JPH07104297B2 - X-ray analyzer - Google Patents

X-ray analyzer

Info

Publication number
JPH07104297B2
JPH07104297B2 JP31092186A JP31092186A JPH07104297B2 JP H07104297 B2 JPH07104297 B2 JP H07104297B2 JP 31092186 A JP31092186 A JP 31092186A JP 31092186 A JP31092186 A JP 31092186A JP H07104297 B2 JPH07104297 B2 JP H07104297B2
Authority
JP
Japan
Prior art keywords
ray
crystal
dispersive
dispersive crystal
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31092186A
Other languages
Japanese (ja)
Other versions
JPS63167250A (en
Inventor
英男 岡下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31092186A priority Critical patent/JPH07104297B2/en
Publication of JPS63167250A publication Critical patent/JPS63167250A/en
Publication of JPH07104297B2 publication Critical patent/JPH07104297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 イ.産業上の利用分野 本発明は、複数の分光結晶を交換して使用することがで
きる機構を備えたX線分析装置に関する。
Detailed Description of the Invention a. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray analysis apparatus equipped with a mechanism capable of exchanging a plurality of analyzing crystals.

ロ.従来の技術 複数個(6〜8個)の分光結晶を備えた蛍光X線分析装
置においては通常回転ドラム方式の結晶交換機構が用い
られている。この機構は第2図に示すように、回転ドラ
ム型の分光結晶台3に6〜8個の分光結晶2を取付け、
分光結晶台3を回転させて、任意の一つの分光結晶を使
用位置に位置させるものである。そして、分光結晶台3
とそれを回転させる切換駆動装置(不図示)の全体が、
使用位置にある分光結晶の表面に沿い、表面中心を通る
分光器中心線を軸として回転可能になっており、この回
転によって使用位置にある分光結晶によって分光器の波
長走査を行う。この時X線検出器4を分光器中心0を中
心として、分光結晶の回転角θに対して2倍角の2θだ
け回転させる必要があるが、従来は分光結晶の回転と検
出器の回転とは2倍角伝達機構によって連結し、一個の
波長走査用駆動モータによって駆動し、このモータの回
転量によって波長を検知するようになっていた。
B. 2. Description of the Related Art In a fluorescent X-ray analyzer equipped with a plurality of (6 to 8) analyzing crystals, a rotating drum type crystal exchanging mechanism is usually used. As shown in FIG. 2, this mechanism mounts 6 to 8 analyzing crystals 2 on a rotating drum type analyzing crystal stage 3.
The dispersive crystal stage 3 is rotated to position one arbitrary dispersive crystal at the use position. And the analyzing crystal stage 3
And the entire switching drive (not shown) that rotates it,
It is possible to rotate along the surface of the dispersive crystal in the use position about the center line of the disperser passing through the center of the surface, and this rotation causes the dispersive crystal in the use position to perform wavelength scanning of the disperser. At this time, it is necessary to rotate the X-ray detector 4 about the spectroscope center 0 by a double angle 2θ with respect to the rotation angle θ of the dispersive crystal. Conventionally, the rotation of the dispersive crystal and the rotation of the detector are It has been designed to be connected by a double angle transmission mechanism, to be driven by one wavelength scanning drive motor, and to detect the wavelength by the rotation amount of this motor.

