JPS63167250A - X-ray analyzer - Google Patents

X-ray analyzer

Info

Publication number
JPS63167250A
JPS63167250A JP31092186A JP31092186A JPS63167250A JP S63167250 A JPS63167250 A JP S63167250A JP 31092186 A JP31092186 A JP 31092186A JP 31092186 A JP31092186 A JP 31092186A JP S63167250 A JPS63167250 A JP S63167250A
Authority
JP
Japan
Prior art keywords
ray
crystal
spectroscopic
detector
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31092186A
Other languages
Japanese (ja)
Other versions
JPH07104297B2 (en
Inventor
Hideo Okashita
岡下 英男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31092186A priority Critical patent/JPH07104297B2/en
Publication of JPS63167250A publication Critical patent/JPS63167250A/en
Publication of JPH07104297B2 publication Critical patent/JPH07104297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To execute X-ray spectroscopy with high accuracy without spending considerably long time in adjustment by independently rotating a spectral crystal and X-ray detector and correcting an error quantity by computation. CONSTITUTION:The fluorescent X-ray K which is excited by an X-ray E from an X-ray tube 1 and is released from a sample S is spectrally split by the spectral crystal 2 and the characteristic x-ray T thereof is detected by a detector 4 which is provided with a mechanism rotatable around the center O of an X-ray spectroscope. A spectral crystal base 3 is rotated by a driving device 5 so as to bring the arbitrary spectral crystal to a use position. The entire part of the base 3 and the driving device thereof can be rotated around the center O of the X-ray spectroscope as shown by an arrow. Wavelength scanning by the spectral crystal positioned to the use position, i.e., the center of the X-ray spectroscope is thus executed. A CPU 7 controls the crystal driving device 5 and a detector driving device 6 by using the driving signal from a driving signal generator 9 and reads the rotating angle thereof.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、複数の分光結晶を交換して使用することがで
きる機構を備えたX線分析装置に関する口、従来の技術 複数個(6〜8個)の分光結晶を備えた蛍光X線分析装
置においては通常回転ドラム方式の結晶交換機構が用い
られている。この機構は第2図に示すように、回転ドラ
ム型の分光結晶台3に6〜8個の分光結晶2を取付け、
分光結晶台3を回転させて、任意の一つの分光結晶を使
用位置に位置させるものである。そして、分光結晶台3
とそれを回転させる切換駆動装置(不図示)の全体が。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an X-ray analyzer equipped with a mechanism that allows a plurality of spectroscopic crystals to be exchanged and used. In a fluorescent X-ray analyzer equipped with 8 spectroscopic crystals, a rotating drum-type crystal exchange mechanism is usually used. As shown in Fig. 2, this mechanism has six to eight spectroscopic crystals 2 mounted on a rotating drum-shaped spectroscopic crystal stand 3.
The spectroscopic crystal stand 3 is rotated to position any one spectroscopic crystal at a use position. And spectroscopic crystal stand 3
and the entire switching drive device (not shown) that rotates it.

使用位置にある分光結晶の表面に沿い、表面中心を通る
分光器中心線を軸として回転可能になっており、この回
転によって使用位置にある分光結晶によって分光器の波
長走査を行う。この時XvA検出器4を分光器中心Oを
中心として、分光結晶の回転角θに対して2倍角の2θ
だけ回転させる必要があるが、従来は分光結晶の回転と
検出器の回転とは2倍角伝達機構によって連結し、−個
の波長走査用駆動モータによって駆動し、このモータの
回転量によって波長を検知するようになっていた。
It is rotatable along the surface of the spectroscopic crystal in the use position, about the spectrometer center line passing through the center of the surface, and by this rotation, the spectrometer performs wavelength scanning by the spectrometer in the use position. At this time, the XvA detector 4 is set at 2θ, which is twice the rotation angle θ of the spectroscopic crystal, with the spectrometer center O as the center.
However, conventionally, the rotation of the spectroscopic crystal and the rotation of the detector are connected by a double angle transmission mechanism, driven by - wavelength scanning drive motors, and the wavelength is detected by the amount of rotation of these motors. I was supposed to.

