparator that determines whether the detected temperature of the temperature sensor 9o of the rear side cooling unit B is higher than or equal to the set value. 106 to 111 are AND circuits, 112 is an OR circuit, and 113 to 116 are transistors. 117 is a solenoid valve of an idle up device that increases the idle speed of the automobile engine.

リレー118は前述したごとく、電磁クラッチ11を制
御するものである。119はフロント側冷房ユニットへ
の送風機スイッチ、120はリヤ側冷房ユニットBの送
風機スイッチであり、本例ではこの送風機スイッチ11
9,120が冷房装置の作動停止を行う冷房スイッチの
機能を兼務している。121゜122は送風機用リレー
である。
As described above, the relay 118 controls the electromagnetic clutch 11. 119 is a blower switch for the front side cooling unit; 120 is a blower switch for the rear side cooling unit B; in this example, this blower switch 11
Reference numeral 9,120 also serves as a cooling switch for stopping the operation of the cooling device. Reference numerals 121 and 122 are blower relays.

次に冷蔵庫用制御装置200について説明すると、20
1はタイマ回路、202は温度センサ23の検出温度が
設定値以上か否かを判別する比較器、203はアンド回
路、204はトランジスタ、205はリレーである。冷
蔵庫スイッチ24は、停止位置(OFF>と、冷蔵位置
(cOOL)と、冷凍位置(ice)の3位置を選択す
るように構成される。
Next, the refrigerator control device 200 will be explained.
1 is a timer circuit, 202 is a comparator for determining whether the temperature detected by the temperature sensor 23 is higher than a set value, 203 is an AND circuit, 204 is a transistor, and 205 is a relay. The refrigerator switch 24 is configured to select three positions: a stop position (OFF>), a refrigerated position (cOOL), and a frozen position (ICE).

前記タイマ回路201は、上記スイッチ24をC00L
の位置に投入すると、第1の入力端子201aに“1”
レベルの信号が入力されることにより、TI ” 10
秒、T2=120秒のパルス信号を出力端子201bに
発生し、また上記スイッチ24をiceの位置に投入し
た時は第2の入力端子201Cに“1”レベルの信号が
入力されることにより、TI =15秒、Tz=60秒
のパルス信号を出力端子201bに発生するようになっ
ている。なお、スイッチ24がOFF位置にある時はタ
イマ回路201の出力は常に“0”レベルとなる。
The timer circuit 201 sets the switch 24 to C00L.
When it is inserted into the position, "1" is output to the first input terminal 201a.
By inputting a level signal, TI ” 10
A pulse signal of T2=120 seconds is generated at the output terminal 201b, and when the switch 24 is turned to the ice position, a "1" level signal is input to the second input terminal 201C. A pulse signal of TI = 15 seconds and Tz = 60 seconds is generated at the output terminal 201b. Note that when the switch 24 is in the OFF position, the output of the timer circuit 201 is always at the "0" level.

次に、上記構成において本実施例の作動を説明する。ま
ず、夏季等において、車室内の前部、後部を両方とも冷
房する時には、冷房スイッチを兼ねる送風機スイッチ1
19.120をHi w L 。
Next, the operation of this embodiment in the above configuration will be explained. First, in summer, etc., when cooling both the front and rear parts of the vehicle interior, the blower switch 1, which also serves as the cooling switch, is used.
19.120 Hi w L.

のいずれかの位置に投入する。これにより、リレー12
1,122に通電され、送風機6,60への通電回路が
閉成されるので、送風機6.60がそれぞれ上記スイッ
チ119,120の投入位置に応じた速度で作動する。
Insert it in either position. As a result, relay 12
1 and 122, and the current supply circuit to the blowers 6 and 60 is closed, so that the blowers 6 and 60 operate at speeds corresponding to the closed positions of the switches 119 and 120, respectively.

