JPS6366036B2 - - Google Patents

Info

Publication number
JPS6366036B2
JPS6366036B2 JP28641186A JP28641186A JPS6366036B2 JP S6366036 B2 JPS6366036 B2 JP S6366036B2 JP 28641186 A JP28641186 A JP 28641186A JP 28641186 A JP28641186 A JP 28641186A JP S6366036 B2 JPS6366036 B2 JP S6366036B2
Authority
JP
Japan
Prior art keywords
heating element
electrically insulating
film
insulating coating
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28641186A
Other languages
Japanese (ja)
Other versions
JPS63138683A (en
Inventor
Yoshihiro Kobuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IKEDA BUTSUSAN KK
Original Assignee
IKEDA BUTSUSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IKEDA BUTSUSAN KK filed Critical IKEDA BUTSUSAN KK
Priority to JP28641186A priority Critical patent/JPS63138683A/en
Publication of JPS63138683A publication Critical patent/JPS63138683A/en
Publication of JPS6366036B2 publication Critical patent/JPS6366036B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Description

【発明の詳細な説明】 本発明を面状発熱体に関する。 カーボンを主材とする固定抵抗式の面状発熱体
が開発されてから既に長年月が経過し、その後自
己温度制御型が加わり急速に普通されている。そ
の特長は通電後の昇温速度が速く且つ省電力型で
あるために産業界および家庭用に使用されてい
る。この型の面状発熱体は上記の如きすぐれた特
長を有するため普及発展が期待されたが、成膜技
術が充分でなく焼損事故が続出し火災事故が発生
する等の欠点を生ずる。自己温度制御型に限らず
面状発熱体はその温度分布が均一である。使用温
度範囲が広く、特に100℃以上の高温で長時間使
用可能であることが望まれているが現用の面状発
熱体は合成樹脂基材を使用しているため100℃以
上、特に150℃以上の温度にして長時間使用でき
るものは殆んどなく、面状発熱体の発展を阻害す
る一因になつている。 従来の面状発熱体の一例を第1図について説明
すると、厚さ約250μのポリエステル基板1の表
面に市販の銀ペーストを自動印刷機でスクリーン
印刷した後、コンベアー炉において温度約180℃
で約10分間焼成して所定の銀電極2を形成し、そ
の上側に例えばつぎのようにして調製された発熱
体用抵抗ペーストを自動印刷機でスクリーン印刷
後、コンベアー炉において温度約180℃で約10分
間焼成して所要厚みの発熱抵抗体膜(層)3を形
成している。上記の発熱体用抵抗ペーストは、例
えばエチレン―酢酸ビニル共重合体約224g、平
均粒子径約2μのグラフアイト約176g、アルミナ
粉末約45g、難燃剤約45g、酸化アンチモン約
22.5g、老化防止剤約45g、テトラリン約1800g
を電動撹拌機付処理槽に加え、撹拌しながら温度
を約100℃に保つて約1時間継続した後、水冷し
て得られたものである。 上記の如く形成された発熱抵抗体膜には、その
表面に経年変化を防止するため熱硬化型フエノー
ル樹脂約70%とアルミナ約30%を主成分として含
有する溶剤ペーストをスクリーン印刷した後、コ
ンベアー炉にかけ、温度約180℃で約10分間焼成
して、所要厚みのフエノール樹脂系表面被覆膜4
を設け、この被覆膜の上に耐熱性接着剤層5を介
して厚さ約150μのポリエステル基板6をホツト
ローラー等を用いて圧着して発熱体素子となし、
銀電極には銀メツキ黄銅製端子7とリード線8を
連設して形成している。 上記の如く形成された面状発熱体は、その発熱
抵抗体膜3が不均質に形成されていると、該膜内
の抵抗値の異常に低い部分において局部的過熱が
起り、その部分の発熱抵抗体膜が融け、ついで対
向するポリエステル基板が溶融、熱分解し、つい
に発火し焼損事故を起こす。このような事故は面
状発熱体の構成材料に350℃以下の如き比較的融
点が低く且つ燃え易い合成樹脂の基材その他を使
用していることも、前述の発熱体抵抗体膜の不均
質によつて生ずる局部的過熱による事故の発生を
一層助長している。 上記従来の面状発熱体の有する欠点に鑑み発明
者は種々研究の結果本発明に到達した。本発明は
金属箔若しくは板の表面に電気絶縁被覆膜を有す
る基材を使用すると共に発熱抵抗体膜の上に特殊
の電気絶縁被覆膜を設けた。また特殊な方法で調
製した発熱体用抵抗ペースを使用して形成し全体
が極めて均質な発熱抵抗体膜を有する面状発熱体
を形成したもので、耐熱性にすぐれ、200℃以上
250℃においても長時間継続使用しても局部的過
熱による溶融や焼損等の事故発生が全くなく長期
安全に効率よく使用できる。 以下本発明を実施例について説明すると、電気
絶縁性基材11の面に銀電極12を設け、この電
極の上側には発熱体用抵抗ペースト等を塗布して
形成された発熱抵抗体膜(層)13が設けられ、
この発熱抵抗体膜の上面に絶縁被覆膜14を設け
て発熱体素子が形成され、前記電極には端子17
を介してリード線18に連設され、必要に応じて
更にその全表面に絶縁被覆膜15を設けて、面状
発熱体を形成している。この面状発熱体におい
て、上記基材1はアルミニウム、銅、黄銅、銀、
鉄、ステンレス鋼等の金属の厚さ約1〜500μの
箔若しくは厚さ約0.5〜10mmの板の表面に有機金
属化合物、例えば、オルガノシルセスキオキサ
ン、エチルシリケート、ポリチタノカルボシラン
その他の含有液に浸漬、若しくは含有液を適当な
方法で塗布した後、分解温度その他所要温度に焼
成してセラミツク質の絶縁皮覆膜11aを形成し
て使用される。有機金属化合物は上記以外の各種
のものも選択使用できる。 前記絶縁被覆膜14,15も前記絶縁皮膜と同
様な金属有機化合物の溶剤溶液その他の含有液を
同様に塗布被覆後、同様に焼成して形成され、耐
熱性耐薬品性、耐久性な絶縁被覆が得られる。 銀電極12は、市販の銀系導電ペースト等を用
い所定にスクリーン印刷後、焼成して形成でき
る。 発熱抵抗体膜13は前記と従来法と同様にカー
ボンまたは金属粉末等の導電性材料粉末、アルミ
ナ、酸化アンチモンその他のセラミツク系材料粉
末、合成樹脂系結着剤、難燃剤、老化防止剤等の
それぞれ所要量を表面活性剤を含み若しくは含ま
ないテトラリンその他の溶剤の所要量と共に撹拌
機付処理槽に加え、撹拌しながら温度を約100℃
に保つて約1時間継続した後、水冷して調製した
発熱体用抵抗ペーストを使用して形成できる。ま
た、つぎの如き特殊方法により調製した発熱体用
抵抗ペーストもある。即ち、キシレン、カルビト
ール、テトラリン、デカリン等の溶剤に平均粒子
径約1μ以下、好ましくはサブミクロンオーダー
程度の超微粒子にしたグラフアイト、カーボンブ
ラツクまたは金属等の導電性材料とアルミナ、酸
化アンチモンその他のセラミツク質材料等の前記
溶剤に不溶性な材料、合成樹脂系結着剤、難燃
剤、老化防止剤、その他のそれぞれの処要量を撹
拌機付処理槽に添加、撹拌しながら温度を約100
℃に保持して一定時間例えば約1時間処理し、こ
れに超音波を印荷せず若しくは超音波を適当な時
間印荷した後、急冷して調製される。このように
調製された発熱体用抵抗ペーストは均一安定性が
極めてよく、形成された発熱抵抗体膜も均質にで
き、局部的過熱等が一層防止できる。また上記の
場合溶剤に投入される材料の添加を次の如くする
と更に一層均一安定性のすぐれたペーストが得ら
れる。即ち溶剤に超微粒子にした導電性材料とセ
ラミツク質材料の溶剤に不溶性な材料を撹拌しな
がら順に添加、添加後必要に応じてこれに超音波
を印荷し、ついで結着剤、難燃剤、老化防止剤等
を順次撹拌しつつ添加後、超音波を一定時間印荷
し、急冷して調製できる。印荷される超音波は汚
