JPH0696843A - Temperature self-control conductive composition, temperature self-control surface heating element and temperature self-control pipe heater - Google Patents

Temperature self-control conductive composition, temperature self-control surface heating element and temperature self-control pipe heater

Info

Publication number
JPH0696843A
JPH0696843A JP5142495A JP14249593A JPH0696843A JP H0696843 A JPH0696843 A JP H0696843A JP 5142495 A JP5142495 A JP 5142495A JP 14249593 A JP14249593 A JP 14249593A JP H0696843 A JPH0696843 A JP H0696843A
Authority
JP
Japan
Prior art keywords
heating element
conductive composition
temperature
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5142495A
Other languages
Japanese (ja)
Other versions
JP2777961B2 (en
Inventor
Hiroshi Ichikawa
宏 市川
Akira Yokoyama
昭 横山
Takanobu Kawai
隆伸 河井
Takashi Wakizaka
敬 脇阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP5142495A priority Critical patent/JP2777961B2/en
Publication of JPH0696843A publication Critical patent/JPH0696843A/en
Application granted granted Critical
Publication of JP2777961B2 publication Critical patent/JP2777961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To provide a temperature self-control heating element of high perfor mance by mixing a specific ratio of spherical of specific average grain size or expansion graphite power, with a varnish-like mixture containing a thermo plastic resin and carbon black. CONSTITUTION:Spherical carbon of average grain size of 2-30mum or expansion graphite power of average diameter of no more than 5000mum, is mixed with a varnish-like mixture containing a thermoplastic resin and carbon black, and a conductive composition is provided. A miximg ratio of both components is 5-95 weight parts for spherical carbon to 100 weight parts of the varnish-like mixture. Silver electrodes 4 for supplying power to a heating element are provided on an insulated substrate 3 consisting of a film and a non-woven fabric and the like, at two points, and the heating element 5 consisting of conductive composition is formed thereof by screen printing or spraying, and a surface heating element body is formed. A temperature self-control heating element body of high performance, which has excellent uniform heating characteristic as well as wide temperature control range, is thus provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は温度自己制御性導電性組
成物、温度自己制御性面状発熱体および温度自己制御性
パイプ状ヒーターに関する。より詳しくは、本発明は、
温度自己制御性能を有する発熱素子、特に形状が任意で
フレキシビリティに富む軽量薄型の面状発熱体の製造に
有用な導電性組成物、並びに該導電性組成物を使用して
得られる温度自己制御性面状発熱体並びに温度自己制御
性パイプ状ヒーターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature self-controlling conductive composition, a temperature self-controlling sheet heating element, and a temperature self-controlling pipe heater. More specifically, the present invention provides
A heat-generating element having a temperature self-controlling property, in particular, a conductive composition useful for producing a light and thin planar heating element having an arbitrary shape and rich flexibility, and temperature self-controlling obtained using the conductive composition The present invention relates to a flexible sheet heating element and a pipe-shaped heater capable of controlling temperature.

【0002】[0002]

【従来の技術】従来から軽量薄型発熱素子としては、金
属線、金属箔等と樹脂との複合体が一般的に知られてい
るが、それらの多くは温度を自己制御できないため、サ
ーモスタット、ヒューズ、配線内電気抵抗器等と併せて
使用する必要があった。
2. Description of the Related Art Conventionally, as a lightweight and thin heating element, a composite of a metal wire, a metal foil, etc. and a resin has been generally known. However, since most of them cannot control the temperature by themselves, a thermostat, a fuse, etc. , It was necessary to use it together with the electrical resistor in the wiring.

【0003】そのため、近年、上記のような付加的素子
を必要としない、温度を自己制御可能な発熱素子が着目
され、そのような発熱素子として特定温度を超えると抵
抗が急激に増加して温度が自己制御される導電性組成物
をベース上に被覆した発熱素子が開発されている。かか
る導電性組成物としては、カーボンブラックと樹脂との
組成物が従来から知られている(例えば、特公昭61−
35223号公報、特開昭60−257091号公報、
特開昭61−39475号公報)。
Therefore, in recent years, attention has been paid to a heat-generating element capable of self-controlling the temperature which does not require the above-mentioned additional element. When such a heat-generating element exceeds a specific temperature, the resistance sharply increases and the temperature rises. A heating element has been developed in which a base is coated with a conductive composition whose self-control is performed. As such a conductive composition, a composition of carbon black and a resin has been conventionally known (for example, Japanese Patent Publication No. 61-
35223, JP-A-60-257091,
JP-A-61-39475).

【0004】しかしながら、カーボンブラックは本来樹
脂に対して分散しにくい性質を有しており、そのため従
来公知の導電性組成物は抵抗値の低減に限界があり、ま
た発熱体素子のベースとして通常使用されるフィルム、
不織布、箔等との密着性が充分ではなかった。特に、上
記従来の導電性組成物を用いて薄型の発熱素子を得るた
めには使用できる樹脂が極めて限定されてしまい、それ
によって制御できる温度領域の幅がかなり限定されてい
た。また、上記従来公知の導電性組成物は、温度自己制
御領域が低温領域に限られていたり、ヒートサイクルに
よるヒステリシスが充分に解消できないといった不都合
をも有するものであった。
However, carbon black originally has a property that it is difficult to disperse in a resin, and therefore the conventionally known conductive composition has a limit in reducing the resistance value and is usually used as a base of a heating element. Film,
Adhesion to non-woven fabric, foil, etc. was not sufficient. In particular, the resin that can be used to obtain a thin heating element using the above conventional conductive composition is extremely limited, and the width of the temperature range that can be controlled is considerably limited. In addition, the above-mentioned conventionally known conductive compositions also have the disadvantages that the temperature self-control region is limited to the low temperature region and that hysteresis due to heat cycle cannot be sufficiently eliminated.

【0005】また、特開昭61−181859号公報お
よび特開昭61−181860号公報には、樹脂、カー
ボンブラックおよび黒鉛からなる導電性組成物が開示さ
れている。しかしながら、従来使用された黒鉛は天然黒
鉛もしくは人造黒鉛であり、それらは鱗片状、針状、板
状等の形状であって、球状とは程遠い形状のものであっ
た。かかる従来の導電性組成物においては上記黒鉛の分
散が不均一となり易く、面状発熱体とした場合に発熱が
不均一で安定性に欠け、さらに発熱体がベースから剥離
し易いといった不都合があった。
Further, JP-A-61-181859 and JP-A-61-181860 disclose a conductive composition comprising a resin, carbon black and graphite. However, conventionally used graphite is natural graphite or artificial graphite, and they have a scaly shape, a needle shape, a plate shape, or the like, which is far from a spherical shape. In such a conventional conductive composition, there is a disadvantage that the graphite is apt to be non-uniformly dispersed, and when a planar heating element is used, the heat generation is non-uniform and lacks stability, and the heating element is easily separated from the base. It was

【0006】更に、従来公知の温度自己制御性を有する
発熱体は概ね定格温度が30〜120℃と低温であり、
また保持温度に到達するまでの昇温時間が5〜30分と
遅いため、一般的に用途が融雪、防曇、床暖房などに限
られていた。また、従来公知の発熱体においては全面の
温度分布に5〜20℃の差があり、均熱性にも劣ってい
た。更に、従来公知の発熱体は形状も厚さ0.5mm以
上のフィルム状や厚さ数mm以上のゴムシート状のもの
に限られており、厚さが薄いシート状のものおよびパイ
プ状等の異形物のものは得られなかった。
Further, a conventionally known heating element having temperature self-controlling property has a low rated temperature of about 30 to 120 ° C.,
In addition, since the temperature rising time to reach the holding temperature is as slow as 5 to 30 minutes, the application is generally limited to snow melting, anti-fog, floor heating and the like. Further, in the conventionally known heating element, the temperature distribution on the entire surface has a difference of 5 to 20 ° C., and the uniform heating property is poor. Further, the conventionally known heating element is limited to a film having a thickness of 0.5 mm or more and a rubber sheet having a thickness of several mm or more, such as a thin sheet and a pipe. No variant was obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記従来技術
の有する課題に鑑みてなされたものであり、熱可塑性樹
脂の種類にあまり制限されることなくベース上に印刷等
の簡易な方法で強固でかつ均質な薄膜(面状発熱体)を
容易に形成でき、しかもヒートサイクルによるヒステリ
シスが極めて少ない高性能の発熱体を得ることができる
導電性組成物を提供することを目的とする。また、本発
明は、30〜250℃という広い温度領域に亙って様々
な自己制御温度を有する発熱素子を容易に得ることが可
能で、均熱性に優れ、さらに保持温度までの到達時間が
短い発熱体を得ることができる導電性組成物を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and is not limited by the type of the thermoplastic resin, and can be easily printed on the base by a simple method such as printing. It is an object of the present invention to provide a conductive composition capable of easily forming a uniform thin film (planar heating element) and obtaining a high-performance heating element with extremely little hysteresis due to heat cycle. Further, according to the present invention, it is possible to easily obtain a heat-generating element having various self-controlling temperatures over a wide temperature range of 30 to 250 ° C., which is excellent in soaking property and has a short reaching time to the holding temperature. It is an object of the present invention to provide a conductive composition capable of obtaining a heating element.

【0008】更に、本発明は、上述の優れた諸特性を有
する厚さの薄いシート状の温度自己制御性面状発熱体、
さらに従来は得ることが困難であったパイプ状の温度自
己制御性発熱体を有するパイプ状ヒーターを提供するこ
とを目的とする。
The present invention further provides a thin sheet-shaped temperature self-controlling sheet heating element having the above-mentioned various characteristics,
It is another object of the present invention to provide a pipe-shaped heater having a pipe-shaped temperature self-controlling heating element that has been difficult to obtain conventionally.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究した結果、特定形状の球状カーボン
および/または膨張黒鉛粉末を熱可塑性樹脂およびカー
ボンブラックを含有するワニス状混合物に混入すること
によって上記課題を解決する導電性組成物が得られるこ
とを見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies aimed at achieving the above object, the present inventors have found that spherical carbon and / or expanded graphite powder having a specific shape is converted into a varnish-like mixture containing a thermoplastic resin and carbon black. The inventors have found that a conductive composition that solves the above problems can be obtained by mixing, and have reached the present invention.

【0010】すなわち本発明の温度自己制御性導電性組
成物は、(A)平均粒径2〜30μmの球状カーボンお
よび平均直径5000μm以下の膨張黒鉛粉末から選ば
れる少なくとも一種と、(B)熱可塑性樹脂およびカー
ボンブラックを含有するワニス状混合物とを、(B)成
分100重量部に対して(A)成分5〜95重量部の比
率で含有することを特徴とするものである。
That is, the temperature self-controlling conductive composition of the present invention comprises (A) at least one selected from spherical carbon having an average particle diameter of 2 to 30 μm and expanded graphite powder having an average diameter of 5000 μm or less, and (B) a thermoplastic resin. A varnish-like mixture containing a resin and carbon black is contained at a ratio of 5 to 95 parts by weight of the component (A) with respect to 100 parts by weight of the component (B).

【0011】以下、先ず本発明の温度自己制御性導電性
組成物について詳細に説明する。
First, the temperature self-controlling conductive composition of the present invention will be described in detail below.

【0012】本発明にかかる球状カーボンは、従来から
使用されてきたカーボンブラックやいわゆる人造黒鉛と
は形状や大きさが全く別異なものであり、本発明ではそ
の中でも平均粒径が2〜30μm、好ましくは5〜10
μmのものを使用する。平均粒径が2μm未満のものは
工業的に製造することが極めて難しく、また30μmを
超えるものを使用すると導電性組成物がベース等に平滑
に被覆できなくなり、不都合である。
The spherical carbon according to the present invention is completely different in shape and size from conventionally used carbon black or so-called artificial graphite, and in the present invention, among them, the average particle diameter is 2 to 30 μm. Preferably 5-10
Use the one with μm. If the average particle size is less than 2 μm, it is extremely difficult to industrially manufacture, and if the average particle size is more than 30 μm, the conductive composition cannot be smoothly coated on the base or the like, which is inconvenient.