冷房始動時には、温度センサ9,90の検出温度が設定
温度より充分高くなっており、そのため温度センサ9.
90の抵抗値が比較器104.105における設定値T
F2、TR2より小さくなっている。その結果、比較器
104.105の出力は“l”レベルとなり、それぞれ
アンド回路109.110とアンド回路108.111
に加わる。一方、自動車エンジンの回転数は通常、比較
器102の設定値Sl(例えば650r、p、m)、S
2 (例えば950r、p、n+ )より充分高(なっ
ているので、比較器102の出力は1lilルベルとな
る。また、比較器101はエンジン回転数が設定値R1
(例えば1650r、p、m )より低い時“l”レベ
ルの出力を出してアイドルアップ用電磁弁117を作動
させ、設定値R2(例えば1800r、p、m )より
高い時は“0”レベルの出力を出してアイドルアップの
作動を停止させる。
At the time of starting cooling, the detected temperatures of temperature sensors 9 and 90 are sufficiently higher than the set temperature, so temperature sensors 9.
The resistance value of 90 is the set value T in comparator 104 and 105.
It is smaller than F2 and TR2. As a result, the outputs of comparators 104 and 105 go to "L" level, and AND circuits 109 and 110 and AND circuits 108 and 111, respectively.
join. On the other hand, the rotational speed of an automobile engine is normally determined by a set value Sl (for example, 650r, p, m) of the comparator 102, S
2 (for example, 950 r, p, n+), the output of the comparator 102 is 1 l l lB. Also, the comparator 101 detects that the engine speed is set at the set value R1.
(for example, 1650r, p, m), it outputs an "L" level output and operates the idle up solenoid valve 117, and when it is higher than the set value R2 (for example, 1800r, p, m), it outputs an "0" level output. Outputs the output and stops the idle up operation.

前記した送風機スイッチ119,120の投入による“
0”レベルの信号がインバータにより反転されて、“1
”レベルの信号としてアンド回路108.109に加わ
るので、このアンド回路108.109の出力が″l″
レベルとなり、オア回路112の出力が“1″レベルと
なり、アンド回路107の出力も“1”となり、トラン
ジスタ114がオンし、リレー118に通電し、その可
動接点118aを固定接点118bに閉成する。
By turning on the blower switches 119 and 120 described above, "
0” level signal is inverted by the inverter and becomes “1” level.
Since it is added to the AND circuit 108, 109 as a level signal, the output of this AND circuit 108, 109 becomes "l".
level, the output of the OR circuit 112 becomes "1" level, the output of the AND circuit 107 also becomes "1", the transistor 114 turns on, energizes the relay 118, and closes the movable contact 118a to the fixed contact 118b. .

これにより、電磁クラッチ11に通電され、圧縮機lが
作動する。
As a result, the electromagnetic clutch 11 is energized and the compressor 1 is operated.

また、このときは冷蔵庫スイッチ24がオフ状態にある
ので、タイマ回路201の出力が“02レベルであり、
そのためアンド回路110.111の出力がいずれも“
1″となり、トランジスタ115.116がオンするの
で、電磁弁7.70に通電され、この電磁弁7.70が
開くので、蒸発器5,50に冷媒が流通可能となる。
Also, at this time, since the refrigerator switch 24 is in the off state, the output of the timer circuit 201 is at the "02 level".
Therefore, both the outputs of AND circuits 110 and 111 are “
1'' and the transistors 115 and 116 are turned on, so that the solenoid valve 7.70 is energized, and this solenoid valve 7.70 opens, allowing refrigerant to flow to the evaporators 5 and 50.

よって、圧縮機1より吐出された冷媒が配管中を循環し
、冷媒が冷房用蒸発器5,50で蒸発する際に送風空気
より気化熱を奪い、気化熱を奪われて冷却された空気が
送風機6.60によって車室内に吹き出される。この際
、蒸発器5,50内の蒸発圧力は通常2〜3kg/c+
Jであり、従って冷蔵用冷媒回路16の圧縮機吸入側端
部に作用する圧力も同程度であるので、定圧膨張弁17
は閉じたままであり、冷蔵用冷媒回路16内に冷媒は流
れない。
Therefore, the refrigerant discharged from the compressor 1 circulates through the pipes, and when the refrigerant evaporates in the cooling evaporators 5 and 50, it takes away the heat of vaporization from the blown air, and the air that has been taken away with the heat of vaporization and cooled is It is blown into the passenger compartment by the blower 6.60. At this time, the evaporation pressure in the evaporators 5, 50 is usually 2 to 3 kg/c+
J, and therefore the pressure acting on the compressor suction side end of the refrigeration refrigerant circuit 16 is also about the same, so the constant pressure expansion valve 17
remains closed, and no refrigerant flows into the refrigerant circuit 16 for refrigeration.