染した機械部品その他の物品の洗浄等の場合に一
般に使用される周波数でよい場合が多い。 以下に本発明の面状発熱体の例を示す。各例に
ついて破壊試験(500V、30分間印荷)、表面温度
差(100V、30分間通電後の表面温度分布を測定
した時の最大温度差)、及び推定寿命(240V、
180日間通電後の特性変化から推定)は第1表に
示す通りであつた。又各例について基材の厚みと
表面温度差(℃)の関係は第4図のとおりであつ
た。なお前記従来法により作成した面状発熱体に
ついても、比較例として同様の試験結果を併記し
た。 例 1 厚さ100μのアルミニウム箔を陽極酸化して表
面にアルミナ被覆膜を形成した後前記被覆膜に封
孔処理を施こし、電気絶縁性基材を得た。この基
材の面の所定部位に市販の銀ペーストを用い自動
印刷機によりスクリーン印刷し、約180℃で10分
間焼成し銀電極を設け、この電極間に次に示す方
法で調製したエチレン―酢酸ビニル共重合体、グ
ラフアイト系80℃発熱体用低抗ペーストを自動印
刷機により所定厚にスクリーン印刷した後、178
〜182℃で10分間焼成して発熱抵抗膜を形成した。
ついで前記銀電極に端子、リード線を取りつけた
後、これをオルガノシルセスキオキサン(商品名
グラスレジン)50%エタノール溶液中に浸漬し、
取出して風乾後、温度178〜182℃で30分間焼成し
全表面に耐熱性セラミツク被覆膜を有する面状発
熱体を得た。 発熱体用抵抗ペーストの製造原料配合例 グラフアイト粉末(平均粒子径2μ) 176g アルミナ粉末(平均粒子径2μ) 45〃 酸化アンチモン粉末(平均粒子径2μ) 22.5〃 エチレン―酢酸ビニル共重合体 224〃 難燃剤 45〃 老化防止剤 45〃 上記配合原料をテトラリン1800g中に添加撹拌
しつつ100℃にして1時間撹拌混合し水冷する。 例 2 電気絶縁性基材として、厚さ200μのアルミニ
ウム箔をオルガノシルセスキオキサン50%エタノ
ール溶液中に浸漬した後、引き上げて風乾し、温
度200℃で30分間焼成してその表面に絶縁被覆膜
を設けたものを使用した以外は実施例1と同様に
形成した面状発熱体を得た。 例 3 厚さ300μのアルミニウム箔の表面にポリチタ
ノカルボシラン20%エタノール溶液をスプレーし
た後、温度250℃で30分間焼成して絶縁被覆膜を
形成した電気絶縁性基材を使用したことと、オル
ガノシルセスキオキサンの代りにポリチタノカル
ボシラン50%アルコール溶液に浸漬し風乾後、温
度250℃で30分間焼成して全表面に絶縁被覆膜を
形成したこと、以外は実施例1とほぼ同様に形成
して面状発熱体を得た。 例 4 厚さ400μのアルミニウム箔の表面にオルガノ
シルセスキオキサン50%アルコール溶液をスプレ
ーし、温度200±2℃で30分間焼成して絶縁被覆
膜を形成した電気絶縁性基材を使用したことと、
オルガノシルセスキオキサンの代りにポリチタノ
カルボシランの50%アルコール溶液に浸し風乾後
250℃で30分間焼成して全表面にセラミツク被覆
膜を形成した以外は、実施例1とほぼ同様にして
面状発熱体を得た。 例 5 厚さ200μのアルミニウム基板をエチルシリケ
ートの50%アルコール溶液に浸漬した後風乾し、
これを200℃で30分間焼成して絶縁被覆膜を形成
した絶縁性基材を使用したこと以外は例4と同様
にして面状発熱体を得た。 例 6 厚さ600μのカラーアルミニウム基板を用いた
以外は例5と同様にして面状発熱体を得た。 例 7 厚さ100μのアルミニウム箔の表面に実施例3
と同様にして形成した電気絶縁性基材を使用した
ことと、次に示す方法で製造した発熱体用抵抗ペ
ーストを使用したこと以外は実施例3とほぼ同様
にして面状発熱体を得た。 発熱体用抵抗ペーストの製造例 グラフアイト超微粉末 176g 平均粒径5μの市販の黒鉛を ボールミルで粉砕平均粒径 0.5μの超微粉末 アルミナ超微粉末 45〃 (平均粒径0.2μ) 酸化アンチモン超微粉末 22.5〃 (乳鉢で粉砕平均粒径0.5μ) エチレン―酢酸ビニル共重合体 224〃 難燃剤 45〃 老化防止剤 4.5〃 テトラリン1800gを撹拌し昇温(100℃)しな
がら上記の配合原料を加え、温度100℃で1時間
電動撹拌混合し、撹拌を継続しながら水冷し、室
温に12時間放置し、所要のペーストを得た。 例 8 厚さ200μのカラーアルミニウムを使用したこ
とと、発熱体用抵抗ペーストを下記の方法で製造
した以外は、実施例7とほぼ同様にして面状発熱
体を得た。テトラリン1800gを撹拌し昇温(100
℃)しながらグラフアイト、アルミナ、酸化アン
チモンの各超微粒子およびエチレン―酢酸ビニル
共重合体、難燃剤、老化防止剤の各所要量を順次
添加し、100℃で1時間撹拌をつづけた後、これ
に超音波(30キロヘルツ)を10分間印荷し、その
まま急冷し、所要のペーストを得た。 例 9 300μのアルミニウム基板の表面にオルガノシ
ルセスキオキサン30%アルコール溶液を塗布し、
風乾後250℃で30分間焼成して絶縁被覆膜を形成
した絶縁性基材を使用した以外は例8と同様にし
て面状発熱体を得た。 例 10 400μアルミニウム基板を使用した以外は例9
と同様にして面状発熱体を得た。 例 11 600μのアルミニウム基板を使用した以外は例
9と同様にして面状発熱体を得た。 例 12 1000μのアルミニウム基板を使用した以外は例
9と同様にして面状発熱体を得た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a planar heating element. Many years have passed since the development of a fixed-resistance sheet heating element mainly made of carbon, and since then self-temperature control types have been added and are rapidly becoming commonplace. Its features include a fast temperature rise rate after energization and low power consumption, so it is used in industry and homes. This type of sheet heating element had the excellent features mentioned above and was expected to become popular, but the film-forming technology was not sufficient, resulting in a number of burnout accidents and fire accidents. Planar heating elements, regardless of the self-temperature control type, have a uniform temperature distribution. It is desired that the temperature range for use is wide, and that it can be used for a long time at high temperatures of 100℃ or higher, but the current sheet heating elements use synthetic resin base materials, so they can be used at temperatures of 100℃ or higher, especially 150℃. There are almost no heating elements that can be used for long periods of time at temperatures above this level, which is one of the reasons for inhibiting the development of planar heating elements. An example of a conventional sheet heating element is explained with reference to FIG. 1. After screen-printing a commercially available silver paste on the surface of a polyester substrate 1 with a thickness of about 250 μm using an automatic printing machine, it is heated to a temperature of about 180° C. in a conveyor furnace.