【0013】このような球状カーボンは、前記人造黒鉛
等とは製法も相違しており、主に下記の方法のいずれか
によって得られる。
Such spherical carbon is different from the above-mentioned artificial graphite in the manufacturing method, and is mainly obtained by any of the following methods.

【0014】すなわち、(イ)球状の不溶融性フェノー
ル樹脂を1500〜2200℃で熱処理して炭化する方
法、(ロ)球状の不溶融性フェノール樹脂の表面にカー
ボン微粉体および/または加熱により炭化する材料を被
覆せしめた後に1500〜2200℃で熱処理して炭化
する方法、あるいは(ハ)バインダーとして作用し、加
熱により炭化する材料100重量%に対し好ましくは5
0〜130重量%のカーボン微粉体を混合し、造粒成形
した後に1500〜2200℃で熱処理して炭化する方
法であり、特に(ロ)の方法が好ましい。上記各方法に
おける諸条件に対応して、球状カーボンが得られる。
That is, (a) a method of carbonizing a spherical infusible phenol resin by heat treatment at 1500 to 2200 ° C., and (b) carbonization by carbon fine powder and / or heating on the surface of the spherical infusible phenol resin. The method of carbonizing by heating at 1500 to 2200 ° C. after coating the material to be coated, or (c) the material which acts as a binder and is carbonized by heating is preferably 5
This is a method of mixing 0 to 130% by weight of carbon fine powder, granulating, and then heat-treating at 1500 to 2200 ° C. to carbonize, and the method (b) is particularly preferable. Spherical carbon is obtained according to the conditions in each of the above methods.

【0015】上記不溶融性フェノール樹脂とは上記熱処
理温度でも溶融しないフェノール樹脂であり、例えばユ
ニチカ株式会社製のユニベックスCタイプもしくはUA
タイプフェノール樹脂、あるいは鐘紡株式会社製のベル
パールRタイプフェノール樹脂が好ましいものとして挙
げられる。上記カーボン微粉体としては平均粒径が12
〜40nmのものが好ましく、例えばカーボンブラック
が挙げられる。上記の加熱により炭化する材料として
は、上記熱処理温度で炭化する合成樹脂(例えばユニチ
カ株式会社製のユニベックスSタイプもしくはNタイプ
フェノール樹脂、鐘紡株式会社製のベルパールSタイプ
フェノール樹脂等の溶融性フェノール樹脂)、あるいは
上記熱処理温度で炭化するピッチ類が好ましいものとし
て挙げられる。
The non-melting phenolic resin is a phenolic resin which does not melt even at the heat treatment temperature, and is, for example, Unitex C type Univex C type or UA.
Type phenol resin or Bell Pearl R type phenol resin manufactured by Kanebo Co., Ltd. is preferred. The carbon fine powder has an average particle size of 12
It is preferably about 40 to 40 nm, and examples thereof include carbon black. As the material carbonized by the above heating, a synthetic resin carbonized at the heat treatment temperature (for example, a meltable phenolic resin such as Univex S type or N type phenol resin manufactured by Unitika Ltd., Bellpearl S type phenol resin manufactured by Kanebo Ltd.) ), Or pitches that are carbonized at the above heat treatment temperature are preferred.

【0016】上記各方法における炭化処理は非酸化性雰
囲気中で通常行なわれる。また、上記(ロ)の方法にお
ける被覆方法としては、カーボン微粉体をメカノケミカ
ル法により樹脂表面に付着させる方法、あるいは上記の
加熱により炭化する材料を単独でもしくはカーボン微粉
体との混合物として樹脂表面に被覆する方法が好まし
い。
The carbonization treatment in each of the above methods is usually performed in a non-oxidizing atmosphere. In addition, as the coating method in the above method (b), a method of adhering carbon fine powder to the resin surface by a mechanochemical method, or a resin surface that is carbonized by the above heating alone or as a mixture with carbon fine powder The method of coating with is preferable.

【0017】本発明にかかる膨張黒鉛粉末も、従来から
使用されてきたカーボンブラックやいわゆる人造黒鉛と
は全く別異なものであり、本発明ではその中でも平均直
径が5000μm以下、好ましくは2〜5000μmの
ものを使用する。平均粒径が2μm未満のものを使用し
ても充分な温度自己制御性能を有しかつ再現性の良い発
熱素子は得られない傾向にあり、他方、5000μmを
超えるものを使用すると導電性組成物がベース等に平滑
に被覆できなくなり、不都合である。また、本発明にお
いては、C軸方向膨張率が少なくとも50倍以上の膨張
黒鉛を使用することが好ましい。C軸方向膨張率が50
倍未満のものを使用して得た導電性組成物はベース等に
平滑に被覆できなくなる傾向があるからである。
The expanded graphite powder according to the present invention is also completely different from carbon black and so-called artificial graphite which have been conventionally used. In the present invention, among them, the average diameter is 5000 μm or less, preferably 2 to 5000 μm. Use one. Even if an average particle size of less than 2 μm is used, a heating element having sufficient temperature self-control performance and good reproducibility tends to be unobtainable. On the other hand, if an average particle size of more than 5000 μm is used, a conductive composition is obtained. However, it is not possible to coat the base and the like smoothly. Further, in the present invention, it is preferable to use expanded graphite having a C-axis direction expansion coefficient of at least 50 times or more. C-axis expansion rate is 50
This is because the conductive composition obtained by using less than twice the amount tends to be unable to smoothly coat the base or the like.

【0018】このような膨張黒鉛粉末は主に下記の方法
によって得られる。すなわち、天然黒鉛、キッシュ黒
鉛、熱分解黒鉛等の層状結晶構造を有する黒鉛を硫酸、
硝酸、塩素酸等の強酸化剤に浸漬して層間化合物を形成
せしめ、必要に応じて水洗等した後、非酸化性雰囲気下
で加熱(好ましくは1000℃以上)する。そして、得
られた膨張黒鉛を必要に応じて粉砕、整粒等することに
よって平均直径が5000μm以下の膨張黒鉛粉末が得
られる。
Such expanded graphite powder is mainly obtained by the following method. That is, natural graphite, quiche graphite, graphite having a layered crystal structure such as pyrolytic graphite is sulfuric acid,
It is immersed in a strong oxidizing agent such as nitric acid or chloric acid to form an intercalation compound, washed with water if necessary, and then heated (preferably 1000 ° C. or higher) in a non-oxidizing atmosphere. Then, the obtained expanded graphite is pulverized and sized as necessary to obtain expanded graphite powder having an average diameter of 5000 μm or less.

【0019】本発明においては、上述の球状カーボンま
たは膨張黒鉛粉末のうちのいずれか一種を使用してもよ
く、またそれらを組み合わせて使用してもよい(以下、
(A)成分という)。
In the present invention, any one of the above-mentioned spherical carbon or expanded graphite powder may be used, or they may be used in combination (hereinafter,
(It is called component (A)).

【0020】上記(A)成分と共に本発明の導電性組成
物に含有されるワニス状混合物(以下、(B)成分とい
う)は、熱可塑性樹脂およびカーボンブラックを含有す
るものである。
The varnish-like mixture (hereinafter referred to as the component (B)) contained in the conductive composition of the present invention together with the component (A) contains a thermoplastic resin and carbon black.

【0021】上記熱可塑性樹脂としては種々のものが使
用可能であり、例えばポリカルボシラン、ケイ素樹脂、
ビスマレイミド−トリアジン樹脂、ポリウレタン樹脂お
よびポリエステル樹脂から選ばれる少なくとも一種が好
ましいものとして挙げられ、特に好ましくはポリカルボ
シランとケイ素樹脂との混合物、あるいはケイ素樹脂で
ある。
Various kinds of thermoplastic resins can be used, for example, polycarbosilane, silicon resin,
At least one selected from a bismaleimide-triazine resin, a polyurethane resin and a polyester resin is preferred, and a mixture of polycarbosilane and a silicone resin or a silicone resin is particularly preferred.

【0022】本発明に使用可能なポリカルボシランとし
ては、分子量(MN)が500〜5000のものが好ま
しい。分子量が500未満では粘度が低く混練、三本ロ
ール練が困難となる傾向にあり、また硬化時にガス発生
を起こす等の問題が生じる恐れがある。他方、分子量が
5000を超えると逆に粘度が高く、溶剤に溶けにくく
なってワニス化が困難となる傾向にあり、ワニス化がで
きても成膜性に劣るからである。かかるポリカルボシラ
ンはケイ素樹脂と混合して使用するのが好ましく、混合
樹脂中のポリカルボシランの含有量が70〜90wt%
であることが好ましい。ポリカルボシランの含有量が7
0wt%未満では経時変化を起こしたり180℃以上の
温度での使用が困難となる傾向にあり、他方、90wt
%を超えると印刷性、密着性及び屈曲性に劣る傾向にあ
るからである。
The polycarbosilane usable in the present invention preferably has a molecular weight (MN) of 500 to 5,000. If the molecular weight is less than 500, the viscosity is low and kneading and three-roll kneading tend to be difficult, and there is a possibility that problems such as gas generation during curing may occur. On the other hand, when the molecular weight is more than 5,000, the viscosity is high, and it tends to be difficult to dissolve in a solvent to make varnish difficult, and the film forming property is poor even if varnishing is possible. Such polycarbosilane is preferably used by mixing with a silicon resin, and the content of polycarbosilane in the mixed resin is 70 to 90 wt%.
Is preferred. The content of polycarbosilane is 7
If it is less than 0 wt%, it tends to change over time or be difficult to use at a temperature of 180 ° C or higher, while 90 wt%
This is because if it exceeds%, the printability, adhesion and flexibility tend to be poor.

【0023】本発明にかかるワニス状混合物の必須成分
であるカーボンブラックとしては、ストラクチャーの良
く発達したファーネスブラック、アセチレンブラックを
使用すると、少ない添加量で電気抵抗値を低減できるの
で好ましい。
As carbon black which is an essential component of the varnish mixture according to the present invention, it is preferable to use furnace black or acetylene black having a well-developed structure because the electrical resistance value can be reduced with a small addition amount.

【0024】さらに、本発明にかかるワニス状混合物に
溶剤を任意に添加してもよく、例えばダイアナソルベン
トNo.2(出光興産(株)製)等のパラフィン系溶
剤、酢酸カルビトール、ジメチルホルムアミドおよびγ
−ブチルラクトンから選ばれる少なくとも一種が好まし
く使用される。
Further, a solvent may be optionally added to the varnish mixture according to the present invention. For example, Diana Solvent No. 2 (manufactured by Idemitsu Kosan Co., Ltd.), paraffinic solvent, carbitol acetate, dimethylformamide and γ
At least one selected from -butyl lactone is preferably used.

【0025】本発明の導電性組成物にあっては上記成分
のみでも充分な分散性が得られるが、さらに分散性を向
上させるために金属石けん、非イオン性界面活性剤等の
分散剤を任意に添加してもよい。
In the electroconductive composition of the present invention, sufficient dispersibility can be obtained only with the above components, but a dispersant such as a metallic soap or a nonionic surfactant may be optionally added to further improve the dispersibility. May be added to.

【0026】本発明で使用するワニス状混合物は、前記
熱可塑性樹脂(溶剤を含有する場合は、熱可塑性樹脂と
溶剤との合計量)を90〜99重量%、前記カーボンブ
ラック(分散剤を含有する場合は、カーボンブラックと
分散剤との合計量)を1〜10重量%含有することが好
ましい。ワニス状混合物中、カーボンブラックが上記範
囲より高いと分散が充分になされない傾向にあり、他
方、上記範囲より少ないと本発明の効果を呈さない傾向
にある。
The varnish mixture used in the present invention contains 90 to 99% by weight of the above-mentioned thermoplastic resin (when the solvent is contained, the total amount of the thermoplastic resin and the solvent), the above-mentioned carbon black (containing the dispersant. In this case, the total amount of carbon black and dispersant) is preferably 1 to 10% by weight. In the varnish-like mixture, if the carbon black is higher than the above range, the dispersion tends to be insufficient, whereas if it is less than the above range, the effect of the present invention tends not to be exhibited.