ハ.発明が解決しようとする問題点 分光精度を保つためには、ドラムの機械加工精度,ドラ
ムの回転位置の精度,分光結晶をベースに取付ける精度
を夫々1/100度以内にする必要がある。そのために加
工,調整,検査に多大の労力を要した。ドラムの回転軸
を分光器の光軸を含む平面上に平行に設けることで、ド
ラムの回転停止位置の精度がX線の分光精度に対する影
響を大幅に低減することができる。しかし、ドラムの機
械加工精度と分光結晶をベースに取付ける精度に関して
は、分光精度への影響を簡単に取り除く方法がない。何
れにしても、既知波長のX線を分光することにより分光
結晶の設定位置のずれが発見された時点で位置調整をす
る必要があるので、分光結晶ベースと分光結晶台との間
に微調整機構を設けて、調整を行わなければならない為
に、多くの時間と労力が必要とされ、また、装置を完全
に調整することは極めて困難であるために、結晶交換型
のX線分析装置は分光精度が良くなかった。
C. Problems to be Solved by the Invention In order to maintain the spectral accuracy, it is necessary to keep the accuracy of the machining of the drum, the accuracy of the rotational position of the drum, and the accuracy of mounting the dispersive crystal on the base within 1/100 degrees. Therefore, a lot of labor was required for processing, adjustment and inspection. By providing the rotation axis of the drum parallel to the plane including the optical axis of the spectroscope, the influence of the rotation stop position accuracy of the drum on the X-ray spectroscopy accuracy can be significantly reduced. However, regarding the machining accuracy of the drum and the accuracy of mounting the dispersive crystal on the base, there is no simple method for removing the influence on the spectroscopic accuracy. In any case, since it is necessary to adjust the position when the deviation of the setting position of the dispersive crystal is found by dispersing the X-ray of the known wavelength, the fine adjustment is made between the dispersive crystal base and the dispersive crystal stage. A large amount of time and labor is required because a mechanism has to be provided for adjustment, and it is extremely difficult to completely adjust the device. Therefore, a crystal exchange type X-ray analysis device is required. Spectral accuracy was not good.

本発明は、ドラムの加工精度,結晶交換機構の回転停止
位置の精度,分光結晶をベースに取り付ける精度等が格
別高くない装置を使用し、調整の労力時間を大幅に低減
して、しかも、高いX線の分光精度が得られるようにす
ることを目的とする。
INDUSTRIAL APPLICABILITY The present invention uses a device in which the processing accuracy of the drum, the accuracy of the rotation stop position of the crystal exchange mechanism, the accuracy of attaching the dispersive crystal to the base, etc. are not particularly high, and the labor time for adjustment is greatly reduced and high. The purpose is to obtain X-ray spectral accuracy.

ニ.問題点解決のための手段 X線分析装置において、複数の分光結晶をX線分光器中
心位置に交互に設置する結晶交換機構を備え、分光器中
心に位置させた分光結晶をX線分光器中心を中心として
回転させる手段と、X線検出器をX線分光器中心を中心
として回転させる機構とを互いに独立に設けると共に、
分光結晶の回転角とX線検出器の回転位置を検知する手
段を設け、既知元素の特性X線の検出出力が最大になる
分光結晶及びX線検出器の位置と、同分光結晶及びX線
検出器の機構上のX線波長対応位置との差を記憶する手
段を設け、波長走査時分光結晶に上記差だけのオフセッ
トを与えて、分光結晶を駆動するようにした。
D. Means for Solving Problems In an X-ray analyzer, a crystal exchange mechanism for alternately installing a plurality of dispersive crystals at the center position of the X-ray spectroscope is provided, and the dispersive crystal located at the center of the spectroscope is the center of the X-ray spectroscope. And a mechanism for rotating the X-ray detector about the center of the X-ray spectroscope independently of each other, and
A position for detecting the rotation angle of the dispersive crystal and the rotational position of the X-ray detector is provided, and the position of the dispersive crystal and the X-ray detector that maximizes the detection output of the characteristic X-ray of the known element, and the dispersive crystal and the X-ray A means for storing the difference from the position corresponding to the X-ray wavelength on the mechanism of the detector is provided, and the offset of the above difference is given to the dispersive crystal at the time of wavelength scanning to drive the dispersive crystal.

ホ.作用 本発明によれば、波長走査において分光結晶と検出器と
を独立に回転制御できるので、較正測定で各分光結晶及
びX線検出器の機構上の所定波長位置とX線検出強度が
最大値を示す最適位置との差を測定すれば、このずれ角
は分光結晶の取付け精度,結晶交換機構の精度等を総合
した分光結晶の位置の誤差を表しているから、CPUによ
りそのずれ角度を考慮にいれて分光結晶を駆動すること
で、分光結晶の取付けの微調整を要せず分光結晶の設置
台や検出器の駆動装置の加工精度が格別高くなくても、
最適な設定位置に分光結晶及び精確なX線分光測定がで
きるようになった。
E. Effect According to the present invention, since the dispersive crystal and the detector can be independently controlled to rotate in wavelength scanning, the predetermined wavelength position on the mechanism of each dispersive crystal and the X-ray detector and the X-ray detected intensity have the maximum values in the calibration measurement. If the difference from the optimum position is measured, this deviation angle represents the error in the position of the dispersive crystal that integrates the mounting accuracy of the dispersive crystal, the accuracy of the crystal replacement mechanism, etc. Therefore, the deviation angle is taken into consideration by the CPU. By driving the dispersive crystal in this way, fine adjustment of mounting of the dispersive crystal is not required, and even if the processing accuracy of the disperser for the dispersive crystal or the detector driving device is not particularly high,
It has become possible to perform a spectroscopic crystal and an accurate X-ray spectroscopic measurement at the optimum setting position.