After baking for about 10 minutes to form a predetermined silver electrode 2, a resistance paste for a heating element prepared as follows is screen-printed on top of it using an automatic printing machine, and then baked in a conveyor furnace at a temperature of about 180°C. The heating resistor film (layer) 3 having the required thickness is formed by firing for about 10 minutes. The above resistance paste for heating elements includes, for example, about 224 g of ethylene-vinyl acetate copolymer, about 176 g of graphite with an average particle size of about 2μ, about 45 g of alumina powder, about 45 g of flame retardant, and about antimony oxide.
22.5g, anti-aging agent approx. 45g, tetralin approx. 1800g
was added to a treatment tank equipped with an electric stirrer, kept at a temperature of about 100°C while stirring for about 1 hour, and then cooled with water. The heating resistor film formed as described above is screen-printed with a solvent paste containing approximately 70% thermosetting phenolic resin and approximately 30% alumina as main components on its surface to prevent deterioration over time. Place in a furnace and bake at a temperature of about 180°C for about 10 minutes to form a phenolic resin surface coating film 4 of the required thickness.
A polyester substrate 6 with a thickness of about 150 μm is bonded onto this coating film via a heat-resistant adhesive layer 5 using a hot roller or the like to form a heating element.
The silver electrode is formed by connecting a silver-plated brass terminal 7 and a lead wire 8. In the planar heating element formed as described above, if the heating resistor film 3 is formed non-uniformly, local overheating occurs in a part of the film with an abnormally low resistance value, and heat generation occurs in that part. The resistor film melts, and then the opposing polyester substrate melts and thermally decomposes, eventually catching fire and causing a burnout accident. Such accidents are caused by the use of synthetic resin base materials with relatively low melting points of 350°C or less and flammability as constituent materials of the sheet heating elements, and the non-uniformity of the heating element resistor films mentioned above. The occurrence of accidents due to localized overheating caused by this is further exacerbated. In view of the above-mentioned drawbacks of the conventional planar heating element, the inventors have arrived at the present invention as a result of various studies. In the present invention, a base material having an electrically insulating coating film on the surface of a metal foil or plate is used, and a special electrically insulating coating film is provided on the heating resistor film. In addition, the sheet heating element is formed using a resistance paste for heating elements prepared using a special method, and has an extremely homogeneous heating resistor film throughout, and has excellent heat resistance, exceeding 200℃.
Even when used continuously for long periods of time at 250℃, there is no occurrence of accidents such as melting or burnout due to localized overheating, allowing for long-term, safe and efficient use. Hereinafter, the present invention will be described with reference to an embodiment. A silver electrode 12 is provided on the surface of an electrically insulating base material 11, and a heat generating resistor film (layer) is formed by applying a heat generating element resistance paste or the like on the upper side of this electrode. ) 13 are provided,
A heating element is formed by providing an insulating coating film 14 on the upper surface of this heating resistor film, and a terminal 17 is attached to the electrode.