【0027】本発明の導電性組成物においては、上記
(B)成分100重量部に対して前記(A)成分を5〜
95重量部、好ましくは5〜92重量部の比率で含有す
る必要がある。(A)成分の含量が5重量部未満では、
面状発熱体として所望される抵抗値が得られず、また均
一な発熱体を得ることができない。他方、(A)成分の
含量が95重量部を超えると、(A)成分が均一に分散
しないばかりでなく、ベースに対する密着性が低下し、
発熱体が剥離し易くなる。
In the conductive composition of the present invention, the component (A) is added in an amount of 5 to 100 parts by weight of the component (B).
The content must be 95 parts by weight, preferably 5 to 92 parts by weight. When the content of the component (A) is less than 5 parts by weight,
It is not possible to obtain a desired resistance value as a planar heating element, and it is not possible to obtain a uniform heating element. On the other hand, when the content of the component (A) exceeds 95 parts by weight, not only the component (A) does not disperse uniformly, but the adhesion to the base decreases,
The heating element is easily peeled off.

【0028】本発明の導電性組成物は上記(A)成分お
よび(B)成分を上記範囲内の配合量で適宜混合するこ
とによって得られ、その際の混合方法としてはロール混
練法が好ましい。
The conductive composition of the present invention can be obtained by appropriately mixing the above-mentioned components (A) and (B) in the compounding amounts within the above range, and the mixing method at that time is preferably a roll kneading method.

【0029】上記本発明の導電性組成物においては、そ
の組成を上記本発明の範囲内で適宜選択することによっ
て、その固有抵抗および自己制御可能な温度が設定され
る。例えば、カーボンブラックや球状カーボン等の含量
を増加または減少させることによって固有抵抗値を調節
できる。また、熱可塑性樹脂や溶剤の種類および含量を
変えることによって、抵抗値が急激に増加する温度、す
なわち導電性部材周囲の樹脂が部分的に溶融して導電性
部材間の導通を遮断する温度、を調節することができ
る。しかし、本発明の導電性組成物にあっては、いずれ
の組成を採用しても、導電性組成物のベースに対する密
着性は高水準に維持される。
In the conductive composition of the present invention, its specific resistance and self-controllable temperature are set by appropriately selecting the composition within the scope of the present invention. For example, the specific resistance value can be adjusted by increasing or decreasing the content of carbon black or spherical carbon. Further, by changing the type and content of the thermoplastic resin and the solvent, the temperature at which the resistance value rapidly increases, that is, the temperature at which the resin around the conductive member partially melts and interrupts conduction between the conductive members, Can be adjusted. However, in the conductive composition of the present invention, whichever composition is adopted, the adhesion of the conductive composition to the base is maintained at a high level.

【0030】また、上記の本発明の導電性組成物を適宜
成形することによって種々の温度自己制御性発熱体、好
ましくは面状発熱体を容易に得ることができる。以下、
本発明の温度自己制御性面状発熱体について説明する。
By appropriately molding the above-mentioned electrically conductive composition of the present invention, various temperature self-controlling heating elements, preferably planar heating elements, can be easily obtained. Less than,
The temperature-controlled surface heating element of the present invention will be described.

【0031】すなわち、本発明の温度自己制御性面状発
熱体は、上記本発明の導電性組成物を面状に成形したも
のを熱処理して得られたものである。
That is, the temperature self-controlling sheet heating element of the present invention is obtained by heat-treating a sheet obtained by molding the above-mentioned conductive composition of the present invention into a sheet.

【0032】導電性組成物を面状に成形する方法は特に
制限されず、例えばスクリーン印刷(80〜325メッ
シュ)による方法、適宜溶剤で希釈してスプレーで吹き
付ける方法、バーコーター塗布による方法によって面状
に成形できる。また、導電性組成物を面状に成形する際
に、通常はフィルムや不織布等のベース上に被膜として
形成される。上記の熱処理は導電性組成物を硬化/安定
化させるものであり、好ましくは130〜250℃で1
0〜90分間行なう。本発明の面状発熱体の形状、厚さ
等は特に制限されないが、5〜100μmの厚さとする
ことが好ましい。
The method for molding the conductive composition into a planar shape is not particularly limited. For example, a method by screen printing (80 to 325 mesh), a method of appropriately diluting with a solvent and spraying, or a method of coating with a bar coater is used. Can be molded into a shape. Further, when the conductive composition is formed into a sheet, it is usually formed as a coating on a base such as a film or a non-woven fabric. The above heat treatment cures / stabilizes the conductive composition, preferably at 130 to 250 ° C. for 1 hour.
Perform for 0 to 90 minutes. The shape and thickness of the sheet heating element of the present invention are not particularly limited, but a thickness of 5 to 100 μm is preferable.

【0033】実用的には、上記熱処理の前あるいは後に
面状発熱体に電源接続用の電極を少なくとも2ヵ所設け
ることによって発熱素子を得ることができる。電極の作
成方法としては、銀レジンインキを用いた印刷法や、異
方導電接着剤を介して金属箔テープを貼付する方法があ
る。また、耐湿性を要求される分野においては、上記発
熱素子の上からさらに撥水性および絶縁性を兼ね備えた
シリコーンゴムやフッ素ゴム系のインキオーバーコート
することも可能である。
Practically, the heating element can be obtained by providing the planar heating element with at least two electrodes for power supply connection before or after the heat treatment. As a method for forming the electrodes, there are a printing method using a silver resin ink and a method of attaching a metal foil tape via an anisotropic conductive adhesive. Further, in the field where moisture resistance is required, it is also possible to overcoat the above heating element with a silicone rubber or fluororubber ink having both water repellency and insulation.

【0034】更に、上述の本発明の導電性組成物を用い
て得られる面状発熱体は成形性並びに種々の基材との密
着性に優れるため、従来は得ることが困難であったパイ
プ状等の任意形状の温度自己制御性発熱体を容易に得る
ことが可能となる。以下、パイプ状の温度自己制御性発
熱体を有する本発明のパイプ状ヒーターについて説明す
る。
Further, since the sheet heating element obtained by using the above-mentioned conductive composition of the present invention is excellent in moldability and adhesion to various substrates, it has been difficult to obtain a pipe-shaped sheet. It becomes possible to easily obtain a temperature self-controlling heating element having an arbitrary shape such as. Hereinafter, the pipe-shaped heater of the present invention having a pipe-shaped temperature self-controlling heating element will be described.

【0035】すなわち、本発明の温度自己制御性パイプ
状ヒーターは、パイプ状絶縁性基材と、前記本発明の導
電性組成物をパイプ状絶縁性基材上に面状に成形したも
のを熱処理して得られた発熱体と、該発熱体に通電する
ための電極とを具備することを特徴とするものである。
That is, the temperature-controlled pipe-shaped heater of the present invention is a pipe-shaped insulating base material, and the conductive composition of the present invention is heat-treated on a pipe-shaped insulating base material. It is characterized in that it is provided with a heating element obtained in this way and an electrode for energizing the heating element.

【0036】上記パイプ状絶縁性基材は特に制限され
ず、用途に応じた大きさの例えば表面を絶縁処理した金
属パイプ、石英ガラス等が挙げられる。
The pipe-shaped insulating base material is not particularly limited, and examples thereof include a metal pipe having a size suitable for the application, the surface of which is subjected to an insulation treatment, and quartz glass.

【0037】また、上記電極としては従来市販されてい
る銀ペースト等が使用可能であるが、150℃〜250
℃の高温領域に対応する銀電極用ペーストとしては、マ
トリックスにラダー型シリコーンオリゴマー、フィラー
に銀粉を用いたものが好ましい。かかる銀電極用ペース
トの場合、ペースト中の銀粉は75〜90wt%が好ま
しい。銀粉が75wt%未満では密着性及び導電性が劣
る傾向にあり、他方、90wt%を超えるとペースト化
が困難となる傾向にあるからである。
Further, as the above-mentioned electrode, a commercially available silver paste or the like can be used.
As a silver electrode paste corresponding to a high temperature region of ° C, a paste using a ladder type silicone oligomer as a matrix and silver powder as a filler is preferable. In the case of such a silver electrode paste, the silver powder in the paste is preferably 75 to 90 wt%. This is because if the silver powder is less than 75 wt%, the adhesion and conductivity tend to be poor, while if it exceeds 90 wt%, it tends to be difficult to form a paste.

【0038】更に、上記本発明のパイプ状ヒーターにお
いては、前記発熱体上に被膜状絶縁材料からなる保護膜
をさらに設けてもよい。熱伝導性が高く、摺動性に優れ
た保護膜を具備することによって、発熱部の保護、耐湿
性並びに摺動性の改善が図れる。かかる保護膜の形成方
法としては、パイプ状ヒーターの外径より約10%内径
の大きい熱収縮性フッ素樹脂チューブをかぶせて熱収縮
させることによりヒータ部表面をオーバーコートする方
法が好ましい。また、マトリックスにラダー型シリコー
ンオリゴマー、フィラーにボロンナイトライドを用いた
ペーストを被覆することによって保護膜を形成してもよ
い。かかるペースト中のボロンナイトライドは保護膜の
摺動性及び熱伝導性を向上させるのに有効であり、その
量は5〜10重量%が好ましい。
Further, in the pipe-shaped heater of the present invention, a protective film made of a film-shaped insulating material may be further provided on the heating element. By providing the protective film having high thermal conductivity and excellent slidability, it is possible to protect the heat generating portion, improve the moisture resistance and the slidability. As a method of forming such a protective film, a method of overcoating the surface of the heater portion by covering with a heat-shrinkable fluororesin tube having an inner diameter larger by about 10% than the outer diameter of the pipe-shaped heater to heat-shrink is preferable. Alternatively, the protective film may be formed by coating the matrix with a ladder-type silicone oligomer and the filler with a paste using boron nitride. The boron nitride in the paste is effective in improving the sliding property and heat conductivity of the protective film, and the amount is preferably 5 to 10% by weight.

【0039】[0039]

【実施例】以下、実施例および比較例に基づいて本発明
をより具体的に説明する。
EXAMPLES The present invention will be described more specifically below based on examples and comparative examples.

【0040】実施例1 以下の組成: ・ビスマレイミド−トリアジン樹脂(BT2170) 27.9重量% [三菱瓦斯化学(株)製] ・カーボンブラック(アセチレンブラック) 4.8重量% [電気化学工業(株)製] ・分散剤(NP−2:日光ケミカルス(株)製) 2.2重量% ・酢酸カルビトール 65.1重量% のワニス状混合物を調製した。上記ワニス状混合物10
0重量部に対して膨張黒鉛粉末(平均直径4500μ
m、日本カーボン(株)製)6.9重量部を加え、プラ
ネタリーミキサーで混練し、さらに三本ロールに通して
導電性組成物を得た。
Example 1 The following composition: -Bismaleimide-triazine resin (BT2170) 27.9 wt% [Mitsubishi Gas Chemical Co., Ltd.]-Carbon black (acetylene black) 4.8 wt% [Electrochemical industry ( Co., Ltd.]-Dispersant (NP-2: manufactured by Nikko Chemicals Co., Ltd.) 2.2% by weight-Carbitol acetate 65.1% by weight was prepared as a varnish mixture. The above varnish mixture 10
Expanded graphite powder (average diameter 4500μ
m, manufactured by Nippon Carbon Co., Ltd.), and kneaded with a planetary mixer, and further passed through a triple roll to obtain a conductive composition.

【0041】得られた導電性組成物をSUS100メッ
シュのスクリーンを用いてポリイミドフィルム上に20
0×100mmのサイズにスクリーン印刷し、150℃
で30分間熱処理したところ、非常に平滑な面状発熱体
(膜厚38μm)が得られた。そして、その面状発熱体
の両端に銀ペーストで電極を印刷して発熱素子とした。
得られた発熱素子の室温での電極両端抵抗は220Ωで
あった。
The obtained conductive composition was applied onto a polyimide film using a SUS100 mesh screen for 20 minutes.
Screen print on a size of 0x100mm, 150 ℃
When heat-treated for 30 minutes, a very smooth sheet heating element (thickness 38 μm) was obtained. Then, electrodes were printed with silver paste on both ends of the planar heating element to obtain heating elements.
The resistance of both ends of the obtained heating element at room temperature was 220Ω.