ヘ.実施例 第1図及び第2図に本発明の一実施例を示す。第2図に
おいて、Sは試料、EはX線、KはX線Eによって励起
されて試料Sから放出される蛍光X線、1はX線管、2
は蛍光X線Kを分光するための分光結晶、3は複数の分
光結晶2を設置した回転可能な分光結晶台、4は分光結
晶2で分光された特性X線Tを検出する検出器で、X線
分光器中心0を中心に回転可能な機構を備えている。分
光結晶台3は不図示の駆動装置で回転せしめられ、任意
の分光結晶を使用位置に位置させるようになっている。
分光結晶台3及びその駆動装置の全体をX線分光器の中
心0を中心に矢印のように回転できるようになってお
り、この回転によって、使用位置即ちX線分光器中心に
位置せしめられた分光結晶による波長走査が行われる。
第1図で5は上述した波長走査のための分光結晶回転駆
動装置である。6は検出器駆動装置で検出器4を0点を
中心に回転させる。7はCPUで駆動信号発生器9で発生
させた駆動信号を用いて、結晶駆動装置5及び検出器駆
動装置6を制御すると共にそれらの回転角を読取ってい
る。8はCPU7で読み取った分光結晶及び検出器4の回転
角とか、これらの回転角から換算したX線波長を表示す
る角度表示装置である。
F. Embodiment FIG. 1 and FIG. 2 show an embodiment of the present invention. In FIG. 2, S is a sample, E is an X-ray, K is a fluorescent X-ray excited by the X-ray E and emitted from the sample S, 1 is an X-ray tube, 2
Is a dispersive crystal for dispersing the fluorescent X-rays K, 3 is a rotatable dispersive crystal stage on which a plurality of dispersive crystals 2 are installed, and 4 is a detector for detecting the characteristic X-ray T dispersed by the dispersive crystal 2. It is equipped with a mechanism that can rotate around the center 0 of the X-ray spectrometer. The dispersive crystal stage 3 is rotated by a drive device (not shown) so that an arbitrary dispersive crystal can be positioned at a use position.
The whole of the dispersive crystal stage 3 and its driving device can be rotated about the center 0 of the X-ray spectroscope as shown by an arrow, and by this rotation, it is positioned at the use position, that is, the center of the X-ray spectroscope. Wavelength scanning by the dispersive crystal is performed.
In FIG. 1, reference numeral 5 denotes the dispersive crystal rotation driving device for wavelength scanning described above. Reference numeral 6 denotes a detector driving device which rotates the detector 4 around the zero point. A CPU 7 controls the crystal driving device 5 and the detector driving device 6 by using the driving signal generated by the driving signal generator 9 and reads their rotation angles. Reference numeral 8 denotes an angle display device for displaying the rotation angles of the spectroscopic crystal and the detector 4 read by the CPU 7, and the X-ray wavelength converted from these rotation angles.