If necessary, an insulating coating film 15 is further provided on the entire surface of the heating element to form a planar heating element. In this planar heating element, the base material 1 is made of aluminum, copper, brass, silver,
Organometallic compounds such as organosilsesquioxane, ethyl silicate, polytitanocarbosilane, etc. are applied to the surface of a foil with a thickness of approximately 1 to 500 μm or a plate of approximately 0.5 to 10 mm in thickness made of metal such as iron or stainless steel. After being immersed in the containing liquid or applying the containing liquid by an appropriate method, it is fired to the decomposition temperature or other required temperature to form a ceramic insulating coating film 11a for use. Various organometallic compounds other than those mentioned above can also be selected and used. The insulating coating films 14 and 15 are also formed by applying a solvent solution or other liquid containing the same metal-organic compound as the insulating coating and then baking in the same manner, and are heat-resistant, chemical-resistant, and durable insulators. A coating is obtained. The silver electrode 12 can be formed by screen-printing a commercially available silver-based conductive paste or the like in a predetermined area and then firing. The heating resistor film 13 is made of conductive material powder such as carbon or metal powder, alumina, antimony oxide or other ceramic material powder, synthetic resin binder, flame retardant, anti-aging agent, etc. as in the conventional method. Add the required amount of each to a treatment tank with a stirrer together with the required amount of tetralin or other solvent containing or not containing a surfactant, and raise the temperature to approximately 100℃ while stirring.
It can be formed using a resistance paste for a heating element prepared by keeping it at a temperature for about 1 hour and then cooling it with water. There are also resistance pastes for heating elements prepared by the following special method. That is, a conductive material such as graphite, carbon black, or metal made into ultrafine particles with an average particle diameter of about 1 μ or less, preferably on the order of submicrons, and alumina, antimony oxide, etc., in a solvent such as xylene, carbitol, tetralin, or decalin. The required amounts of materials insoluble in the solvent such as ceramic materials, synthetic resin binders, flame retardants, anti-aging agents, and others were added to a treatment tank equipped with a stirrer, and the temperature was raised to about 100℃ while stirring.
It is prepared by maintaining it at a temperature of 0.degree. C. and treating it for a certain period of time, for example, about 1 hour, without applying ultrasonic waves or applying ultrasonic waves for an appropriate period of time, and then rapidly cooling it. The heat generating resistor paste prepared in this way has extremely good uniformity and stability, and the formed heat generating resistor film can be made homogeneous, thereby further preventing localized overheating. In the above case, if the materials added to the solvent are added as follows, a paste with even better uniformity and stability can be obtained. That is, a conductive material made into ultrafine particles and a ceramic material insoluble in the solvent are sequentially added to a solvent while stirring. After the addition, ultrasonic waves are applied to this as necessary, and then a binder, a flame retardant, It can be prepared by sequentially adding anti-aging agents and the like with stirring, applying ultrasonic waves for a certain period of time, and rapidly cooling. The applied ultrasonic waves may often be of a frequency commonly used for cleaning contaminated mechanical parts or other articles. Examples of the planar heating element of the present invention are shown below. For each example, a destructive test (500V, 30 minute load), surface temperature difference (100V, maximum temperature difference when measuring the surface temperature distribution after 30 minute energization), and estimated life (240V, 30 minute load),