ハ 発明が解決しようとする問題点 分光精度を保つためには、ドラムの機械加工精度、ドラ
ムの回転停止位置の精度1分光結晶をベースに取付ける
精度を夫々1/100度以内にする必要がある。そのた
めに加工、調整、検査に多大の労力を要した。ドラムの
回転軸を分光器の光軸を含む平面上に平行に設けること
で、ドラムの回転停止位置の精度がX線の分光711度
に対する影響を大幅に低減することができる。しかし、
ドラムの機械加工精度と分光結晶をベースに取付ける精
度に関しては、分光精度への影響を簡単に取り除く方法
がない。何れにしても、既知波長のX線を分光すること
により分光結晶の設定位置のずれが発見された時点で位
置調整をする必要があるので、分光結晶ベースと分光結
晶台との間に微調整機構を設けて、調整を行わなければ
ならない為に、多くの時間と労力が必要とされ、また、
装置を完全に調整することは極めて困難であるために、
結晶交換型のX線分析装置は分光精度が良くなかった。
C. Problems to be solved by the invention In order to maintain spectral accuracy, it is necessary to keep the machining accuracy of the drum and the accuracy of the rotation stop position of the drum to within 1/100 degrees, respectively. . This required a great deal of effort in processing, adjusting, and inspecting. By arranging the rotational axis of the drum parallel to the plane containing the optical axis of the spectrometer, the influence of the accuracy of the rotational stop position of the drum on the 711 degree spectrum of X-rays can be significantly reduced. but,
Regarding the machining accuracy of the drum and the accuracy of mounting the spectroscopic crystal on the base, there is no easy way to eliminate the effects on the spectroscopic accuracy. In any case, it is necessary to adjust the position of the spectroscopic crystal when a deviation in the setting position of the spectroscopic crystal is discovered by spectroscopy of X-rays of known wavelengths, so fine adjustments must be made between the spectroscopic crystal base and the spectroscopic crystal stand. It takes a lot of time and effort to set up a mechanism and make adjustments, and
Because it is extremely difficult to perfectly adjust the equipment,
Crystal exchange type X-ray analyzers did not have good spectral accuracy.

本発明は、ドラムの加工精度、結晶交換機構の回転停止
位置の精度7分光結晶をベースに取り付ける精度等が格
別高くない装置を使用し、調整の労力時間を大幅に低減
して、しかも、高いX線の分光精度が得られるようにす
ることを目的とする二1問題点解決のための手段 X線分析装置において、複数の分光結晶をX線分光器中
心位置に交互に設置する結晶交換機構を備え、分光器中
心に位置させた分光結晶をX線分光器中心を中心として
回転させる手段と、X線検出器をX線分光器中心を中心
として回転させる機構とを互いに独立に設けると共に、
分光結晶の回転角とX線検出器の回転位置を検知する手
段を設け、既知元素の特性X線の検出出力が最大になる
分光結晶及びX線検出器の位置と、同分光結晶及びX線
検出器の機構上のX線波長対応位置との差を記憶する手
段を設け、波長走査時分光結晶に上記差だけのオフセッ
トを与えて、分光結晶を駆動するようにした9 ホ0作用 本発明によれば、波長走査において分光結晶と検出器と
を独立に回転制御できるので、較正測定で各分光結晶及
びX線検出器の機構上の所定波長位置とX線検出強度が
最大値を示す最適位置との差を測定すれば、このずれ角
は分光結晶の取付は精度、結晶交換機構の精度等を総合
した分光結晶の位置の誤差を表しているから、CPUに
よりそのずれ角度を考慮にいれて分光結晶を駆動するこ
とで、分光結晶の取付けの微調整分質せず分光結晶の設
置台や検出器の駆動装置の加工精度が格別高くなくても
、最適な設定位置に分光結晶及び精確なX線分光測定が
できるようになった。
The present invention uses equipment that does not have particularly high processing precision of the drum, precision of the rotation stop position of the crystal exchange mechanism, etc. The precision of attaching the 7-minute spectroscopic crystal to the base, etc. is not particularly high, and the labor and time for adjustment are significantly reduced. 21 Means for Solving Problems Aiming to Obtain X-ray Spectroscopy Accuracy In an X-ray analyzer, a crystal exchange mechanism in which a plurality of spectroscopic crystals are alternately installed at the center position of the X-ray spectrometer. a means for rotating a spectroscopic crystal located at the center of the spectrometer around the center of the X-ray spectrometer, and a mechanism for rotating the X-ray detector around the center of the X-ray spectrometer, independently of each other;
A means for detecting the rotation angle of the spectroscopic crystal and the rotational position of the X-ray detector is provided, and the position of the spectroscopic crystal and X-ray detector where the detection output of characteristic X-rays of known elements is maximized, A means is provided for storing the difference between the position corresponding to the X-ray wavelength on the mechanism of the detector, and an offset corresponding to the above difference is applied to the spectroscopic crystal during wavelength scanning to drive the spectroscopic crystal. According to the above, since the rotation of the spectroscopic crystal and the detector can be controlled independently during wavelength scanning, it is possible to perform calibration measurements to find the optimum position where the X-ray detection intensity is the maximum at a predetermined wavelength position on the mechanism of each spectroscopic crystal and X-ray detector. If you measure the difference from the position, this deviation angle represents the error in the position of the spectroscopic crystal, which takes into account the accuracy of the installation of the spectroscopic crystal, the accuracy of the crystal exchange mechanism, etc., so the CPU takes this deviation angle into account. By driving the spectroscopic crystal at the optimal setting position, the spectroscopic crystal can be precisely set at the optimal setting position without having to make fine adjustments to the installation of the spectroscopic crystal. X-ray spectroscopic measurements are now possible.

