JPS63138683A - Panel heater - Google Patents

Panel heater

Info

Publication number
JPS63138683A
JPS63138683A JP28641186A JP28641186A JPS63138683A JP S63138683 A JPS63138683 A JP S63138683A JP 28641186 A JP28641186 A JP 28641186A JP 28641186 A JP28641186 A JP 28641186A JP S63138683 A JPS63138683 A JP S63138683A
Authority
JP
Japan
Prior art keywords
heating element
electrically insulating
film
insulating coating
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28641186A
Other languages
Japanese (ja)
Other versions
JPS6366036B2 (en
Inventor
菰渕 慶浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikeda Corp
Original Assignee
Ikeda Bussan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Bussan Co Ltd filed Critical Ikeda Bussan Co Ltd
Priority to JP28641186A priority Critical patent/JPS63138683A/en
Publication of JPS63138683A publication Critical patent/JPS63138683A/en
Publication of JPS6366036B2 publication Critical patent/JPS6366036B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明を面状発熱体に関する。[Detailed description of the invention] The present invention relates to a sheet heating element.

カーボンを主材とする固定抵抗式の面状発熱体が開発さ
れてから既に長年月が経過し、その後自己温度制御型が
加わり急速に普通されている。その特長は通電後の昇温
速度が速く且つ省電力型であるために産業界および家庭
用に使用されている。
Many years have passed since the development of a fixed-resistance sheet heating element mainly made of carbon, and since then self-temperature control types have been added and are rapidly becoming commonplace. Its features include a fast temperature rise rate after energization and low power consumption, so it is used in industry and homes.

この型の面状発熱体は上記の如きすぐれた特長を有する
ため普及発展が期待されたが、成膜技術が充分でなく焼
損事故が続出し火災事故が発生する等の欠点を生ずる。
This type of sheet heating element had the excellent features mentioned above and was expected to become popular, but the film-forming technology was not sufficient, resulting in a number of burnout accidents and fire accidents.

自己温度制御型に限らず面状発熱体はその温度分布が均
一である、使用温度範囲が広く、特に/θO℃以上の高
温で長時間使用可能であることが望まれているが現用の
面状発熱体は合成樹脂基材を使用しているため10o℃
以上、特に/、3;’O’C以上の温度にして長時間使
用できるものは殆んどなく、面状発熱体の発展を阻害す
る一因になっている。
Planar heating elements, not only self-temperature control types, are desired to have a uniform temperature distribution, a wide operating temperature range, and to be able to be used for long periods of time, especially at high temperatures of /θO℃ or higher; The heating element uses a synthetic resin base material, so the temperature is 10oC.
As mentioned above, in particular, there are almost no products that can be used for a long time at temperatures higher than /, 3;'O'C, which is one of the reasons for inhibiting the development of planar heating elements.

従来の面状発熱体の一例を第7図について説明すると、
厚さ約2よoμのポリエステル基板(1)の表面に市販
の銀ペーストを自動印刷機でスクリーン印刷した後、コ
ンベアー炉において温度約/♂0℃で約70分間焼成し
て所定の銀電極(2)を形成し、その上側に例えばっぎ
のようにして′A装された発熱体用抵抗ペーストを自動
印刷機でスクリーン印刷後、コンベアー炉において温度
約/♂o℃で約70分間焼成して所要厚みの発熱抵抗体
脱(層)(3)を形成している。上記の発熱体用抵抗ペ
ーストは、例えばエチレン−酢酸ビニル共重合体約u、
24t2、平均粒子径約2μのグラファイト約72乙2
、アルミナ粉末約グ!2、難燃剤約り!り、酸化アンチ
モン約、2.2.j ? 、老化防止剤約4ttr、テ
トラリン約/100Fを電動攪拌機付処理槽に加え、攪
拌しながら温度を約ioo℃に保って約7時間継続した
後、水冷して得られたものである。
An example of a conventional sheet heating element will be explained with reference to FIG.
After screen-printing a commercially available silver paste on the surface of a polyester substrate (1) with a thickness of about 20 μm using an automatic printing machine, it is baked in a conveyor furnace at a temperature of about /♂0°C for about 70 minutes to form a predetermined silver electrode ( 2), screen printed a resistance paste for a heating element on top of it using an automatic printing machine, and then baked it in a conveyor furnace at a temperature of about /♂o℃ for about 70 minutes. A heating resistor layer (3) having a required thickness is formed. The above-mentioned resistance paste for heating elements may be made of, for example, ethylene-vinyl acetate copolymer,
24t2, graphite approximately 72t2 with an average particle size of approximately 2μ
, About alumina powder! 2. About flame retardants! antimony oxide, approx. 2.2. j? , about 4 ttr of anti-aging agent, and about 1/100 F of tetralin were added to a treatment tank equipped with an electric stirrer, and the temperature was maintained at about io0° C. while stirring for about 7 hours, followed by cooling with water.