(estimated from the change in characteristics after being energized for 180 days) were as shown in Table 1. Furthermore, the relationship between the thickness of the base material and the surface temperature difference (°C) for each example was as shown in FIG. Note that similar test results for the sheet heating element produced by the conventional method are also shown as a comparative example. Example 1 An aluminum foil having a thickness of 100 μm was anodized to form an alumina coating film on the surface, and then the coating film was subjected to a sealing treatment to obtain an electrically insulating base material. A commercially available silver paste was screen printed on a predetermined part of the surface of the base material using an automatic printing machine, and then baked at about 180°C for 10 minutes to provide a silver electrode. After screen-printing vinyl copolymer, graphite-based low resistance paste for 80℃ heating elements to a specified thickness using an automatic printing machine,
A heat-generating resistive film was formed by baking at ~182°C for 10 minutes.
Next, after attaching a terminal and a lead wire to the silver electrode, this was immersed in a 50% ethanol solution of organosilsesquioxane (trade name: glass resin).
After taking it out and air-drying it, it was fired for 30 minutes at a temperature of 178 to 182°C to obtain a planar heating element having a heat-resistant ceramic coating film on the entire surface. Example of blending raw materials for manufacturing resistance paste for heating elements Graphite powder (average particle size 2μ) 176g Alumina powder (average particle size 2μ) 45〃 Antimony oxide powder (average particle size 2μ) 22.5〃 Ethylene-vinyl acetate copolymer 224〃 Flame retardant 45〃 Anti-aging agent 45〃 Add the above blended raw materials to 1800 g of tetralin, heat to 100°C with stirring, mix for 1 hour, and cool with water. Example 2 As an electrically insulating base material, aluminum foil with a thickness of 200μ was immersed in a 50% organosilsesquioxane ethanol solution, then pulled out, air-dried, and baked at a temperature of 200°C for 30 minutes to coat its surface with insulation. A planar heating element was obtained in the same manner as in Example 1 except that a heating element provided with a coating was used. Example 3 An electrically insulating base material was used in which an insulating coating film was formed by spraying a 20% polytitanocarbosilane ethanol solution on the surface of a 300 μ thick aluminum foil and then baking it at a temperature of 250°C for 30 minutes. Example except that instead of organosilsesquioxane, it was immersed in a 50% alcohol solution of polytitanocarbosilane, air-dried, and then baked at a temperature of 250°C for 30 minutes to form an insulating coating film on the entire surface. A planar heating element was obtained in substantially the same manner as in Example 1. Example 4 An electrically insulating base material was used, in which a 50% alcohol solution of organosilsesquioxane was sprayed on the surface of a 400μ thick aluminum foil and an insulating coating was formed by baking at a temperature of 200±2°C for 30 minutes. And,
After soaking in a 50% alcohol solution of polytitanocarbosilane instead of organosilsesquioxane and air drying.
A planar heating element was obtained in substantially the same manner as in Example 1, except that it was fired at 250° C. for 30 minutes to form a ceramic coating film on the entire surface. Example 5 An aluminum substrate with a thickness of 200μ was immersed in a 50% alcohol solution of ethyl silicate, then air-dried.