以上の構成で分光結晶台3に設置している分光結晶2例
えばLiF(200)面を使用位置に位置させ、CPUによって
その角位置θをθ=22.515゜−0.3゜の位置にセット
し、この結晶の使用波長範囲のほぼ中間に当たるCuの特
性X線2θ=45.03゜のスペクトルを、2θ±0.3゜の角
度範囲で検出器駆動装置6を駆動させて検出し、そのX
線強度の最大となる検出器6の角位置をCPU7に記憶させ
る。次に分光結晶2を上記位置から0.05゜傾けて上記と
同じ測定を行う。同様にして分光結晶2の傾きθがθ=
22.515゜+0.3゜になる迄測定を繰返す。その測定結果
を基に、毎回の測定における検出出力の最大値を連ねる
曲線を作ると第3図のようになる。この曲線からX線検
出出力が最大になる分光結晶の角位置及び検出器の角位
置を求める。これは人間が作図によって行ってもよい
が、適当なアルコリズムを設定してCPUに行わせればよ
い。このようにして分光結晶の設定角度と検出器4の設
定角度を求め、機構上の夫々の理論位置(θ=22.515
゜,2θ=45.03゜)とのずれを算出し、そのずれをCPU7
に記憶させる。このずれは分光結晶の位置の誤差を表
す。従って、その分光結晶2の設定時には機構上の波長
位置からそのずれだけ補正した位置を正しい位置とす
る。同じように他の分光結晶2においても、較正測定を
行う。
With the above configuration, the analyzing crystal 2 installed on the analyzing crystal stage 3 such as the LiF (200) plane is positioned at the use position, and its angular position θ is set to the position of θ = 22.515 ° -0.3 ° by the CPU. The characteristic X-ray spectrum of Cu, which is almost in the middle of the usable wavelength range of the crystal, of 2θ = 45.03 ° is detected by driving the detector driving device 6 within the angle range of 2θ ± 0.3 °.
The angular position of the detector 6 having the maximum line intensity is stored in the CPU 7. Next, the analyzing crystal 2 is tilted by 0.05 ° from the above position and the same measurement as above is performed. Similarly, the inclination θ of the analyzing crystal 2 is θ =
Repeat the measurement until it reaches 22.515 ° + 0.3 °. Based on the measurement result, a curve connecting the maximum values of the detection output in each measurement is made as shown in FIG. From this curve, the angular position of the dispersive crystal and the angular position of the detector that maximize the X-ray detection output are determined. This may be done by humans by drawing, but it may be done by setting an appropriate algorithm to the CPU. In this way, the set angle of the dispersive crystal and the set angle of the detector 4 are obtained, and the theoretical positions (θ = 22.515) on the mechanism are calculated.
(2, θ = 45.03 °) is calculated and the CPU7
To memorize. This deviation represents an error in the position of the dispersive crystal. Therefore, when setting the dispersive crystal 2, a position corrected by the deviation from the wavelength position on the mechanism is set as a correct position. Similarly, the calibration measurement is performed on the other analyzing crystal 2.

ト.効果 本発明によれば、分光結晶の回転とX線検出器の回転と
を独立に行い、構造上の誤差を構造上の調整で補正する
のではなく、誤差量を記憶しておき、演算で補正するよ
うにしたので、加工精度が格別高くない分光結晶の設置
台や検出器の駆動装置を使用しても、調整に多大な時間
を費やすことなく、精度のよいX線分光測定ができ、X
線分析装置の低価格化,分光精度の向上を計ることがで
きる。
G. Effect According to the present invention, the rotation of the dispersive crystal and the rotation of the X-ray detector are independently performed, and the structural error is not corrected by the structural adjustment, but the error amount is stored and calculated. Since the correction is performed, even if a dispersive crystal installation stand or a detector driving device whose processing accuracy is not particularly high is used, accurate X-ray spectroscopic measurement can be performed without spending a large amount of time for adjustment. X
It is possible to reduce the cost of line analyzers and improve spectral accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のブロック図、第2図は本実
施例の構成図、第3図は較正測定の結果を示すグラフで
ある。 1……X線管、2……分光結晶、3……分光結晶台、4
……検出器、5……分光結晶駆動装置、6……検出器駆
動装置、7……CPU、8……角度表示装置、9……駆動
信号発生器、E……X線、S……試料、K……蛍光X
線、T……特性X線。
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a configuration diagram of this embodiment, and FIG. 3 is a graph showing the result of calibration measurement. 1 ... X-ray tube, 2 ... Spectroscopic crystal, 3 ... Spectroscopic crystal stage, 4
...... Detector, 5 ...... Spectroscopic crystal drive device, 6 ...... Detector drive device, 7 ...... CPU, 8 ...... Angle display device, 9 ...... Drive signal generator, E ...... X-ray, S ...... Sample, K ... Fluorescent X
Line, T ... Characteristic X-ray.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の分光結晶をX線分光器中心位置に交
互に設置する結晶交換機構を備え、分光器中心に位置さ
せた分光結晶をX線分光器中心を中心として回転させる
手段と、X線検出器をX線分光器中心を中心として回転
させる機構とを互いに独立に設けると共に、分光結晶の
回転角とX線検出器の回転位置を検知する手段を設け、
既知元素の特性X線の検出出力が最大になる分光結晶及
びX線検出器の位置と、同分光結晶及びX線検出器の機
構上のX線波長対応位置との差を記憶する手段を設け、
波長走査時分光結晶に上記差だけのオフセットを与え
て、分光結晶を駆動するようにしたことを特徴とするX
線分析装置。
1. A crystal exchanging mechanism for alternately installing a plurality of dispersive crystals at a center position of an X-ray spectroscope, and means for rotating the dispersive crystal positioned at the center of the spectroscope about the center of the X-ray spectroscope. A mechanism for rotating the X-ray detector about the center of the X-ray spectrometer is provided independently of each other, and means for detecting the rotation angle of the dispersive crystal and the rotation position of the X-ray detector is provided.
A means for storing the difference between the position of the dispersive crystal and the X-ray detector that maximizes the characteristic X-ray detection output of the known element and the position corresponding to the X-ray wavelength on the mechanism of the dispersive crystal and the X-ray detector is provided. ,
X is characterized in that the analyzing crystal is driven by giving an offset corresponding to the above difference to the analyzing crystal during wavelength scanning.
Line analyzer.
JP31092186A 1986-12-29 1986-12-29 X-ray analyzer Expired - Lifetime JPH07104297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31092186A JPH07104297B2 (en) 1986-12-29 1986-12-29 X-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31092186A JPH07104297B2 (en) 1986-12-29 1986-12-29 X-ray analyzer