そして、冷房作用が進行しで、温度センサ9または90
の検出温度が設定温度より低下すれば、比較器104ま
たは105の出力が“0”となり、電磁弁7または70
が閉じ、蒸発器5または50のフロストを防止する。
Then, as the cooling action progresses, the temperature sensor 9 or 90
If the detected temperature falls below the set temperature, the output of the comparator 104 or 105 becomes "0", and the solenoid valve 7 or
is closed to prevent frosting of evaporator 5 or 50.

温度センサ9.90の検出温度がいずれも設定温度より
低下した時は、両電磁弁7.70が閉じると同時に、電
磁クラッチ11への通電が遮断され、圧縮機1が停止す
る。
When both of the temperatures detected by the temperature sensors 9 and 90 fall below the set temperature, both electromagnetic valves 7 and 70 close, and at the same time, power to the electromagnetic clutch 11 is cut off and the compressor 1 is stopped.

次に、上記冷房運転と同時に、冷蔵庫Cを作動させる時
には、冷蔵庫スイッチ24を冷蔵(cOOL)または冷
凍(i c e)の位置に投入するのであるが、この両
位置のいずれの場合も、タイマ回路201はTI (!
:T2で示すパルス信号を冷房用制御装置100のアン
ド回路110.111とオア回路112に加える。その
結果、アンド回路110.111では、タイマ回路20
1の出力信号のうちTIの間だけ出力が“0”となり、
電磁弁7.70を閉じ、逆にT2の間はアンド回路11
0.111の出力が“l”となり、電磁弁7゜70を開
く。以後、電磁弁7.70は前記18時間閉じ、T2時
間開(という動作を繰返す。そして、電磁弁7.70が
閉じると、冷房用蒸発器5゜50への冷媒の流れが止ま
るため圧縮機1の吸入圧力が急激に低下して、短時間例
えば3〜4秒で0.5kg/crlGに達する。このた
め、冷蔵用冷媒回路1Gの定圧膨張弁17が開き、冷蔵
用冷媒回路16を冷媒が流れるようになる。この時、定
圧膨張弁17は低圧側圧力を設定圧力(0,5kg/c
rAG)に制御するため、冷蔵用蒸発器18内は蒸発圧
力0.5kg/ailG、蒸発温度−21℃の状態とな
り、冷凍用蒸発器部18aでは、製氷も可能となる。
Next, when operating the refrigerator C at the same time as the cooling operation described above, the refrigerator switch 24 is placed in the refrigerating (cOOL) or freezing (ic e) position, but in both of these positions, the timer The circuit 201 is TI (!
:A pulse signal indicated by T2 is applied to the AND circuits 110 and 111 and the OR circuit 112 of the cooling control device 100. As a result, in the AND circuits 110 and 111, the timer circuit 20
Among the output signals of 1, the output is “0” only during TI,
Solenoid valve 7.70 is closed, and conversely, AND circuit 11 is closed during T2.
The output of 0.111 becomes "l" and the solenoid valve 7°70 is opened. Thereafter, the solenoid valve 7.70 closes for the above 18 hours and opens for T2 hours (this operation is repeated. Then, when the solenoid valve 7.70 closes, the flow of refrigerant to the cooling evaporator 5.50 stops, so the compressor The suction pressure of the refrigeration refrigerant circuit 1G rapidly decreases and reaches 0.5 kg/crlG in a short period of time, for example, 3 to 4 seconds.For this reason, the constant pressure expansion valve 17 of the refrigerant circuit 1G for refrigeration opens, and the refrigerant circuit 16 At this time, the constant pressure expansion valve 17 adjusts the low pressure side pressure to the set pressure (0.5 kg/c
rAG), the inside of the refrigeration evaporator 18 has an evaporation pressure of 0.5 kg/ailG and an evaporation temperature of -21° C., and ice making is also possible in the refrigeration evaporator section 18a.