A planar heating element was obtained in the same manner as in Example 4, except that an insulating base material on which an insulating coating film was formed by baking this at 200° C. for 30 minutes was used. Example 6 A planar heating element was obtained in the same manner as in Example 5 except that a colored aluminum substrate with a thickness of 600 μm was used. Example 7 Example 3 on the surface of 100μ thick aluminum foil
A planar heating element was obtained in substantially the same manner as in Example 3, except that an electrically insulating base material formed in the same manner as in Example 3 was used, and a resistance paste for a heating element manufactured by the following method was used. . Manufacturing example of resistance paste for heating elements Graphite ultrafine powder 176g Commercially available graphite with an average particle size of 5μ is ground in a ball mill. Ultrafine powder with an average particle size of 0.5μ Ultrafine alumina powder 45〃 (Average particle size 0.2μ) Antimony oxide Ultrafine powder 22.5〃 (Average particle size 0.5μ when crushed in a mortar) Ethylene-vinyl acetate copolymer 224〃 Flame retardant 45〃 Anti-aging agent 4.5〃 While stirring 1800g of tetralin and raising the temperature (100℃), add the above compounded raw materials The mixture was mixed with electric stirring at a temperature of 100°C for 1 hour, cooled with water while stirring, and left at room temperature for 12 hours to obtain the desired paste. Example 8 A planar heating element was obtained in substantially the same manner as in Example 7, except that colored aluminum with a thickness of 200 μm was used and the resistance paste for the heating element was manufactured in the following manner. Stir 1800g of tetralin and raise the temperature (100g
℃), ultrafine particles of graphite, alumina, and antimony oxide, as well as the required amounts of ethylene-vinyl acetate copolymer, flame retardant, and anti-aging agent were added one after another while stirring at 100℃ for 1 hour. Ultrasonic waves (30 kilohertz) were applied to this for 10 minutes, and the paste was rapidly cooled to obtain the desired paste. Example 9 Apply a 30% alcohol solution of organosilsesquioxane to the surface of a 300μ aluminum substrate,
A planar heating element was obtained in the same manner as in Example 8, except that an insulating base material on which an insulating coating film was formed by baking at 250° C. for 30 minutes after air drying was used. Example 10 Example 9 except that a 400μ aluminum substrate was used
A planar heating element was obtained in the same manner as above. Example 11 A planar heating element was obtained in the same manner as in Example 9 except that a 600μ aluminum substrate was used. Example 12 A planar heating element was obtained in the same manner as in Example 9 except that a 1000 μm aluminum substrate was used. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は従来型
の面状発熱体の説明用概略断面図、第2図は本発
明の面状発熱体の説明用概略断面図、第3図は変
形例を示す第2図同様の断面図、第4図は基材の
厚みと表面温度差の関係を示す図である。 11は基材、11aは絶縁被覆膜、12は電
極、13は発熱抵抗体膜、14および15は絶縁
被覆膜、17は端子、18はリード線。
The drawings show embodiments of the present invention; FIG. 1 is a schematic cross-sectional view of a conventional planar heating element, FIG. 2 is a schematic cross-sectional view of a planar heating element of the present invention, and FIG. FIG. 4 is a cross-sectional view similar to FIG. 2 showing a modification, and FIG. 4 is a diagram showing the relationship between the thickness of the base material and the difference in surface temperature. 11 is a base material, 11a is an insulating coating film, 12 is an electrode, 13 is a heating resistor film, 14 and 15 are insulating coating films, 17 is a terminal, and 18 is a lead wire.