へ、実施例 第1図及び第2図に本発明の一実施例を示す。To, Example An embodiment of the present invention is shown in FIGS. 1 and 2. FIG.

第2図において、Sは試料、E i、t X線、KはX
線Eによって励起されて試料Sから放出される蛍光X線
、1はX線管、2は蛍光X線Kを分光するための分光結
晶、3は複数の分光結晶2を設置した回転可能な分光結
晶台、4は分光結晶2で分光された特性X線Tを検出す
る検出器で、X線分光器中心0を中心に回転可能な機構
を備えている。分光結晶台3は不図示の駆動装置で回転
せしめられ、任意の分光結晶を使用位置に位置させるよ
うになっている0分光結晶台3及びその駆動装置の全体
をX線分光器の中心0を中心に矢印のように回転できる
ようになっており、この回転によって、使用位置即ちX
線分光器中心に位置せしめられた分光結晶による波長走
査が行われる。第1図で5は上述した波長走査のための
分光結晶回転駆動装置である。6は検出器駆動装置で検
出器4を0点を中心に回転させる。7はCPUで駆動信
号発生器って発生させた駆動信号を用いて、結晶駆動装
置5及び検出器駆動装置6を制御すると共にそれらの回
転角を読取っている。8はCPU7で読み取った分光結
晶及び検出器4の回転角とか、これらの回転角から換算
したX線波長を表示する角度表示装置である。
In Figure 2, S is the sample, E i,t X-ray, K is X
Fluorescent X-rays excited by the ray E and emitted from the sample S, 1 is an X-ray tube, 2 is a spectroscopic crystal for dispersing the fluorescent X-rays K, and 3 is a rotatable spectrometer in which a plurality of spectroscopic crystals 2 are installed. A crystal stand 4 is a detector for detecting the characteristic X-rays T separated by the spectroscopic crystal 2, and is equipped with a mechanism capable of rotating around the X-ray spectrometer center 0. The spectroscopic crystal stand 3 is rotated by a drive device (not shown), and the entire 0-spectroscopic crystal stand 3 and its drive device are rotated by a drive device (not shown) to position any spectrometer crystal at the use position. It can be rotated in the direction of the arrow in the center, and by this rotation, the use position, that is,
Wavelength scanning is performed by a spectroscopic crystal located at the center of the line spectrometer. In FIG. 1, reference numeral 5 denotes the above-mentioned spectroscopic crystal rotation drive device for wavelength scanning. A detector driving device 6 rotates the detector 4 around the zero point. Reference numeral 7 uses a drive signal generated by a drive signal generator in the CPU to control the crystal drive device 5 and the detector drive device 6 and read their rotation angles. 8 is an angle display device that displays the rotation angles of the spectroscopic crystal and the detector 4 read by the CPU 7, and the X-ray wavelength converted from these rotation angles.