上記の如く形成された発熱抵抗体脱には、その表面に経
年変化を防止するため熱硬化型フェノール樹脂約70%
とアルミナ約30チを主成分として含有する溶剤ペース
トをスクリーン印刷した後、コンベアー炉にかけ、温度
約/l?O℃で約70分間焼成して、所要厚みのフェノ
ール樹脂系表面被覆膜(4)を設け、この被覆膜の上に
耐熱性接着剤ハ4(5)を介して厚さ約/!0μのポリ
エステル基板(6)をホットローラー等を用いて圧着し
て発熱体素子となし、銀電極には銀メツキ黄銅製端子(
7)とリード線(8)を連設して形成している。
To remove the heat generating resistor formed as described above, the surface is made of approximately 70% thermosetting phenolic resin to prevent deterioration over time.
After screen-printing a solvent paste containing about 30 g of alumina as the main component, it was placed in a conveyor furnace at a temperature of about 1/1? A phenolic resin surface coating film (4) of a required thickness is provided by baking at 0° C. for about 70 minutes, and a heat-resistant adhesive (4) (5) is placed on top of this coating film to a thickness of about 1/2 cm. A 0μ polyester substrate (6) is crimped using a hot roller or the like to form a heating element, and silver-plated brass terminals (
7) and a lead wire (8) are connected in series.

上記の如く形成された面状発熱体は、その発熱抵抗体脱
(3)が不均質に形成されていると、該膜内の抵抗値の
異常に低い部分において局部的過熱が起り、その部分の
発熱抵抗体脱が融け、ついで対向するポリエステル基板
が溶融、熱分解し、ついに発火し焼損事故を起こす。こ
のような事故は面状発熱体の構成材料に3よ0℃以下の
如き比較的融点が低く且つ燃え易い合成樹脂の基材その
他を使用していることも、前述の発熱抵抗体脱の不均質
によって生ずる局部的過熱による事故の発生を一層助長
している。
In the planar heating element formed as described above, if the heating resistor removal (3) is formed non-uniformly, local overheating will occur in the part of the film where the resistance value is abnormally low. The heat-generating resistor melts, and then the opposing polyester substrate melts and thermally decomposes, eventually catching fire and causing a burnout accident. Such accidents are caused by the fact that the sheet heating element is made of a synthetic resin base material that has a relatively low melting point of 3 to 0 degrees Celsius or less and is easily flammable. The occurrence of accidents due to localized overheating caused by homogeneity is further promoted.

上記従来の面状発熱体の有する欠点に鑑み発明者は種々
研究の結果本発明に到達した。本発明は金属箔若しくは
板の表面に電気絶縁被覆膜を有する基材を使用すると共
に発熱抵抗体脱の上に特殊の電気絶縁被覆膜を設けた、
また特殊な方法で調製した発熱体用抵抗ペースを使用し
て形成し全体が極めて均質な発熱抵抗体脱を有する面状
発熱体を形成したもので、耐熱性にすぐれ、200℃以
上2夕0℃においても長時間継続使用しても局部的過熱
による溶融や焼損等の事故発生が全くなく長期安全に効
率よく使用できる。
In view of the above-mentioned drawbacks of the conventional planar heating element, the inventors have arrived at the present invention as a result of various studies. The present invention uses a base material having an electrically insulating coating film on the surface of a metal foil or plate, and also provides a special electrically insulating coating film on the heating resistor.
In addition, it is formed using a resistance paste for heating elements prepared by a special method to form a planar heating element with extremely homogeneous heating resistor removal as a whole. Even if used continuously for a long time at ℃, there is no occurrence of accidents such as melting or burnout due to local overheating, and it can be used safely and efficiently for a long time.