【0042】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して20秒後に210℃となり、以後
は210℃±4℃で温度一定となった。そのまま50時
間電圧をかけ続けたが、特に変化はなかった。その後、
電源を一旦切って発熱素子を室温まで冷却した。さら
に、上記発熱素子を同一条件で100回繰り返して使用
したが、発熱体の剥離は全く発生せず、また定常状態と
なる温度にも変化は見られなかった。
Next, when a voltage of 100 V was applied to the above heating element, heat was generated and after 20 seconds, the temperature became 210 ° C., and thereafter, the temperature became constant at 210 ° C. ± 4 ° C. The voltage was applied as it was for 50 hours, but there was no particular change. afterwards,
The power was turned off once and the heating element was cooled to room temperature. Furthermore, the above-mentioned heating element was repeatedly used 100 times under the same conditions, but no peeling of the heating element occurred, and there was no change in the temperature at which it was in a steady state.

【0043】実施例2 以下の組成: ・ビスマレイミド−トリアジン樹脂(BT2170) 28.0重量% ・カーボンブラック(アセチレンブラック) 4.6重量% ・分散剤(金属石けん) 2.2重量% ・酢酸カルビトール 65.2重量% のワニス状混合物を調製した。他方、球状の不溶融性フ
ェノール樹脂の表面にカーボンブラックをメカノケミカ
ル法で被覆せしめ、次いで2000℃で炭化して平均粒
径10μmの球状カーボンを得た。そして、上記ワニス
状混合物100重量部に対して上記球状カーボン16重
量部および実施例1と同様の膨張黒鉛粉末6.0重量部
を加え、プラネタリーミキサーで混練し、さらに三本ロ
ールに4回通して導電性組成物を得た。
Example 2 The following composition: -Bismaleimide-triazine resin (BT2170) 28.0% by weight-Carbon black (acetylene black) 4.6% by weight-Dispersant (metal soap) 2.2% by weight-Acetic acid A varnish-like mixture of 65.2% by weight carbitol was prepared. On the other hand, the surface of a spherical infusible phenol resin was coated with carbon black by a mechanochemical method, and then carbonized at 2000 ° C. to obtain spherical carbon having an average particle size of 10 μm. Then, to 100 parts by weight of the varnish-like mixture, 16 parts by weight of the spherical carbon and 6.0 parts by weight of the same expanded graphite powder as in Example 1 were added, and the mixture was kneaded with a planetary mixer, and further four times on a three-roll mill. To obtain a conductive composition.

【0044】得られた導電性組成物をSUS200メッ
シュのスクリーンを用いてポリイミドフィルム上に10
0×100mmのサイズにスクリーン印刷し、170℃
で30分間熱処理したところ、非常に平滑な面状発熱体
(膜厚14μm)が得られた。そして、その面状発熱体
の両端に銀ペーストで電極を印刷して発熱素子とした。
得られた発熱素子の室温での電極両端抵抗は300Ωで
あった。
The conductive composition thus obtained was applied onto a polyimide film using a SUS200 mesh screen.
Screen-printed on a size of 0x100mm, 170 ℃
When heat-treated for 30 minutes, a very smooth sheet heating element (film thickness 14 μm) was obtained. Then, electrodes were printed with silver paste on both ends of the planar heating element to obtain heating elements.
The resistance of both ends of the obtained heating element at room temperature was 300Ω.

【0045】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して20秒後に130℃に達し、以後
は130℃±2℃で温度一定となった。そのまま50時
間電圧をかけ続けたが、特に変化はなかった。その後、
電源を一旦切って発熱素子を室温まで冷却した。さら
に、上記発熱素子を同一条件で100回繰り返して使用
したが、発熱体の剥離は全く発生せず、また定常状態と
なる温度にも変化は見られなかった。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, it generated heat and reached 130 ° C. 20 seconds later, and thereafter, the temperature became constant at 130 ° C. ± 2 ° C. The voltage was applied as it was for 50 hours, but there was no particular change. afterwards,
The power was turned off once and the heating element was cooled to room temperature. Furthermore, the above-mentioned heating element was repeatedly used 100 times under the same conditions, but no peeling of the heating element occurred, and there was no change in the temperature at which it was in a steady state.

【0046】実施例3 以下の組成: ・珪素樹脂(TSE−3221:東芝シリコーン(株)製)91.0重量% ・カーボンブラック(ファーネスブラックMA−8) 9.0重量% [三菱化成(株)製] のワニス状混合物を調製した。上記ワニス状混合物10
0重量部に対して実施例2と同様の球状カーボン45重
量部を加え、プラネタリーミキサーで混練し、さらに三
本ロールに通して導電性組成物を得た。
Example 3 The following composition: Silicon resin (TSE-3221: manufactured by Toshiba Silicone Co., Ltd.) 91.0% by weight Carbon black (Furnace Black MA-8) 9.0% by weight [Mitsubishi Kasei )] Was prepared. The above varnish mixture 10
45 parts by weight of spherical carbon similar to that in Example 2 was added to 0 parts by weight, kneaded with a planetary mixer, and passed through a triple roll to obtain a conductive composition.

【0047】得られた導電性組成物を同量のキシレンで
希釈してスプレーガンを用いてポリアリレート樹脂フィ
ルム(厚さ75μm)上に100×100mmのサイズ
の被膜を形成し、150℃で20分間熱処理したとこ
ろ、非常に平滑な面状発熱体(膜厚10μm)が得られ
た。そして、その面状発熱体の両端に銀ペーストで電極
を印刷し、150℃で30分間熱処理して発熱素子とし
た。得られた発熱素子の室温での電極両端抵抗は425
Ωであった。
The obtained conductive composition was diluted with the same amount of xylene and a spray gun was used to form a 100 × 100 mm size coating on the polyarylate resin film (thickness 75 μm). When heat-treated for a minute, a very smooth sheet heating element (film thickness 10 μm) was obtained. Then, electrodes were printed with silver paste on both ends of the planar heating element and heat-treated at 150 ° C. for 30 minutes to obtain a heating element. The resistance of both ends of the obtained heating element at room temperature was 425.
It was Ω.

【0048】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して30秒後に87℃に達し、以後は
87℃±5℃で温度一定となった。そのまま50時間電
圧をかけ続けたが、特に変化はなかった。その後、電源
を一旦切って発熱素子を室温まで冷却した。さらに、上
記発熱素子を同一条件で100回繰り返して使用した
が、発熱体の剥離は全く発生せず、また定常状態となる
温度にも変化は見られなかった。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, it generated heat and reached 87 ° C. after 30 seconds, and thereafter the temperature became constant at 87 ° ± 5 ° C. The voltage was applied as it was for 50 hours, but there was no particular change. Then, the power supply was once turned off and the heating element was cooled to room temperature. Furthermore, the above-mentioned heating element was repeatedly used 100 times under the same conditions, but no peeling of the heating element occurred, and there was no change in the temperature at which it was in a steady state.

【0049】実施例4 以下の組成: ・ポリウレタン樹脂(タケネートB−7013) 79.3重量% [武田薬品工業(株)製] ・カーボンブラック(アセチレンブラック) 4.1重量% ・γ−ブチルラクトン 16.6重量% のワニス状混合物を調製した。他方、球状の不溶融性フ
ェノール樹脂の表面に溶融ピッチを被覆せしめ、次いで
2000℃で炭化して平均粒径10μmの球状カーボン
を得た。そして、上記ワニス状混合物100重量部に対
して上記球状カーボン75重量部を加え、プラネタリー
ミキサーで混練し、さらに三本ロールに通して導電性組
成物を得た。
Example 4 The following composition: -Polyurethane resin (Takenate B-7013) 79.3% by weight [Takeda Pharmaceutical Co., Ltd.]-Carbon black (acetylene black) 4.1% by weight-γ-butyl lactone A 16.6 wt.% Varnish mixture was prepared. On the other hand, the surface of a spherical infusible phenol resin was coated with molten pitch, and then carbonized at 2000 ° C. to obtain spherical carbon having an average particle diameter of 10 μm. Then, 75 parts by weight of the spherical carbon was added to 100 parts by weight of the varnish-like mixture, kneaded by a planetary mixer, and further passed through a triple roll to obtain a conductive composition.

【0050】得られた導電性組成物をSUS200メッ
シュのスクリーンを用いてポリアリレート樹脂フィルム
(厚さ100μm)上に100×100mmのサイズに
スクリーン印刷し、150℃で15分間熱処理したとこ
ろ、非常に平滑な面状発熱体(膜厚12μm)が得られ
た。そして、その面状発熱体の両端に銀ペーストで電極
を印刷して発熱素子とした。得られた発熱素子の室温で
の電極両端抵抗は180Ωであった。
The conductive composition thus obtained was screen-printed on a polyarylate resin film (thickness: 100 μm) to a size of 100 × 100 mm using a SUS200 mesh screen and heat-treated at 150 ° C. for 15 minutes. A smooth planar heating element (film thickness 12 μm) was obtained. Then, electrodes were printed with silver paste on both ends of the planar heating element to obtain heating elements. The resistance of both ends of the obtained heating element at room temperature was 180Ω.

【0051】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して30秒後に65℃に達し、以後は
65℃±10℃で温度一定となった。そのまま50時間
電圧をかけ続けたが、特に変化はなかった。その後、電
源を一旦切って発熱素子を室温まで冷却した。さらに、
上記発熱素子を同一条件で100回繰り返して使用した
が、発熱体の剥離は全く発生せず、また定常状態となる
温度にも変化は見られなかった。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, it generated heat and reached 65 ° C. after 30 seconds, and thereafter the temperature became constant at 65 ° C. ± 10 ° C. The voltage was applied as it was for 50 hours, but there was no particular change. Then, the power supply was once turned off and the heating element was cooled to room temperature. further,
The heating element was repeatedly used 100 times under the same conditions, but no peeling of the heating element occurred, and no change was observed in the temperature at which the heating element was in a steady state.

【0052】実施例5 以下の組成: ・ポリエステル樹脂 63.2重量% ・カーボンブラック(ファーネスブラックMA−8) 2.3重量% ・DMF 34.5重量% のワニス状混合物を調製した。他方、球状の不溶融性フ
ェノール樹脂を2000℃で炭化して平均粒径5μmの
球状カーボンを得た。そして、上記ワニス状混合物10
0重量部に対して上記球状カーボン15重量部を加え、
プラネタリーミキサーで混練し、さらに三本ロールに通
して導電性組成物を得た。
Example 5 The following composition: a varnish mixture of 63.2% by weight of polyester resin, 2.3% by weight of carbon black (furnace black MA-8) and 34.5% by weight of DMF was prepared. On the other hand, the spherical infusible phenol resin was carbonized at 2000 ° C. to obtain spherical carbon having an average particle size of 5 μm. And the above-mentioned varnish mixture 10
15 parts by weight of the spherical carbon is added to 0 parts by weight,
The mixture was kneaded with a planetary mixer and passed through a triple roll to obtain a conductive composition.

【0053】得られた導電性組成物をSUS200メッ
シュのスクリーンを用いてポリアリレート樹脂フィルム
(厚さ100μm)上に100×100mmのサイズに
スクリーン印刷し、120℃で30分間熱処理したとこ
ろ、非常に平滑な面状発熱体(膜厚14μm)が得られ
た。そして、その面状発熱体の両端に銀ペーストで電極
を印刷して発熱素子とした。得られた発熱素子の室温で
の電極両端抵抗は580Ωであった。
The conductive composition thus obtained was screen-printed on a polyarylate resin film (thickness: 100 μm) to a size of 100 × 100 mm using a SUS200 mesh screen and heat-treated at 120 ° C. for 30 minutes. A smooth planar heating element (film thickness 14 μm) was obtained. Then, electrodes were printed with silver paste on both ends of the planar heating element to obtain heating elements. The resistance of both ends of the obtained heating element at room temperature was 580Ω.

【0054】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して50秒後に45℃に達し、以後は
45℃±8℃で温度一定となった。そのまま50時間電
圧をかけ続けたが、特に変化はなかった。その後、電源
を一旦切って発熱素子を室温まで冷却した。さらに、上
記発熱素子を同一条件で100回繰り返して使用した
が、発熱体の剥離は全く発生せず、また定常状態となる
温度にも変化は見られなかった。
Next, when a voltage of 100 V was applied to the above heating element, it generated heat and reached 45 ° C. 50 seconds later, and thereafter, the temperature became constant at 45 ° C. ± 8 ° C. The voltage was applied as it was for 50 hours, but there was no particular change. Then, the power supply was once turned off and the heating element was cooled to room temperature. Furthermore, the above-mentioned heating element was repeatedly used 100 times under the same conditions, but no peeling of the heating element occurred, and there was no change in the temperature at which it was in a steady state.