そして、前記T7時間が過ぎると、電磁弁7.70に通
電されるため、電磁弁7,70が開弁状態に戻る。そし
て、電磁弁7,70が開くと、冷媒が再び冷房用蒸発器
5.50に供給され、蒸発器5.50内圧力及び圧縮機
吸入側圧力が2〜3 kg/ cd Gに戻る。この圧
力は冷蔵用蒸発器18内の圧力(0,5kg/cjG)
よりもはるかに高いが、冷蔵用蒸発器18の下流に逆止
弁19が配設されているので、冷房用蒸発器5.50を
通った冷媒ガスが冷蔵庫用蒸発器18内に逆流して、こ
の蒸発器18内の圧力を急激に上昇させるということは
ない。一方、定圧膨張弁17は低圧側圧力が設定圧力0
.5kg/cJGより高くなると自動的に閉じるので冷
媒の供給を止める。従って、蒸発器18は内部の液冷媒
が徐々に蒸発しながら製氷を続ける。
Then, after the T7 time has elapsed, the solenoid valves 7 and 70 are energized, so that the solenoid valves 7 and 70 return to the open state. Then, when the electromagnetic valves 7 and 70 open, the refrigerant is again supplied to the cooling evaporator 5.50, and the internal pressure of the evaporator 5.50 and the compressor suction side pressure return to 2 to 3 kg/cd G. This pressure is the pressure inside the refrigerating evaporator 18 (0.5 kg/cjG)
However, since the check valve 19 is disposed downstream of the refrigerator evaporator 18, the refrigerant gas that has passed through the cooling evaporator 5.50 will flow back into the refrigerator evaporator 18. , the pressure inside this evaporator 18 is not suddenly increased. On the other hand, in the constant pressure expansion valve 17, the low pressure side pressure is set to 0.
.. When the temperature exceeds 5kg/cJG, it will automatically close and stop supplying refrigerant. Therefore, the evaporator 18 continues to make ice while the liquid refrigerant therein gradually evaporates.

この状態は12時間の間継続する。以後、上記設定時間
T+ 、Ttに従って電磁弁7,70の開閉が繰り返さ
れることにより、車室の冷房作用と冷蔵庫Cにおける冷
却作用を同時に得ることができる。冷蔵用送風機22の
作動は温度センサ23の検出信号に応じて自動的に断続
される。
This state continues for 12 hours. Thereafter, by repeatedly opening and closing the electromagnetic valves 7 and 70 according to the set times T+ and Tt, the cooling effect of the vehicle interior and the cooling effect of the refrigerator C can be obtained at the same time. The operation of the refrigerating blower 22 is automatically interrupted in response to a detection signal from the temperature sensor 23.

冷蔵庫スイッチ24を冷蔵(cOOL)の位置に投入し
た時は、タイマ回路201のパルス出力が前述したごと
<TI=10秒、Tz=12Q秒となり、一方冷凍(i
ce)の位置に投入した時はタイマ回路201のパルス
出力がT+=15秒。
When the refrigerator switch 24 is turned on to the refrigeration (cOOL) position, the pulse output of the timer circuit 201 becomes <TI=10 seconds, Tz=12Q seconds as described above, while the refrigeration (i
ce), the pulse output of the timer circuit 201 is T+=15 seconds.

Tz=60秒となる。従って、前者の場合より後者の方
が冷蔵用蒸発器18に冷媒が流れる時間(換言すれば電
磁弁7,70の閉弁時間)が長くなり、冷蔵庫Cの冷却
能力が向上するので、製氷時間が短くなる。
Tz=60 seconds. Therefore, in the latter case, the time for the refrigerant to flow into the refrigeration evaporator 18 (in other words, the closing time of the solenoid valves 7 and 70) is longer, and the cooling capacity of the refrigerator C is improved, so the ice making time is longer. becomes shorter.

次に、春秋季のごとく中間シーズンにおいて、冷蔵庫C
のみを作動させ、冷房運転をしない時は、冷蔵庫スイッ
チ24を冷蔵(cOOL)または冷凍(ice)の位置
に投入するが、冷房用の送風機スイッチ119,120
はオフ状態のままとする。
Next, during the intermediate seasons such as spring and autumn, refrigerator C
When not operating the cooling operation, the refrigerator switch 24 is set to the refrigeration (cOOL) or freezing (ice) position, but the blower switches 119 and 120 for cooling are turned on.
remains off.

ここで、送風機スイッチ119.120がオフであって
も、イグニッションスイッチ14が投入されておれば、
冷房用制御装置100にも電源が常に供給されている。
Here, even if the blower switches 119 and 120 are off, if the ignition switch 14 is turned on,
Power is always supplied to the cooling control device 100 as well.