Claims (1)

【特許請求の範囲】 1 電気絶縁被覆膜を設けた金属箔または金属板
の表面に電極を存して発熱抵抗体膜を設けその上
面に電気絶縁被覆膜を形成した面状発熱体であつ
て、前記絶縁被覆膜は表面に有機金属化合物の被
覆膜を設けた後焼成して形成した面状発熱体。 2 電気絶縁性基材の表面に電極を存して発熱抵
抗体膜を設けその上に電気絶縁性被覆を形成した
面発熱体であつて、前記発熱抵抗体膜は溶剤に超
微粒子にした導電性材料とセラミツク質材料等の
溶剤に不溶性な材料、合成樹脂系結着剤その他の
配合材料を添加混合しこれに超音波を印荷して若
しくは印荷しないで得られる発熱体用抵抗ペース
トを均一に塗布し焼成して形成した面状発熱体。 3 電気絶縁被覆膜を設けた金属製基材の面に電
極を存して発熱抵抗体膜を設けその上面に電気絶
縁被覆膜を形成した面状発熱体であつて、前記絶
縁被覆膜は表面に有機金属化合物の被覆膜を設け
た後焼成して形成し、発熱抵抗体膜は溶剤に超微
粒子にした該溶剤に不溶性な材料、合成樹脂系結
着剤その他の配合材料を添加混合し、これに超音
波を印荷して若しくは印荷しないで得られる発熱
体用抵抗ペーストを塗布し焼成して形成した面状
発熱体。
[Scope of Claims] 1. A planar heating element in which an electrode is provided on the surface of a metal foil or metal plate provided with an electrically insulating coating film, a heating resistor film is provided, and an electrically insulating coating film is formed on the top surface of the heating resistor film. The insulating coating film is a planar heating element formed by providing a coating film of an organometallic compound on the surface and then firing it. 2. A surface heating element in which an electrode is provided on the surface of an electrically insulating base material, a heating resistor film is provided, and an electrically insulating coating is formed on the surface of the electrically insulating base material, wherein the heating resistor film is formed by ultrafine conductive particles in a solvent. Resistance paste for heating elements is obtained by adding and mixing solvent-insoluble materials such as ceramic materials, synthetic resin binders and other compounded materials, and applying or not applying ultrasonic waves to the mixture. A sheet heating element formed by uniformly coating and firing. 3. A planar heating element in which an electrode is provided on the surface of a metal base material provided with an electrically insulating coating, a heating resistor film is provided, and an electrically insulating coating is formed on the upper surface of the heating resistor film, wherein the electrically insulating coating is The film is formed by providing a coating film of an organometallic compound on the surface and then firing it, and the heating resistor film is formed by adding a material insoluble to the solvent, a synthetic resin binder, and other compounded materials in the form of ultrafine particles to a solvent. A planar heating element formed by adding and mixing, applying a resistance paste for a heating element obtained with or without applying ultrasonic waves thereto, and firing.
JP28641186A 1986-11-29 1986-11-29 Panel heater Granted JPS63138683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28641186A JPS63138683A (en) 1986-11-29 1986-11-29 Panel heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28641186A JPS63138683A (en) 1986-11-29 1986-11-29 Panel heater