【0055】実施例6 以下の組成: ・珪素樹脂(Q1−4010) 91.0重量% [東レ・ダウコーニング(株)製] ・カーボンブラック(アセチレンブラック) 9.0重量% のワニス状混合物を調製した。他方、カーボンブラック
(アセチレンブラック)とピッチとを等重量ずつ混合
し、造粒した後、1800℃で炭化して平均粒径12μ
mの球状カーボンを得た。そして、上記ワニス状混合物
100重量部に対して上記球状カーボン60重量部およ
び平均直径1000μmの膨張黒鉛粉末6.7重量部を
加え、プラネタリーミキサーで混練し、さらに三本ロー
ルに通して導電性組成物を得た。
Example 6 The following composition: Silicon resin (Q1-4010) 91.0% by weight [Toray Dow Corning Co., Ltd.] Carbon black (acetylene black) 9.0% by weight varnish mixture Prepared. On the other hand, carbon black (acetylene black) and pitch are mixed in equal weights, granulated and then carbonized at 1800 ° C. to give an average particle size of 12 μm.
m spherical carbon was obtained. Then, to 100 parts by weight of the varnish-like mixture, 60 parts by weight of the spherical carbon and 6.7 parts by weight of expanded graphite powder having an average diameter of 1000 μm were added, kneaded with a planetary mixer, and further passed through a three-roll to conduct electricity. A composition was obtained.

【0056】得られた導電性組成物をSUS200メッ
シュのスクリーンを用いてアラミド不織布(厚さ130
μm:デュポン(株)製)上に100×100mmのサ
イズにスクリーン印刷し、150℃で15分間熱処理し
たところ、非常に平滑な面状発熱体(膜厚15μm)が
得られた。そして、その面状発熱体の両端に銀ペースト
で電極を印刷して発熱素子とした。得られた発熱素子の
室温での電極両端抵抗は350Ωであった。
The resulting electrically conductive composition was applied to an aramid nonwoven fabric (thickness: 130) using a SUS200 mesh screen.
[mu] m: manufactured by DuPont Co., Ltd., screen-printed in a size of 100 * 100 mm and heat-treated at 150 [deg.] C. for 15 minutes to obtain a very smooth sheet heating element (film thickness 15 [mu] m). Then, electrodes were printed with silver paste on both ends of the planar heating element to obtain heating elements. The resistance of both ends of the obtained heating element at room temperature was 350Ω.

【0057】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して30秒後に100℃に達し、以後
は100℃±5℃で温度一定となった。そのまま50時
間電圧をかけ続けたが、特に変化はなかった。その後、
電源を一旦切って発熱素子を室温まで冷却した。さら
に、上記発熱素子を同一条件で100回繰り返して使用
したが、発熱体の剥離は全く発生せず、また定常状態と
なる温度にも変化は見られなかった。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, it generated heat and reached 100 ° C. after 30 seconds, and thereafter the temperature became constant at 100 ° C. ± 5 ° C. The voltage was applied as it was for 50 hours, but there was no particular change. afterwards,
The power was turned off once and the heating element was cooled to room temperature. Furthermore, the above-mentioned heating element was repeatedly used 100 times under the same conditions, but no peeling of the heating element occurred, and there was no change in the temperature at which it was in a steady state.

【0058】実施例7 以下の組成: ・珪素樹脂(TSE−3221:東芝シリコーン(株)製)91.0重量% ・カーボンブラック(アセチレンブラック) 9.0重量% のワニス状混合物を調製した。上記ワニス状混合物10
0重量部に対して平均直径1000μmの膨張黒鉛粉末
11重量部を加え、プラネタリーミキサーで混練し、さ
らに三本ロールに通して導電性組成物を得た。
Example 7 The following composition: a varnish mixture of silicon resin (TSE-3221: manufactured by Toshiba Silicone Co., Ltd.) 91.0 wt% carbon black (acetylene black) 9.0 wt% was prepared. The above varnish mixture 10
11 parts by weight of expanded graphite powder having an average diameter of 1000 μm was added to 0 parts by weight, and the mixture was kneaded by a planetary mixer and passed through a triple roll to obtain a conductive composition.

【0059】得られた導電性組成物をSUS200メッ
シュのスクリーンを用いてポリアリレート樹脂フィルム
(厚さ100μm)上に200×100mmのサイズに
スクリーン印刷し、150℃で30分間熱処理したとこ
ろ、非常に平滑な面状発熱体(膜厚15μm)が得られ
た。そして、その面状発熱体の両端に銀ペーストで電極
を印刷して発熱素子とした。得られた発熱素子の室温で
の電極両端抵抗は210Ωであった。
The conductive composition thus obtained was screen-printed on a polyarylate resin film (thickness: 100 μm) to a size of 200 × 100 mm using a SUS200 mesh screen and heat-treated at 150 ° C. for 30 minutes. A smooth planar heating element (film thickness 15 μm) was obtained. Then, electrodes were printed with silver paste on both ends of the planar heating element to obtain heating elements. The resistance of both ends of the obtained heating element at room temperature was 210Ω.

【0060】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して20秒後に145℃に達し、以後
は145℃±2℃で温度一定となった。そのまま50時
間電圧をかけ続けたが、特に変化はなかった。その後、
電源を一旦切って発熱素子を室温まで冷却した。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, it generated heat and reached 145 ° C. after 20 seconds, and thereafter the temperature became constant at 145 ° C. ± 2 ° C. The voltage was applied as it was for 50 hours, but there was no particular change. afterwards,
The power was turned off once and the heating element was cooled to room temperature.

【0061】上記の発熱から冷却にかけての温度と素子
抵抗値(全抵抗値)との関係を測定し、結果を図1に示
した。図1中、実線(1)は温度上昇時の抵抗増加曲線
であり、破線(2)は温度低下時の抵抗減少曲線であ
る。図1から明らかなように、本実施例の発熱素子の抵
抗は120℃付近から急激に上昇し、温度が自己制御さ
れた。また、温度上昇時と低下時のヒステリシスは非常
に小さく、室温での全抵抗値は通電の前後でほぼ一致し
た。
The relationship between the temperature from the heat generation to the cooling and the element resistance value (total resistance value) was measured, and the result is shown in FIG. In FIG. 1, the solid line (1) is the resistance increase curve when the temperature rises, and the broken line (2) is the resistance decrease curve when the temperature falls. As is clear from FIG. 1, the resistance of the heating element of the present example sharply increased from around 120 ° C., and the temperature was self-controlled. In addition, the hysteresis when the temperature rises and when the temperature falls is very small, and the total resistance at room temperature was almost the same before and after energization.

【0062】さらに、上記発熱素子を同一条件で100
回繰り返して使用したが、発熱体の剥離は全く発生せ
ず、また定常状態となる温度にも変化は見られなかっ
た。
Further, the heating element is heated under the same conditions for 100
After repeated use, no exfoliation of the heating element occurred and no change was observed in the temperature at which the heating element reached a steady state.

【0063】比較例1 膨張黒鉛粉末の添加量を、ワニス状混合物100重量部
に対して4.0重量部とした以外は実施例1と同様にし
て発熱素子を得た。
Comparative Example 1 A heating element was obtained in the same manner as in Example 1 except that the amount of expanded graphite powder added was 4.0 parts by weight with respect to 100 parts by weight of the varnish mixture.

【0064】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して120秒後に80℃となり、その
まま50時間電圧をかけ続けたところ、温度はほぼ一定
に保持された。しかしながら、電源を一旦切って発熱素
子を室温まで冷却し、次いで再び上記電圧をかけたとこ
ろ、温度上昇は少なく、5分後でも35℃にしかなら
ず、その後繰り返して使用することはできなかった。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, heat was generated and the temperature reached 80 ° C. 120 seconds later. When the voltage was continuously applied for 50 hours, the temperature was kept substantially constant. However, when the power source was once turned off to cool the heating element to room temperature and then the above voltage was applied again, the temperature did not rise so much that the temperature was only 35 ° C. even after 5 minutes, and it could not be repeatedly used thereafter.

【0065】比較例2 球状カーボンの添加量を、ワニス状混合物100重量部
に対して100重量部とした以外は実施例4と同様にし
て発熱素子を得た。
Comparative Example 2 A heating element was obtained in the same manner as in Example 4 except that the amount of spherical carbon added was 100 parts by weight with respect to 100 parts by weight of the varnish mixture.

【0066】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して20秒後に70℃となったが、そ
の後も徐々に温度が上昇して発熱体が熱変形したために
継続して使用できなくなった。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, heat was generated and the temperature reached 70 ° C. 20 seconds later, but after that, the temperature gradually increased and the heating element was thermally deformed, so it continued. I can no longer use it.

【0067】比較例3 以下の組成: ・ポリウレタン樹脂(タケネートB−7013) 80.0重量% ・カーボンブラック(ケッチェンブラックEC600JD)20.0重量% のワニス状混合物を調製し、混練して導電性組成物を得
た。そして、この導電性組成物を用いた以外は実施例4
と同様にして発熱素子を得た。
Comparative Example 3 The following composition: -Polyurethane resin (Takenate B-7013) 80.0% by weight-Carbon black (Ketjenblack EC600JD) 20.0% by weight A varnish mixture was prepared and kneaded to conduct electricity. A sex composition was obtained. Then, Example 4 was repeated except that this conductive composition was used.
A heating element was obtained in the same manner as in.

【0068】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して40秒後に80℃に達したが、発
熱面の温度が局部的に上昇し、約1時間後に発熱体が一
部溶融し始めたために継続して使用できなくなり、電源
を切らざるを得なかった。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, it generated heat and reached 80 ° C. 40 seconds later, but the temperature of the heating surface locally rose, and after about 1 hour, the heating element turned off. Since the part began to melt, it could not be used continuously, and the power had to be turned off.

【0069】比較例4 比較例3のワニス状混合物100重量部に対して、人造
黒鉛(粉砕粉:平均直径12μm)20重量部を加え、
プラネタリーミキサーで混練し、さらに三本ロールに通
して導電性組成物を得た。そして、この導電性組成物を
用いた以外は実施例4と同様にして発熱素子を得た。
Comparative Example 4 20 parts by weight of artificial graphite (ground powder: average diameter 12 μm) was added to 100 parts by weight of the varnish mixture of Comparative Example 3,
The mixture was kneaded with a planetary mixer and passed through a triple roll to obtain a conductive composition. Then, a heating element was obtained in the same manner as in Example 4 except that this conductive composition was used.

【0070】次に、上記の発熱素子に100Vの電圧を
かけたところ局部的な発熱が多く、120秒後でも面上
に30〜80℃のバラツキがあった。これは、黒鉛の不
均一分散と膜厚のバラツキの為に均一な発熱が得られな
かったものと考えられる。
Next, when a voltage of 100 V was applied to the above heating element, a large amount of local heat was generated, and there was a variation of 30 to 80 ° C. on the surface even after 120 seconds. It is considered that this is because uniform heat generation could not be obtained due to uneven distribution of graphite and variation in film thickness.

【0071】比較例5 平均粒径50μmの球状カーボンを使用した以外は実施
例4と同様にして発熱素子を得た。
Comparative Example 5 A heating element was obtained in the same manner as in Example 4 except that spherical carbon having an average particle size of 50 μm was used.

【0072】次に、上記の発熱素子に100Vの電圧を
かけたところ発熱して30秒後に65℃に達し、以後は
65℃±15℃で温度一定となったが、膜厚の不均一に
起因すると考えられる膜の亀裂および剥離が約10時間
後に生じ、使用できなくなった。
Next, when a voltage of 100 V was applied to the above-mentioned heating element, heat was generated and reached 65 ° C. after 30 seconds, and thereafter, the temperature became constant at 65 ° C. ± 15 ° C., but the film thickness became uneven. Cracking and delamination of the film, which was attributed to it, occurred after about 10 hours and became unusable.