前記送風機スイッチ119゜120がオフ状態にあるた
め、アンド回路110゜111の出力が常に“0”とな
り、電磁弁7.70は常に閉じたままとなる。
Since the blower switch 119.degree. 120 is in the off state, the output of the AND circuit 110.degree. 111 is always "0" and the solenoid valve 7.70 always remains closed.

一方、アンド回路108.109の出力も常に“O”と
なるので、オア回路112の出力はタイマ回路201の
パルス出力によってT6時間だけ“1”となり、この1
9時間だけ電磁クラッチllが通電され、圧縮機1が作
動する。
On the other hand, since the outputs of the AND circuits 108 and 109 are always "O", the output of the OR circuit 112 becomes "1" for only time T6 due to the pulse output of the timer circuit 201, and this
Electromagnetic clutch 11 is energized for 9 hours, and compressor 1 is operated.

すなわち、冷蔵庫単独運転時には、タイマ回路201の
パルス出力に従って圧縮機1がT6時間作動、T2時間
停止という断続作動を繰返す。これによって、冷蔵用蒸
発器18に断続的に冷媒を供給し、冷蔵庫Cの冷却を行
う。圧縮機lは車室内の冷房能力を確保できるだけの大
きな能力(容量)を持つように予め設計されているので
、冷蔵庫単独運転時に圧縮機1を連続運転すると、圧縮
機能力が過大となるので、好ましくない。これに反し、
本例では圧縮機1を上述のごとく断続運転することによ
って、冷蔵庫冷却能力に対応した圧縮機能力を設定でき
、圧縮機稼動率を低減できるので、自動車エンジンの省
動力という観点から有益である。
That is, when the refrigerator is operating alone, the compressor 1 repeatedly operates intermittently in accordance with the pulse output of the timer circuit 201, such as operating for T6 hours and stopping for T2 hours. As a result, refrigerant is intermittently supplied to the refrigeration evaporator 18, and the refrigerator C is cooled. Compressor 1 is designed in advance to have a large capacity (capacity) that is sufficient to ensure cooling capacity in the vehicle interior, so if compressor 1 is operated continuously when the refrigerator is operating alone, the compression function will become excessive. Undesirable. On the contrary,
In this example, by intermittent operation of the compressor 1 as described above, the compression function power corresponding to the refrigerator cooling capacity can be set, and the compressor operation rate can be reduced, which is advantageous from the viewpoint of power saving of the automobile engine.

本発明は上述した図示実施例に限定されるものではなく
、種々変形可能である。以下その変形例について列記す
る。
The present invention is not limited to the illustrated embodiments described above, but can be modified in various ways. Modifications thereof will be listed below.

(11上述の実施例では、イグニッションスイッチ14
が投入されると、冷房用制御装置100に常に電源が供
給されるよう構成したが、冷房用制御装置100にイグ
ニッションスイッチ14と、独立に設けた手動操作の冷
房スイッチを介して電源を供給するとともに、冷蔵用制
御装置200が起動した時には、この起動と連動して、
前記冷房スイッチとは無関係に冷房用制御装置100に
電源を供給するよう構成してもよい。
(11 In the above embodiment, the ignition switch 14
Although the configuration is such that power is always supplied to the cooling control device 100 when the air conditioner is turned on, power is supplied to the cooling control device 100 via the ignition switch 14 and an independently operated manually operated cooling switch. At the same time, when the refrigeration control device 200 is activated, in conjunction with this activation,
The configuration may be such that power is supplied to the cooling control device 100 regardless of the cooling switch.

(2)前述の実施例では、冷蔵庫C内の温度センサ23
の検出温度が設定温度以下になったとき、送風機22の
作動を停止しているが、タイマ回路201の出力を“0
”のままとして、圧縮機1の作動を停止するようにして
もよい。この場合、送風機22は作動させたままとして
もよく、また送風機22と圧縮機lを同時に停止しても
よい。
(2) In the above embodiment, the temperature sensor 23 in the refrigerator C
When the detected temperature falls below the set temperature, the operation of the blower 22 is stopped, but the output of the timer circuit 201 is set to "0".
'', and the operation of the compressor 1 may be stopped. In this case, the blower 22 may remain in operation, or the blower 22 and the compressor 1 may be stopped at the same time.