Publications (2)

Publication Number Publication Date
JPS63138683A JPS63138683A (en) 1988-06-10
JPS6366036B2 true JPS6366036B2 (en) 1988-12-19

Family

ID=17704050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28641186A Granted JPS63138683A (en) 1986-11-29 1986-11-29 Panel heater

Country Status (1)

Country Link
JP (1) JPS63138683A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214691U (en) * 1988-07-08 1990-01-30
JP2001102159A (en) * 1999-07-27 2001-04-13 Toto Ltd Metal heater for heating water, hot water supplier using it, and hygienic cleaner with it
JP2002289330A (en) * 2001-03-23 2002-10-04 Nippon Dennetsu Co Ltd Heater
JP5169459B2 (en) * 2008-05-12 2013-03-27 株式会社Ihi Method for manufacturing heating element and method for manufacturing heating device

Also Published As

Publication number Publication date
JPS63138683A (en) 1988-06-10

Similar Documents

Publication Publication Date Title
US2950996A (en) Electrical resistance material and method of making same
DE60221973T2 (en) RESISTIVE AND CONDUCTIVE COATING MANUFACTURED IN THE SOL-GEL PROCESS
EP0300685B1 (en) Improvements in or relating to thick film track material
JPS6314841B2 (en)
JP2001223065A (en) Resistant paste for forming electric heating body thick layer
US20100102052A1 (en) Self-regulating electrical resistance heating element
JPH0453081B2 (en)
US4410598A (en) Process for preparation of insulating coatings upon steel
JPH09190873A (en) Manufacture of sheet heater unit
JPS5836482B2 (en) resistance material
JPS6366036B2 (en)
KR101525974B1 (en) a sheet type heating element of substrate
EP1465209A1 (en) Conductor compositions for use in electronic circuits
US4655965A (en) Base metal resistive paints
US4698265A (en) Base metal resistor
KR20200142319A (en) The surface heater and the manufacturing method for the same
KR20210008615A (en) The surface heater, paste composition for the same and the manufacturing method for the same
JP3136300B2 (en) Conductive ceramics, method for producing conductive ceramics film, method for producing conductive ceramics molded product, composition for forming conductive ceramics, and electric heating element
CN2794090Y (en) Thin-membrane heater
JP3105430B2 (en) Planar heating element
US4711803A (en) Megohm resistor paint and resistors made therefrom
JP2001203066A (en) Hot plate and conductive paste
JPH09139278A (en) Resistor paste for heater
JPS5918841B2 (en) Ceramic semiconductor and forming method
JPH0217629B2 (en)