【0073】比較例6 平均直径8000μmの膨張黒鉛粉末を使用した以外は
実施例1と同様にして導電性組成物の調製を試みたが、
ワニス状混合物とのなじみが悪く、均質な組成物を得る
ことができなかった。
Comparative Example 6 An electrically conductive composition was prepared in the same manner as in Example 1 except that expanded graphite powder having an average diameter of 8000 μm was used.
Familiarity with the varnish mixture was poor and a homogeneous composition could not be obtained.

【0074】実施例8 以下の組成: ・ポリカルボシラン(平均分子量800) 52.6重量% [日本カーボン(株)製] ・珪素樹脂(Q1−4010) 13.1重量% [東レ・ダウコーニング(株)製] ・カーボンブラック(アセチレンブラック) 7.8重量% [電気化学工業(株)製] ・溶剤(ダイアナソルベントNo.2) 26.5重量% [出光興産(株)製] のワニス状混合物を調製した。上記ワニス状混合物10
0重量部に対して膨張黒鉛粉末(平均直径4500μ
m、FL−GA:日本カーボン(株)製)11.8重量
部および球状カーボン(平均粒径10μm、MC−10
20:日本カーボン(株)製)78.7重量部を加え、
プラネタリーミキサーで混練し、さらに三本ロールに1
時間通して導電性組成物を得た。
Example 8 The following composition: Polycarbosilane (average molecular weight 800) 52.6% by weight [Nippon Carbon Co., Ltd.] Silicon resin (Q1-4010) 13.1% by weight [Toray Dow Corning] Manufactured by Co., Ltd.-Carbon black (acetylene black) 7.8 wt% [Denki Kagaku Kogyo Co., Ltd.]-Solvent (Diana Solvent No. 2) 26.5 wt% [Idemitsu Kosan Co., Ltd.] Varnish A mixture was prepared. The above varnish mixture 10
Expanded graphite powder (average diameter 4500μ
m, FL-GA: manufactured by Nippon Carbon Co., Ltd. 11.8 parts by weight and spherical carbon (average particle size 10 μm, MC-10).
20: 78.7 parts by weight of Nippon Carbon Co., Ltd. was added,
Knead with a planetary mixer, and then roll on three rolls.
A conductive composition was obtained over time.

【0075】他方、以下の組成: ・珪素樹脂(GR−908:昭和電工(株)製) 9.0重量% ・銀粉(TCG7:徳力化学研究所製) 35.7重量% ・銀粉(E20:徳力化学研究所製) 15.3重量% ・溶剤(酢酸エチルカルビトール) 40.0重量% の混合物を調製した。この混合物をプラネタリーミキサ
ーで混練し、さらに三本ロールに30分間通して銀電極
用ペーストを得た。
On the other hand, the following composition: Silicon resin (GR-908: Showa Denko KK) 9.0 wt% Silver powder (TCG7: Tokuriki Kagaku Kenkyusho) 35.7 wt% Silver powder (E20: E20: A mixture of 15.3 wt% and solvent (ethyl carbitol acetate) 40.0 wt% was prepared. This mixture was kneaded with a planetary mixer and passed through a triple roll for 30 minutes to obtain a silver electrode paste.

【0076】次に、得られた導電性組成物をSUS20
0メッシュのスクリーンを用いてポリイミドフィルム上
に200×50mmのサイズにスクリーン印刷し、22
0℃で30分間熱処理したところ、非常に平滑な面状発
熱体(膜厚30μm)が得られた。そして、その面状発
熱体にくし形の電極(電極間距離14mm)を上記の銀
ペーストを用いて印刷して発熱素子とした。得られた発
熱素子の室温での電極両端抵抗は19Ωであった。
Next, the obtained conductive composition was treated with SUS20.
Screen print on a polyimide film to a size of 200 x 50 mm using a 0 mesh screen.
When heat-treated at 0 ° C. for 30 minutes, a very smooth sheet heating element (film thickness 30 μm) was obtained. Then, a comb-shaped electrode (distance between electrodes: 14 mm) was printed on the planar heating element using the above silver paste to obtain a heating element. The resistance of both ends of the obtained heating element at room temperature was 19Ω.

【0077】次に、上記の発熱素子に60Vの電圧をか
けたところ発熱して20秒後に190℃となり、以後は
190℃±3℃で温度一定となった。更に、80Vまで
電圧を上げると215℃±3℃で温度一定となり、10
0Vまで電圧を上げても215℃±3℃は変わらず、温
度が良好に自己制御されることが確認された。また、上
記の発熱素子に60Vの電圧をかけた状態で100時間
通電を続けたが、特に保持温度及びそのバラツキについ
ての変化はなかった。その後、電源を一旦切って5分放
置後再び5分通電する操作を50回繰り返して行なった
が、発熱体の剥離は全く発生せず、また昇温時間や保持
温度等の性能上の変化も見られなかった。
Next, when a voltage of 60 V was applied to the above-mentioned heating element, it generated heat and after 20 seconds the temperature became 190 ° C. After that, the temperature became constant at 190 ° C. ± 3 ° C. When the voltage is further increased to 80V, the temperature becomes constant at 215 ° C ± 3 ° C and 10
Even if the voltage was increased to 0 V, 215 ° C. ± 3 ° C. did not change, and it was confirmed that the temperature was well controlled. Further, the energization was continued for 100 hours with the voltage of 60 V applied to the heating element, but there was no particular change in the holding temperature and its variation. After that, the power was once turned off, left for 5 minutes, and then energized again for 5 minutes. This operation was repeated 50 times, but no exfoliation of the heating element occurred, and there was no change in performance such as temperature rising time or holding temperature. I couldn't see it.

【0078】実施例9 珪素樹脂(GR−908)の代わりに珪素樹脂(GR−
100:昭和電工(株)製)を用いた以外は実施例8と
同様にして得た銀電極用ペーストを表面をアルミナ処理
したアルミパイプ(肉厚1mm、外径12mmφ×35
0mmL)の外周面上に印刷し、図2に示すくし形の電
極(電極間距離2.7mm)を電源接続用の電極として
形成した。
Example 9 Instead of the silicone resin (GR-908), the silicone resin (GR-
100: An aluminum pipe whose surface was treated with alumina using a silver electrode paste obtained in the same manner as in Example 8 except that Showa Denko KK was used (wall thickness 1 mm, outer diameter 12 mmφ × 35).
0 mmL) was printed on the outer peripheral surface, and the comb-shaped electrodes (interelectrode distance 2.7 mm) shown in FIG. 2 were formed as electrodes for power supply connection.

【0079】次に、実施例8で用いたものと同様の導電
性組成物を該組成物100重量部に対して150重量部
の揮発性溶剤(ダイアナソルベントNo.2)で希釈
し、スプレーガンを用いて上記パイプの外周面上に図2
に示すように長さ300mmの被膜を形成し、150℃
で30分間熱処理したところ、表面の平滑なパイプ状に
成形された面状発熱体(膜厚30μm)を有するパイプ
状ヒーターが得られた。得られた発熱体の室温での電極
両端抵抗は31Ωであった。また、その発熱体の環境温
度変化に対する抵抗変化は正であり、温度自己制御性が
あることが確認された。
Then, a conductive composition similar to that used in Example 8 was diluted with 150 parts by weight of a volatile solvent (Diana Solvent No. 2) per 100 parts by weight of the composition, and a spray gun was used. 2 on the outer peripheral surface of the pipe using
As shown in Fig.3, form a coating with a length of 300 mm and
When heat-treated for 30 minutes, a pipe-shaped heater having a planar heating element (film thickness 30 μm) formed in a pipe shape with a smooth surface was obtained. The resistance of both ends of the obtained heating element at room temperature was 31Ω. Moreover, it was confirmed that the resistance change of the heating element with respect to the environmental temperature change was positive and that the heating element had temperature self-controllability.

【0080】上記発熱体にAC100Vの電圧をかけた
ところ発熱して3分後に213℃に達し、以後は213
℃±1℃で温度一定となった。また、発熱体表面の温度
分布も全面213℃±1℃の範囲におさまり、120時
間連続で通電しても発熱特性に変化がなく安定してい
た。
When a voltage of 100 V AC was applied to the heating element, it generated heat and reached 213 ° C. in 3 minutes, and thereafter 213
The temperature became constant at ℃ ± 1 ℃. Further, the temperature distribution on the surface of the heating element was kept within the range of 213 ° C. ± 1 ° C. over the entire surface, and the heating characteristics were stable with no change even when electricity was continuously applied for 120 hours.

【0081】実施例10 以下の組成: ・珪素樹脂(Q1ー4010) 59.2重量% ・珪素樹脂(TSE−3221:東芝シリコーン(株)製)39.5重量% ・カーボンブラック(アセチレンブラック) 1.3重量% のワニス状混合物を調製した。上記ワニス状混合物10
0重量部に対して膨張黒鉛粉末(平均直径4500μ
m、FL−GA)2.0重量部および球状カーボン(平
均粒径10μm、MC−1020)62.5重量部を加
え、プラネタリーミキサーで混練し、さらに三本ロール
に2時間通して導電性組成物を得た。
Example 10 The following composition: Silicon resin (Q1-4010) 59.2% by weight Silicon resin (TSE-3221: manufactured by Toshiba Silicone Co., Ltd.) 39.5% by weight Carbon black (acetylene black) A 1.3% by weight varnish mixture was prepared. The above varnish mixture 10
Expanded graphite powder (average diameter 4500μ
m, FL-GA) 2.0 parts by weight and spherical carbon (average particle size 10 μm, MC-1020) 62.5 parts by weight were added, and the mixture was kneaded with a planetary mixer and further passed through a three-roll for 2 hours to be conductive. A composition was obtained.

【0082】次に、ポリエステル系銀ペースト(XA−
527:藤倉化成(株)製)を表面をアルミナ処理した
アルミパイプ(肉厚1mm、外径12mmφ×260m
mL)の外周面上に印刷し、図2に示すくし形の電極
(電極間距離2.7mm)を電源接続用の電極として形
成した。
Then, a polyester silver paste (XA-
527: Fujikura Kasei Co., Ltd. aluminum pipe whose surface is treated with alumina (wall thickness 1 mm, outer diameter 12 mmφ × 260 m)
(mL) was printed on the outer peripheral surface, and the comb-shaped electrodes (interelectrode distance 2.7 mm) shown in FIG. 2 were formed as electrodes for power supply connection.

【0083】更に、上記で得られた導電性組成物を該組
成物100重量部に対して200重量部の揮発性溶剤
(ダイアナソルベントNo.2)で希釈し、曲面印刷機
を用いて上記パイプの外周面上に図2に示すように長さ
220mmの被膜を形成し、150℃で30分間熱処理
したところ、表面の平滑なパイプ状に成形された面状発
熱体(膜厚30μm)を有するパイプ状ヒーターが得ら
れた。得られた発熱体の室温での電極両端抵抗は20Ω
であった。また、その発熱体の環境温度変化に対する抵
抗変化は正であり、温度自己制御性があることが確認さ
れた。
Further, the conductive composition obtained above was diluted with 200 parts by weight of a volatile solvent (Diana Solvent No. 2) per 100 parts by weight of the composition, and the above pipe was used by using a curved surface printing machine. As shown in FIG. 2, a coating film having a length of 220 mm was formed on the outer peripheral surface of and was heat-treated at 150 ° C. for 30 minutes to have a planar heating element (thickness 30 μm) formed in a pipe shape with a smooth surface. A pipe heater was obtained. The resistance of both ends of the obtained heating element at room temperature is 20Ω.
Met. Moreover, it was confirmed that the resistance change of the heating element with respect to the environmental temperature change was positive and that the heating element had temperature self-controllability.

【0084】上記発熱体にAC100Vの電圧をかけた
ところ発熱して3分後に121℃に達し、以後は121
℃±1℃で温度一定となった。また、発熱体表面の温度
分布も全面121℃±4℃の範囲におさまった。
When a voltage of AC100V was applied to the heating element, it generated heat and reached 121 ° C. after 3 minutes.
The temperature became constant at ℃ ± 1 ℃. In addition, the temperature distribution on the surface of the heating element was entirely within the range of 121 ° C ± 4 ° C.