(3)冷房用制御装置100と冷蔵用制御装置2゜Oは
マイクロコンピュータを用いた制御装置によって一体化
することもできる。
(3) The cooling control device 100 and the refrigeration control device 2°O can also be integrated by a control device using a microcomputer.

(4)電磁弁7,7oの開閉制御はタイマ回路2゜lを
用いる他に、冷蔵用蒸発器18の冷却度合を検出して制
御してもよい。
(4) The opening/closing control of the electromagnetic valves 7, 7o may be controlled by detecting the degree of cooling of the refrigeration evaporator 18, in addition to using the timer circuit 2°l.

(5)2つの冷房ユニッ)A、Bを設けずに、冷房ユニ
ットを1つのみ設けるものに対しても本発明は同様に適
用できることはもちろんである。この場合には、冷房単
独運転時に温度センサ(9,90)の信号で、電磁弁(
7,70)を開閉する必要はなく、圧縮機lの作動を断
続するだけでよい。
(5) Two cooling units) It goes without saying that the present invention can be similarly applied to a system in which only one cooling unit is provided without providing A and B. In this case, the solenoid valve (
7, 70), it is not necessary to open or close the compressor l, and it is only necessary to intermittent operation of the compressor l.

(6)電磁弁7,7oに限らず、電気的に制御できる弁
であれば、どのような弁(例えばモータ制御弁等)でも
使用できる。
(6) Not limited to the solenoid valves 7 and 7o, any valve (for example, a motor control valve) can be used as long as it can be electrically controlled.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、冷房単独運転および冷
房冷蔵同時運転を従来通り良好に行うことができるのに
加え、冷蔵単独運転をも良好に行うことができるという
効果が大である。
As described above, according to the present invention, not only can cooling-only operation and cooling-refrigeration simultaneous operation be performed well as before, but also refrigeration-only operation can be performed well.

しかも、圧縮機の断続運転によって冷蔵庫の単独運転を
実現しているから、圧縮機能力が冷蔵庫冷却能力に比し
て過大になることがなく、圧縮機稼動率を大幅に低減で
きるので、車両エンジンの省動力を図ることができる。
Furthermore, since the refrigerator can operate independently through intermittent operation of the compressor, the compressor function power does not become excessive compared to the refrigerator cooling capacity, and the compressor operating rate can be significantly reduced. It is possible to save power.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は冷凍サ
イクルと電気回路を含む全体構成図、第2図は電気回路
部の具体的結線図である。 ■・・・圧縮機、4.40・・・冷房用減圧装置、5゜
50・・・冷房用蒸発器、7.70・・・電気制御弁を
なす電磁弁、8.80・・・冷房用冷媒回路、16・・
・冷房用冷媒回路、17・・・冷蔵用減圧装置をなす定
圧膨張弁、18・・・冷蔵用蒸発器、24・・・冷蔵庫
用スイッチ、100・・・冷房用制御装置、200・・
・冷蔵庫用制御装置、119.120・・・冷房スイッ
チを兼ねる送風機スイッチ。
The drawings show one embodiment of the present invention, and FIG. 1 is an overall configuration diagram including a refrigeration cycle and an electric circuit, and FIG. 2 is a specific wiring diagram of the electric circuit section. ■...Compressor, 4.40...Pressure reducing device for cooling, 5゜50...Evaporator for cooling, 7.70...Solenoid valve forming an electric control valve, 8.80...Cooling refrigerant circuit, 16...
・Refrigerant circuit for cooling, 17... Constant pressure expansion valve forming a pressure reducing device for refrigeration, 18... Evaporator for refrigeration, 24... Switch for refrigerator, 100... Control device for cooling, 200...
・Refrigerator control device, 119.120...Blower switch that also serves as a cooling switch.