以上の構成で分光結晶台3に設置している分光結晶2例
えばLiF(200>面を使用位置に位置させ、CPU
によってその角位置θをθ=22.515°−0,3°
の位置にセットし、この結晶の使用波長範囲のほぼ中間
に当たるCuの特性X線2θ=45.03°のスペクト
ルを、2θ±0.3°の角度範囲で検出器駆動装置6を
駆動させて検出し、そのX線強度の最大となる検出器6
の角位置をCPU7に記憶させる。次に分光結晶2を上
記位置から0.05°傾けて上記と同じ測定を行う、同
様にして分光結晶2の傾きθがθ=22.515°+0
.3°になる迄測定を繰返す。その測定結果を基に、毎
回の測定における検出出力の最大値を連ねる曲線を作る
と第3図のようになる。この曲線からX線検出出力が最
大になる分光結晶の角位置及び検出器の角位置を求める
With the above configuration, the spectroscopic crystal 2 installed on the spectroscopic crystal stand 3, for example LiF (200> plane, is located at the use position, and the CPU
The angular position θ is determined by θ=22.515°−0.3°
The detector driving device 6 is driven to emit the characteristic X-ray spectrum of Cu, 2θ = 45.03°, which is approximately in the middle of the wavelength range used for this crystal, in the angular range of 2θ ± 0.3°. Detector 6 that detects and maximizes the X-ray intensity
The corner position of is stored in the CPU 7. Next, the spectroscopic crystal 2 is tilted 0.05° from the above position and the same measurement as above is performed.In the same way, the inclination θ of the spectroscopic crystal 2 is θ=22.515°+0
.. Repeat the measurement until the angle reaches 3°. Based on the measurement results, a curve that connects the maximum values of the detection output in each measurement is created as shown in FIG. 3. From this curve, the angular position of the spectroscopic crystal and the angular position of the detector at which the X-ray detection output is maximized are determined.

これは人間が作図によって行ってもよいが、適当なアル
コリズムを設定してCPUに行わせればよい、このよう
にして分光結晶の設定角度と検出器4の設定角度を求め
、機構上の夫々の理論位置くθ=22.515°、2θ
=45.03’ )とのずれを算出し、そのずれをCP
U7に記憶させる、このずれは分光結晶の位置の誤差を
表す、従って、その分光結晶2の設定時には機構上の波
長位置からそのずれだけ補正した位置を正しい位置とす
る。同じように他の分光結晶2においても、較正測定を
行う。
This can be done by a human by drawing, or by setting an appropriate algorithm and having the CPU do it.In this way, the set angle of the spectroscopic crystal and the set angle of the detector 4 are determined, and each mechanical Theoretical position of θ=22.515°, 2θ
=45.03'), and calculate the deviation from CP
This deviation, which is stored in U7, represents an error in the position of the spectroscopic crystal. Therefore, when setting the spectroscopic crystal 2, the correct position is set by correcting the deviation from the mechanical wavelength position. Similarly, calibration measurements are performed on other spectroscopic crystals 2 as well.

ト、効果 本発明によれば、分光結晶の回転とX線検出器の回転と
を独立に行い、構造上の誤差を構造上の調整で補正する
のでなく、誤差量を記憶しておき、演算で補正するよう
にしたので、加工精度が格別高くない分光結晶の設置台
や検出器の駆動装置を使用しても、調整に多大な時間を
費やすことなく、精度のよいX線分光測定ができ、X線
分析装置の低価格化1分光精度の向上を計ることができ
る。
G. Effects According to the present invention, the rotation of the spectroscopic crystal and the rotation of the X-ray detector are performed independently, and instead of correcting structural errors by structural adjustment, the amount of error is memorized and calculated. Since the correction is now made with , it is possible to reduce the price of the X-ray analyzer and improve the spectral accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は本実
施例の構成図、第3図は較正測定の結果を示すグラフで
ある。 1・・・X線管、2・・・分光結晶、3・・・分光結晶
台、4・・・検出器、5・・・分光結晶駆動装置、6・
・・検出器駆動装置、7・・・CPU、8・・・角度表
示装置、9・・・駆動信号発生器、E・・・X線、S・
・・試料、K・・・蛍光X線、T・・・特性X線。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of the embodiment, and FIG. 3 is a graph showing the results of calibration measurements. DESCRIPTION OF SYMBOLS 1... X-ray tube, 2... Spectroscopic crystal, 3... Spectroscopic crystal stand, 4... Detector, 5... Spectroscopic crystal drive device, 6...
...Detector drive device, 7...CPU, 8...Angle display device, 9...Drive signal generator, E...X-ray, S...
...Sample, K...Fluorescent X-ray, T...Characteristic X-ray.