【0085】次に、上記発熱体の全表面を図3に示すよ
うにフッ素樹脂チューブ(肉厚0.3mm、内径13m
mφ×230mmL、GFチューブ:グンゼ(株)製)
で覆い、100℃で10分間熱処理したところ、フッ素
樹脂チューブの収縮により発熱部がオーバーコートさ
れ、摺動性の優れた保護膜を有するパイプ状ヒーターが
得られた。なお、図3においては膜厚を図示するために
厚み方向に拡大してある。上記の発熱体に再びAC10
0Vの電圧をかけたところ、発熱体特性の変化は全くな
く、発熱体及び保護膜の剥離等も生じなかった。
Next, as shown in FIG. 3, the entire surface of the heating element is covered with a fluororesin tube (thickness: 0.3 mm, inner diameter: 13 m).
mφ × 230 mmL, GF tube: Gunze Co., Ltd.)
When heat-treated at 100 ° C. for 10 minutes, the heating portion was overcoated due to shrinkage of the fluororesin tube, and a pipe-shaped heater having a protective film with excellent slidability was obtained. In FIG. 3, the thickness is enlarged in order to illustrate the thickness. AC10 for the above heating element
When a voltage of 0 V was applied, the characteristics of the heating element did not change at all, and peeling of the heating element and protective film did not occur.

【0086】参考例1 以下の組成: ・ポリイミド樹脂(CT−4150) 18.1重量% [東芝ケミカル(株)製] ・カーボンブラック(アセチレンブラック) 1.5重量% ・溶剤(Nーメチルー2ーピロリドン) 80.4重量% のワニス状混合物を調製した。上記ワニス状混合物10
0重量部に対して膨張黒鉛粉末(平均直径4500μ
m、FL−GA)2.2重量部および球状カーボン(平
均粒径10μm、MC−1020)14.5重量部を加
え、プラネタリーミキサーで混練し、さらに三本ロール
に2時間通して導電性組成物を得た。
Reference Example 1 Composition below: -Polyimide resin (CT-4150) 18.1% by weight [manufactured by Toshiba Chemical Co., Ltd.]-Carbon black (acetylene black) 1.5% by weight-Solvent (N-methyl-2-pyrrolidone) ) A varnish mixture of 80.4% by weight was prepared. The above varnish mixture 10
Expanded graphite powder (average diameter 4500μ
m, FL-GA) 2.2 parts by weight and spherical carbon (average particle size 10 μm, MC-1020) 14.5 parts by weight were added, and the mixture was kneaded with a planetary mixer and further passed through a three-roll for 2 hours to be conductive. A composition was obtained.

【0087】そして、この導電性組成物を用いた以外は
実施例9と同様にしてパイプ状に成形された面状発熱体
を有するパイプ状ヒーターを得た。
Then, a pipe-shaped heater having a planar heating element molded into a pipe shape was obtained in the same manner as in Example 9 except that this conductive composition was used.

【0088】この発熱体にAC100Vの電圧をかけた
ところ発熱して3分後に212℃に達し、以後は212
℃±1℃で温度一定となり、発熱体表面の温度分布も2
12℃±1℃の範囲におさまった。しかしながら、この
発熱体の温度係数は負であり、自己制御性能が無かっ
た。
When a voltage of AC 100 V was applied to this heating element, it generated heat and reached 212 ° C. after 3 minutes.
The temperature becomes constant at ℃ ± 1 ℃, and the temperature distribution on the surface of the heating element is 2
It fell within the range of 12 ° C ± 1 ° C. However, the temperature coefficient of this heating element was negative, and there was no self-control performance.

【0089】参考例2 電源接続用の電極をウレタン系銀ペースト(DD−15
50:京都エレックス(株)製)を用いて作成した以外
は実施例9と同様にしてパイプ状に成形された面状発熱
体を有するパイプ状ヒーターを得た。
Reference Example 2 An electrode for connecting a power source was used as a urethane silver paste (DD-15).
50: A pipe-shaped heater having a sheet-shaped heating element molded into a pipe was obtained in the same manner as in Example 9 except that the heater was manufactured using Kyoto Elex Co., Ltd.

【0090】この発熱体にAC100Vの電圧をかけた
ところ発熱して実施例9と同様の発熱特性となった。し
かし、そのまま100時間電圧をかけ続けたところ、電
極部分が薄茶色に変色し、局部的な温度上昇が起こり、
さらにその数時間後にショートが生じて発熱温度が低下
した。
When a voltage of 100 V AC was applied to this heating element, it generated heat and had the same heating characteristics as in Example 9. However, when the voltage was continuously applied for 100 hours, the electrode part turned light brown and a local temperature rise occurred.
Shortly after that, a short circuit occurred and the exothermic temperature dropped.

【0091】参考例3 以下の組成: ・ビスマレイミド−トリアジン樹脂(BT−2170) 40重量% [三菱瓦斯化学(株)製] ・キシレン−エチルメチルケトン(MEK)混合溶剤 60重量% のワニス状混合物を調製した。スプレーガンを用いて上
記ワニス状混合物の被膜を発熱部上に形成することによ
って発熱体の保護膜を形成した以外は実施例10と同様
にしてパイプ状ヒーターを得た。しかし、硬化後に上記
保護膜は剥離を生じた。
Reference Example 3 Composition as follows: 40% by weight of bismaleimide-triazine resin (BT-2170) [manufactured by Mitsubishi Gas Chemical Co., Inc.] 60% by weight of xylene-ethylmethylketone (MEK) mixed solvent Varnish form A mixture was prepared. A pipe-shaped heater was obtained in the same manner as in Example 10 except that a protective film for the heating element was formed by forming a coating film of the above varnish-like mixture on the heating portion using a spray gun. However, the protective film peeled off after curing.

【0092】以上の各実施例の結果から明らかなよう
に、本発明の導電性組成物においては従来はカーボンブ
ラックと組み合わせて使用困難であった一般的な樹脂を
用いたにも拘らず、得られた面状発熱体はいずれも、ベ
ースに対する被覆力に優れ、しかも一定温度未満では導
電性を有するが一定温度を超えると著しく高電気抵抗と
なる(正の対温度電気抵抗性を有する)、優れた温度自
己制御性能を有するものであった。また、上記本発明の
面状発熱体は耐熱ヒステリシス性を有しており、繰り返
し使用しても安定なものであった。かかる良好な性能
は、前記(A)成分および(B)成分カーボンブラック
がいずれも薄膜中で均一に分散しており、均質な抵抗分
布が保持されていること、並びにそれらの導電性と
(B)成分樹脂の温度による可塑性との良好なコンビネ
ーションにより達成されるものと考えられる。
As is clear from the results of each of the above examples, the conductive composition of the present invention was obtained in spite of using a general resin which was conventionally difficult to use in combination with carbon black. All of the above-mentioned sheet heating elements have excellent covering power for the base, and are conductive below a certain temperature, but have extremely high electrical resistance above a certain temperature (having positive resistance to temperature), It had excellent temperature self-control performance. Further, the above-mentioned sheet heating element of the present invention has a heat resistance hysteresis property and is stable even after repeated use. Such good performance is due to the fact that both the component (A) component carbon black and the component (B) component carbon black are uniformly dispersed in the thin film, and a uniform resistance distribution is maintained, and their conductivity and (B ) It is considered that this is achieved by a good combination with the plasticity of the component resins depending on the temperature.

【0093】また、上記本発明の導電性組成物を用いて
得た本発明の発熱体は、温度分布が均一であり、約20
秒未満で保持温度に達し、さらに30℃〜250℃とい
う広い範囲にて保持温度を自由に設計できるものであっ
た。更に、上記本発明の発熱体は基材との密着性が良
く、上記の優れた特性を有する薄膜の自己制御性パイプ
状発熱体等の任意の形状の発熱体が作成可能であった。
The heating element of the present invention obtained by using the above-mentioned conductive composition of the present invention has a uniform temperature distribution of about 20.
The holding temperature was reached in less than a second, and the holding temperature could be freely designed within a wide range of 30 ° C to 250 ° C. Further, the heating element of the present invention has good adhesion to the substrate, and a heating element of any shape such as a thin film self-controlling pipe-shaped heating element having the above-mentioned excellent properties could be produced.

【0094】これに対して、本発明の範囲外の導電性組
成物を用いて得た各比較例の面状発熱体は、温度制御性
能、ベースに対する付着性、制御温度の安定性(再現
性)のうちの少なくともいずれかの点で劣るものであっ
た。
On the other hand, the planar heating element of each comparative example obtained by using the conductive composition outside the scope of the present invention, temperature control performance, adhesion to the base, stability of control temperature (reproducibility). ) Was inferior in at least one of the points.

【0095】[0095]

【発明の効果】以上説明したように、本発明の導電性組
成物を使用すれば、熱可塑性樹脂の種類にあまり制限さ
れることなくベース上に強固でかつ均質な薄膜(面状発
熱体)を容易に形成でき、しかもヒステリシスが極めて
少なく再現性の良い高性能の温度自己制御性発熱体を得
ることが可能となる。また、本発明の導電性組成物にあ
っては、本発明の範囲内で組成等を適宜選択することに
よって、30〜250℃といった非常に広い温度範囲に
亙って様々な自己制御温度を有する発熱体を容易に得る
ことが可能であり、特に従来は得ることが比較的困難で
あった自己制御温度の高い発熱体であっても非常に耐久
性および再現性の良い面状発熱体を得ることが可能とな
る。
As described above, when the conductive composition of the present invention is used, a strong and uniform thin film (planar heating element) is formed on the base without being limited by the kind of the thermoplastic resin. It is possible to obtain a high-performance temperature self-controlling heating element which can be easily formed and has extremely low hysteresis and good reproducibility. In addition, the conductive composition of the present invention has various self-controlling temperatures over a very wide temperature range of 30 to 250 ° C. by appropriately selecting the composition and the like within the range of the present invention. It is possible to easily obtain a heating element, and in particular, it is possible to obtain a planar heating element with excellent durability and reproducibility even if the heating element has a high self-control temperature, which was relatively difficult to obtain in the past. It becomes possible.

【0096】更に、本発明の面状発熱体は均熱性に優
れ、保持温度までの到達時間が短く、さらに制御可能な
温度範囲が上述のように広いため、本発明の面状発熱体
には多くの用途がある。そして、本発明の導電性組成物
を用いることによって基材との密着性並びに成形性に優
れる面状発熱体が容易に得られるため、本発明によって
例えばOA機器部品用の温度自己制御性を有するパイプ
状ヒーター等が容易に得られるようになる。
Further, since the planar heating element of the present invention is excellent in soaking property, has a short time to reach the holding temperature, and has a wide controllable temperature range as described above, it is not suitable for the planar heating element of the present invention. It has many uses. And, by using the conductive composition of the present invention, it is possible to easily obtain a planar heating element having excellent adhesion to a substrate and moldability. Therefore, the present invention has a temperature self-controlling property for OA equipment parts, for example. A pipe-shaped heater or the like can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる一実施例の発熱素子について
の発熱から冷却にかけての温度と素子抵抗値(全抵抗
値)との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a temperature from heat generation to cooling and an element resistance value (total resistance value) of a heating element according to an embodiment of the present invention.

【図2】 本発明の温度自己制御性パイプ状ヒーターの
一実施態様の斜視図である。
FIG. 2 is a perspective view of an embodiment of a temperature-controlled pipe heater according to the present invention.

【図3】 本発明の温度自己制御性パイプ状ヒーターの
一実施態様の部分縦断面図である。
FIG. 3 is a partial vertical cross-sectional view of one embodiment of the temperature-controlled pipe heater of the present invention.