Publications (2)

Publication Number Publication Date
JPS63167250A JPS63167250A (en) 1988-07-11
JPH07104297B2 true JPH07104297B2 (en) 1995-11-13

Family

ID=18010989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31092186A Expired - Lifetime JPH07104297B2 (en) 1986-12-29 1986-12-29 X-ray analyzer

Country Status (1)

Country Link
JP (1) JPH07104297B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240544A (en) * 1988-07-29 1990-02-09 Shimadzu Corp Fluorescence x-ray analysis apparatus
JP4715345B2 (en) * 2005-07-08 2011-07-06 株式会社島津製作所 X-ray analyzer
WO2008004344A1 (en) * 2006-07-05 2008-01-10 Rigaku Industrial Corporation Fluorescent x-ray analyzer

Also Published As

Publication number Publication date
JPS63167250A (en) 1988-07-11

Similar Documents

Publication Publication Date Title
JP3706641B2 (en) X-ray analyzer
TWI388821B (en) X-ray fluorescence spectrometer and x-ray fluorescence analyzing method
EP3835767B1 (en) Control apparatus, system, method, and program
JP2006329821A (en) X-ray diffraction apparatus and measuring method of x-ray diffraction pattern
JPH07104297B2 (en) X-ray analyzer
JP2613513B2 (en) X-ray fluorescence analysis method
US6970241B1 (en) Device for enabling slow and direct measurement of fluorescence polarization
JPH07260570A (en) Spectroscope wavelength calibrating method and device therefor
JP6256152B2 (en) X-ray measuring device
JP2005024403A (en) Double monochromatic type spectrograph
JP2000193616A (en) X-ray fluorescence analytical equipment
JP2008032703A (en) X-ray fluorescence analyzer
US4976541A (en) Automatic atomic-absorption spectrometry method
JP3443047B2 (en) X-ray analyzer
JP3498689B2 (en) Monochromator for monochrome source excitation and X-ray fluorescence analyzer
JP6859869B2 (en) X-ray stress measuring device
JP6704156B1 (en) Polarimetry device with automatic alignment function
JPH0511642Y2 (en)
JP4439984B2 (en) X-ray analysis method and apparatus having optical axis adjustment function
JP3612701B2 (en) X-ray fluorescence analyzer
JP2000009666A (en) X-ray analyzer
JP2005172670A (en) Raman scattering measuring method and its measuring device
JPH04324348A (en) X-ray diffraction apparatus
JPH0634440A (en) Colorimeter
JP3303910B2 (en) Spectrometer calibration or inspection method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term