Claims (1)

【特許請求の範囲】 (a)車両エンジンによって駆動される圧縮機と、(b
)前記圧縮機の冷媒吸入側に設けられ、冷房用減圧装置
および冷房用蒸発器を有する冷房用冷媒回路と、 (c)前記圧縮機の冷媒吸入側に、前記冷房用冷媒回路
と並列に設けられ、冷蔵用減圧装置および冷蔵用蒸発器
を有する冷蔵用冷媒回路と、 (d)前記冷房用冷媒回路への冷媒流れを制御する電気
制御弁と、 (e)冷房スイッチおよび冷蔵庫スイッチがともに投入
される冷房冷蔵同時運転時に前記電気制御弁を断続的に
開閉制御する第1の制御手段と、(f)冷蔵庫スイッチ
のみが投入される冷蔵単独運転時に、前記第1の制御手
段からの信号に基づいて前記圧縮機の運転を断続制御す
る第2の制御手段と、 (g)冷房スイッチのみが投入される冷房単独運転時に
、前記電気制御弁を開いて前記冷房用蒸発器に冷媒を流
通可能とし、一方、冷蔵庫スイッチのみが投入される冷
蔵単独運転時には、前記電気制御弁を閉じて前記冷房用
蒸発器への冷媒流れを遮断する第3の制御手段とを備え
る車両用冷凍サイクル装置。
[Scope of Claims] (a) a compressor driven by a vehicle engine; (b) a compressor driven by a vehicle engine;
) a cooling refrigerant circuit provided on the refrigerant suction side of the compressor and having a cooling pressure reducing device and a cooling evaporator; (c) provided in parallel with the cooling refrigerant circuit on the refrigerant suction side of the compressor; (d) an electric control valve that controls the flow of refrigerant to the cooling refrigerant circuit; (e) both the cooling switch and the refrigerator switch are turned on; (f) a first control means for intermittently controlling the opening and closing of the electric control valve during simultaneous cooling and refrigeration operation; (g) during a cooling-only operation in which only a cooling switch is turned on, the electric control valve can be opened to allow refrigerant to flow to the cooling evaporator; and third control means that closes the electric control valve to cut off the flow of refrigerant to the cooling evaporator during refrigeration independent operation in which only the refrigerator switch is turned on.
JP14274785A 1985-06-28 1985-06-28 Refrigerating cycle device for vehicle Granted JPS624623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14274785A JPS624623A (en) 1985-06-28 1985-06-28 Refrigerating cycle device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14274785A JPS624623A (en) 1985-06-28 1985-06-28 Refrigerating cycle device for vehicle

Publications (2)

Publication Number Publication Date
JPS624623A true JPS624623A (en) 1987-01-10
JPH0144527B2 JPH0144527B2 (en) 1989-09-28

Family

ID=15322635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14274785A Granted JPS624623A (en) 1985-06-28 1985-06-28 Refrigerating cycle device for vehicle

Country Status (1)

Country Link
JP (1) JPS624623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419510U (en) * 1987-07-27 1989-01-31
WO2014017022A1 (en) * 2012-07-25 2014-01-30 トヨタ車体株式会社 Air-conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419510U (en) * 1987-07-27 1989-01-31
WO2014017022A1 (en) * 2012-07-25 2014-01-30 トヨタ車体株式会社 Air-conditioning system
JP2014024413A (en) * 2012-07-25 2014-02-06 Denso Corp Air conditioner

Also Published As

Publication number Publication date
JPH0144527B2 (en) 1989-09-28

Similar Documents

Publication Publication Date Title
JPS6326830B2 (en)
JPS6155017B2 (en)
JP4333586B2 (en) Refrigeration cycle apparatus and control method thereof
JPS624623A (en) Refrigerating cycle device for vehicle
JPH10315753A (en) Refrigerating and air-conditioning device
JPH07186710A (en) Air conditioner for electric vehicle
JPS6291774A (en) Cooling refrigerating device for car
JPH07139827A (en) Cooling and freezing device
JPS6315513B2 (en)
JPH11321293A (en) Cooling device for vehicle
JP2000055484A (en) Air conditioner
JPH10129244A (en) Air conditioner provided with cold accumulator
JPS629831B2 (en)
JPH0524418B2 (en)
JPS61280353A (en) Chilling refrigerator for car
JPS62283016A (en) Cooling and refrigeration controlling system of vehicle
JPH07117459A (en) Air-conditioner for electric vehicle
JPS635926Y2 (en)
JP2006224824A (en) Refrigeration/cooling device
JPH0124522Y2 (en)
JPS60229817A (en) Controller of car refrigerator
JPH10205963A (en) Refrigerator
JPH0986135A (en) Air conditioner for vehicle
JPS61250459A (en) Refrigerating chilling device for chill car
JP2000337753A (en) Air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term