【符号の説明】[Explanation of symbols]

1:温度上昇時の抵抗増加曲線、2:温度低下時の抵抗
減少曲線、3:絶縁性パイプ、4:銀電極、5:発熱
体、6:保護膜。
1: curve of resistance increase when temperature rises, 2: curve of resistance decrease when temperature falls, 3: insulating pipe, 4: silver electrode, 5: heating element, 6: protective film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01C 7/00 J H05B 3/20 305 3/42 7913−3K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01C 7/00 J H05B 3/20 305 3/42 7913-3K

Claims (11)

【特許請求の範囲】[Claims] 【請求項01】 (A)平均粒径2〜30μmの球状カ
ーボンおよび平均直径5000μm以下の膨張黒鉛粉末
から選ばれる少なくとも一種と、(B)熱可塑性樹脂お
よびカーボンブラックを含有するワニス状混合物とを、
(B)成分100重量部に対して(A)成分5〜95重
量部の比率で含有することを特徴とする温度自己制御性
導電性組成物。
(A) at least one selected from spherical carbon having an average particle diameter of 2 to 30 μm and expanded graphite powder having an average diameter of 5000 μm or less, and (B) a varnish mixture containing a thermoplastic resin and carbon black. ,
A temperature self-controlling conductive composition, characterized in that the component (A) is contained in an amount of 5 to 95 parts by weight with respect to 100 parts by weight of the component (B).
【請求項02】 前記球状カーボンが、(イ)球状の不
溶融性フェノール樹脂を1500〜2200℃で炭化し
たもの、(ロ)カーボン微粉体および/または加熱によ
り炭化する材料で表面被覆した球状の不溶融性フェノー
ル樹脂を1500〜2200℃で炭化したもの、および
(ハ)カーボン微粉体と加熱により炭化する材料との混
合物の球状成形体を1500〜2200℃で炭化したも
のから選ばれる少なくとも一種であることを特徴とす
る、請求項1に記載の導電性組成物。
2. The spherical carbon is (b) a spherical infusible phenol resin carbonized at 1500 to 2200 ° C., (b) a fine carbon powder and / or a spherical surface-coated material which is carbonized by heating. At least one selected from carbonized non-melting phenol resin at 1500 to 2200 ° C., and (c) spherical molded product of a mixture of carbon fine powder and a material carbonized by heating, carbonized at 1500 to 2200 ° C. The electrically conductive composition according to claim 1, wherein the electrically conductive composition is present.
【請求項03】 前記熱可塑性樹脂がポリカルボシラ
ン、ケイ素樹脂、ビスマレイミド−トリアジン樹脂、ポ
リウレタン樹脂およびポリエステル樹脂から選ばれる少
なくとも一種であることを特徴とする、請求項1または
2に記載の導電性組成物。
The conductive material according to claim 1 or 2, wherein the thermoplastic resin is at least one selected from polycarbosilane, silicon resin, bismaleimide-triazine resin, polyurethane resin and polyester resin. Sex composition.
【請求項04】 前記熱可塑性樹脂がポリカルボシラン
とケイ素樹脂との混合物、あるいはケイ素樹脂であるこ
とを特徴とする、請求項1〜3のうちのいずれか1項に
記載の導電性組成物。
04. The electrically conductive composition according to claim 1, wherein the thermoplastic resin is a mixture of polycarbosilane and a silicon resin, or a silicon resin. .
【請求項05】 前記ワニス状混合物が前記熱可塑性樹
脂を90〜99重量%、前記カーボンブラックを1〜1
0重量%含有することを特徴とする、請求項1〜4のう
ちのいずれか1項に記載の導電性組成物。
05. The varnish mixture comprises 90 to 99% by weight of the thermoplastic resin and 1 to 1 of the carbon black.
The electrically conductive composition according to claim 1, wherein the electrically conductive composition is contained in an amount of 0% by weight.
【請求項06】 前記ワニス状混合物が溶剤および/ま
たは分散剤をさらに含有することを特徴とする、請求項
1〜5のうちのいずれか1項に記載の導電性組成物。
6. The electrically conductive composition according to claim 1, wherein the varnish-like mixture further contains a solvent and / or a dispersant.
【請求項07】 前記溶剤がパラフィン系溶剤、酢酸カ
ルビトール、ジメチルホルムアミドおよびγ−ブチルラ
クトンから選ばれる少なくとも一種であることを特徴と
する、請求項6に記載の導電性組成物。
7. The conductive composition according to claim 6, wherein the solvent is at least one selected from paraffinic solvents, carbitol acetate, dimethylformamide, and γ-butyl lactone.
【請求項08】 前記ワニス状混合物が前記熱可塑性樹
脂および溶剤を90〜99重量%、前記カーボンブラッ
クおよび分散剤を1〜10重量%含有することを特徴と
する、請求項6または7に記載の導電性組成物。
8. The varnish-like mixture according to claim 6, wherein the thermoplastic resin and the solvent are contained in an amount of 90 to 99% by weight, and the carbon black and the dispersant are contained in an amount of 1 to 10% by weight. Conductive composition of.
【請求項09】 前記請求項1〜8のうちのいずれか1
項に記載の導電性組成物を面状に成形したものを熱処理
して得られたものであることを特徴とする温度自己制御
性面状発熱体。
09. Any one of claims 1 to 8
A planar heating element having a temperature self-controlling property, which is obtained by heat-treating a sheet obtained by molding the electroconductive composition according to the item 1.
【請求項10】 パイプ状絶縁性基材と、 前記請求項1〜8のうちのいずれか1項に記載の導電性
組成物をパイプ状絶縁性基材上に面状に成形したものを
熱処理して得られた発熱体と、 該発熱体に通電するための電極とを具備することを特徴
とする温度自己制御性パイプ状ヒーター。
10. A pipe-shaped insulating base material, and a sheet-shaped molding of the conductive composition according to claim 1 heat-treated on the pipe-shaped insulating base material. A temperature-controlled pipe-shaped heater comprising: the heating element obtained in this way; and an electrode for energizing the heating element.
【請求項11】 前記発熱体上に被膜状絶縁材料からな
る保護膜をさらに具備することを特徴とする温度自己制
御性パイプ状ヒーター。
11. The temperature self-controlling pipe-shaped heater, further comprising a protective film made of a film-shaped insulating material on the heating element.
JP5142495A 1992-06-22 1993-05-24 Self-regulating conductive composition, self-regulating planar heating element, and self-regulating pipe heater Expired - Lifetime JP2777961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142495A JP2777961B2 (en) 1992-06-22 1993-05-24 Self-regulating conductive composition, self-regulating planar heating element, and self-regulating pipe heater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18577692 1992-06-22
JP4-185776 1992-06-22
JP5142495A JP2777961B2 (en) 1992-06-22 1993-05-24 Self-regulating conductive composition, self-regulating planar heating element, and self-regulating pipe heater

Publications (2)

Publication Number Publication Date
JPH0696843A true JPH0696843A (en) 1994-04-08
JP2777961B2 JP2777961B2 (en) 1998-07-23

Family

ID=26474479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142495A Expired - Lifetime JP2777961B2 (en) 1992-06-22 1993-05-24 Self-regulating conductive composition, self-regulating planar heating element, and self-regulating pipe heater

Country Status (1)

Country Link
JP (1) JP2777961B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856500A (en) * 1994-08-16 1996-03-05 Nippon Carbon Co Ltd Heating mat for horticulture (orchid)
JPH09113446A (en) * 1995-10-13 1997-05-02 Horiba Ltd Infrared gas analyzer
CN1089352C (en) * 1996-12-26 2002-08-21 三嶽电子工业株式会社 Printing ink for self-temp. -adjusting heat release device
WO2005012429A1 (en) * 2003-07-31 2005-02-10 Dainippon Ink And Chemicals, Inc. Polyurethane resin formed product and method for production thereof
JP2008269876A (en) * 2007-04-18 2008-11-06 Toyobo Co Ltd Conductive paste, printed circuit using the same, and flat heating body
WO2008133073A1 (en) * 2007-04-18 2008-11-06 Toyo Boseki Kabushiki Kaisha Conductive paste, and printed circuit board and planar heat generating body each using the same
US7675004B2 (en) 2004-03-12 2010-03-09 Panasonic Corporation Heating element and production method thereof
US7690366B1 (en) 2009-05-18 2010-04-06 Robert Bosch Gmbh Throttle valve and method of producing the same
US7955542B2 (en) 2009-05-18 2011-06-07 Robert Bosch Gmbh Method of producing a throttle assembly
EP2365493A1 (en) 2002-06-19 2011-09-14 Panasonic Corporation Method of manufacturing a flexible PTC heating element
JP2013015291A (en) * 2011-07-05 2013-01-24 Miyazawa Kazuhiro Heating apparatus, glass system, processing apparatus, and program
WO2017007056A1 (en) * 2015-07-03 2017-01-12 주식회사 금영 Convection heater using planar heating element
CN110698982A (en) * 2019-10-13 2020-01-17 福建恒安集团有限公司 Intelligent temperature-adjusting non-woven fabric, intelligent temperature-adjusting coating and intelligent temperature-adjusting disposable hygienic product

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856500A (en) * 1994-08-16 1996-03-05 Nippon Carbon Co Ltd Heating mat for horticulture (orchid)
JPH09113446A (en) * 1995-10-13 1997-05-02 Horiba Ltd Infrared gas analyzer
CN1089352C (en) * 1996-12-26 2002-08-21 三嶽电子工业株式会社 Printing ink for self-temp. -adjusting heat release device
US8367987B2 (en) 2002-06-19 2013-02-05 Panasonic Corporation Flexible PTC heating element and method of manufacturing the heating element
EP2365493A1 (en) 2002-06-19 2011-09-14 Panasonic Corporation Method of manufacturing a flexible PTC heating element
WO2005012429A1 (en) * 2003-07-31 2005-02-10 Dainippon Ink And Chemicals, Inc. Polyurethane resin formed product and method for production thereof
US7675004B2 (en) 2004-03-12 2010-03-09 Panasonic Corporation Heating element and production method thereof
JPWO2008133073A1 (en) * 2007-04-18 2010-07-22 東洋紡績株式会社 Conductive paste, printed circuit using the same, and planar heating element
WO2008133073A1 (en) * 2007-04-18 2008-11-06 Toyo Boseki Kabushiki Kaisha Conductive paste, and printed circuit board and planar heat generating body each using the same
JP2008269876A (en) * 2007-04-18 2008-11-06 Toyobo Co Ltd Conductive paste, printed circuit using the same, and flat heating body
US7690366B1 (en) 2009-05-18 2010-04-06 Robert Bosch Gmbh Throttle valve and method of producing the same
US7955542B2 (en) 2009-05-18 2011-06-07 Robert Bosch Gmbh Method of producing a throttle assembly
JP2013015291A (en) * 2011-07-05 2013-01-24 Miyazawa Kazuhiro Heating apparatus, glass system, processing apparatus, and program
WO2017007056A1 (en) * 2015-07-03 2017-01-12 주식회사 금영 Convection heater using planar heating element
CN110698982A (en) * 2019-10-13 2020-01-17 福建恒安集团有限公司 Intelligent temperature-adjusting non-woven fabric, intelligent temperature-adjusting coating and intelligent temperature-adjusting disposable hygienic product

Also Published As

Publication number Publication date
JP2777961B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
JP2777961B2 (en) Self-regulating conductive composition, self-regulating planar heating element, and self-regulating pipe heater
US5181006A (en) Method of making an electrical device comprising a conductive polymer composition
KR0140203B1 (en) Conductive polymer composition
CA1277829C (en) Polymer thick film inks
JP2544892B2 (en) Polymer thick film resistor composition
US5344591A (en) Self-regulating laminar heating device and method of forming same
JP2947613B2 (en) Heat-sensitive compound, method for producing the same and method of using the same
JP3882622B2 (en) PTC resistor
WO2005124471A1 (en) Heater for fixing and method of manufacturing the same
JPH09190873A (en) Manufacture of sheet heater unit
JPH11310739A (en) Conductive ink composition and flat heating element
JP4126637B2 (en) Printing ink for self-temperature control heater
US20060043343A1 (en) Polymer composition and film having positive temperature coefficient
KR20170135747A (en) Planar heater structure containing carbon
CN112770422A (en) Self-temperature-control electric heating film and preparation method and application thereof
JP3119265B2 (en) Tubular heating element
JP3085307B2 (en) Tape or plate heating element with self-controlled temperature
RU2082239C1 (en) Electricity conducting compound for resistive heating element; resistive heating element and its manufacturing process
JP3428857B2 (en) Self-temperature control surface heating element
JPS6366036B2 (en)
JPH0689270B2 (en) Conductive exothermic paint
JPH06157827A (en) Conductive composition and heating element sheet capable of controlling its own temperature
JP2862267B2 (en) Rod-shaped heating element
JPH08126580A (en) Cooker
JPH02279984A (en) Temperature self controllable heating furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407