Claims (1)

【特許請求の範囲】[Claims] 複数の分光結晶をX線分光器中心位置に交互に設置する
結晶交換機構を備え、分光器中心に位置させた分光結晶
をX線分光器中心を中心として回転させる手段と、X線
検出器をX線分光器中心を中心として回転させる機構と
を互いに独立に設けると共に、分光結晶の回転角とX線
検出器の回転位置を検知する手段を設け、既知元素の特
性X線の検出出力が最大になる分光結晶及びX線検出器
の位置と、同分光結晶及びX線検出器の機構上のX線波
長対応位置との差を記憶する手段を設け、波長走査時分
光結晶に上記差だけのオフセットを与えて、分光結晶を
駆動するようにしたことを特徴とするX線分析装置。
It is equipped with a crystal exchange mechanism that alternately places a plurality of spectroscopic crystals at the center of the X-ray spectrometer, a means for rotating the spectrometer crystal positioned at the center of the spectrometer around the center of the X-ray spectrometer, and an X-ray detector. A mechanism for rotating the X-ray spectrometer around the center is provided independently from each other, and a means for detecting the rotation angle of the spectroscopic crystal and the rotation position of the X-ray detector is provided to maximize the detection output of characteristic X-rays of known elements. A means for storing the difference between the position of the spectroscopic crystal and the X-ray detector and the position corresponding to the X-ray wavelength on the mechanism of the spectroscopic crystal and the X-ray detector is provided, and when scanning the wavelength, the spectroscopic crystal is An X-ray analysis device characterized in that a spectroscopic crystal is driven by applying an offset.
JP31092186A 1986-12-29 1986-12-29 X-ray analyzer Expired - Lifetime JPH07104297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31092186A JPH07104297B2 (en) 1986-12-29 1986-12-29 X-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31092186A JPH07104297B2 (en) 1986-12-29 1986-12-29 X-ray analyzer

Publications (2)

Publication Number Publication Date
JPS63167250A true JPS63167250A (en) 1988-07-11
JPH07104297B2 JPH07104297B2 (en) 1995-11-13

Family

ID=18010989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31092186A Expired - Lifetime JPH07104297B2 (en) 1986-12-29 1986-12-29 X-ray analyzer

Country Status (1)

Country Link
JP (1) JPH07104297B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240544A (en) * 1988-07-29 1990-02-09 Shimadzu Corp Fluorescence x-ray analysis apparatus
JP2007017350A (en) * 2005-07-08 2007-01-25 Shimadzu Corp X-ray analyzer
WO2008004344A1 (en) * 2006-07-05 2008-01-10 Rigaku Industrial Corporation Fluorescent x-ray analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240544A (en) * 1988-07-29 1990-02-09 Shimadzu Corp Fluorescence x-ray analysis apparatus
JP2007017350A (en) * 2005-07-08 2007-01-25 Shimadzu Corp X-ray analyzer
WO2008004344A1 (en) * 2006-07-05 2008-01-10 Rigaku Industrial Corporation Fluorescent x-ray analyzer

Also Published As

Publication number Publication date
JPH07104297B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US5005977A (en) Polarimeter
JP2007127567A (en) Polarization direction measurement device
EP3835767B1 (en) Control apparatus, system, method, and program
JPS63167250A (en) X-ray analyzer
JP2006329821A (en) X-ray diffraction apparatus and measuring method of x-ray diffraction pattern
EP0536985B1 (en) A polarimeter
US4167338A (en) Method and apparatus for determining the quantity ratio of two components of a multi-substance mixture
JP3531098B2 (en) X-ray fluorescence analyzer
RU2249689C2 (en) Automated device for calibrating inclinometers (variants)
US8922773B2 (en) System and method for error correction in a polarimeter
US4752945A (en) Double crystal X-ray spectrometer
JP2780988B2 (en) Spectropolarimeter
JPH0552657A (en) Polarization measurement equipment
JP3443047B2 (en) X-ray analyzer
SU1144040A1 (en) Diffractometer adjustment method
SU918827A1 (en) X-ray spectrometer
EP0222442B1 (en) Improved double crystal x-ray spectrometer
JP6859869B2 (en) X-ray stress measuring device
JP3113708B2 (en) Optical transmission characteristics measurement device
JPS59182324A (en) Polarimeter
JPH08122154A (en) Polarization measuring instrument
SU1366878A1 (en) Ellipsometric method of checking quality of polishing of parts
SU1427263A1 (en) X-ray difractometer
SU1041918A1 (en) Diffractometer primary beam adjusting method
JPH06241987A (en) Birefringence measuring device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term