以下本発明を実施例について説明すると、電気絶縁性基
材αBの面に銀電極α2を設け、この電極の上側には発
熱体用抵抗ペースト等を塗布して形成された発熱抵抗体
脱(層)α3が設けられ、この発熱抵抗体脱の上面に絶
縁被覆膜a4を設けて発熱体素子が形成され、前記電極
には端子α力を介してリード線0に連設され、必要に応
じて更にその全表面)二絶縁被覆膜αGを設けて、面状
発熱体を形成している。この面状発熱体において、上記
基材(1)はアルミニクム、銅、黄銅、銀、鉄、ステン
レス鋼等の金属の厚さ約/〜夕QOμの箔若しくは厚さ
約0.j〜10trrmの板の表面に有機金属化合物、
例えば、オルガノシルセスキオキチン、エチルシリケー
ト、ポリチタノカルボシランその他の含有液に浸漬、若
しくは含有液を適当な方法で塗布しただ後、分解温度そ
の他所要温度に焼成してセラミック質の絶縁皮覆膜(l
la)を形成して使用される。
Hereinafter, the present invention will be described with reference to examples. A silver electrode α2 is provided on the surface of an electrically insulating base material αB, and a heating resistor removal layer is formed by applying a heating element resistance paste or the like on the upper side of this electrode. ) α3 is provided, and an insulating coating film a4 is provided on the upper surface of the heating resistor to form a heating element, and the electrode is connected to the lead wire 0 via a terminal α force, as required. Furthermore, a two-insulating coating film αG is provided on the entire surface of the heating element to form a planar heating element. In this planar heating element, the base material (1) is a foil made of metal such as aluminum, copper, brass, silver, iron, stainless steel, etc., with a thickness of about 0.0 μm or a thickness of about 0.00 μm. Organometallic compound on the surface of the board of j ~ 10 trrm,
For example, it is immersed in a liquid containing organosilsesquioxitin, ethyl silicate, polytitanocarbosilane, etc., or coated with the liquid by an appropriate method, and then fired to a required temperature such as the decomposition temperature to form a ceramic insulation coating. Covering film (l
la) is used.

有機金属化合物は上記以外の各種のものも選択使用でき
る。
Various organometallic compounds other than those mentioned above can also be selected and used.

前記絶縁被覆膜Q4.Q5も前記絶縁皮膜と同様な金属
有機化合物の溶剤溶液その他の含有液を同様に塗布被覆
後、同様に焼成して形成され、耐熱性耐薬品性、耐久性
な絶縁被覆が得られる。
Said insulating coating film Q4. Q5 is also formed by coating the insulating film with a solvent solution of a metal-organic compound or other containing liquid in the same manner as the above-mentioned insulating film, and then baking it in the same manner, resulting in a heat-resistant, chemical-resistant, and durable insulating coating.

銀電極02は、市販の銀糸導電ペースト等を用い所定に
スクリーン印刷後、焼成して形成できる。
The silver electrode 02 can be formed by screen printing a commercially available silver thread conductive paste or the like in a predetermined area and then firing.

発熱抵抗体脱α3は前記の従来法と同様にカーボンまた
は金属粉末等の導電性材料粉末、アルミナ、酸化アンチ
モンその他のセラミック系材料粉末、合成樹脂系結着剤
、難燃剤、老化防止剤等のそれぞれ所要量を表面活性剤
を含み若しくは含まないテトラリンその他の溶剤の所要
量と共に攪拌機付処理槽に加え、攪拌しながら温度を約
100℃に保って約7時間継続した後、水冷して調製し
た発熱体用抵抗ペーストを使用して形成できる。また、
つぎの如き特殊方法により調製した発熱体用抵抗ペース
トもある。即ち、キシレン、カルピトール、テトラリン
、デカリン等の溶剤に平均粒子径約7μ以下、好ましく
はサブミクロンオーダー程度の超微粒子にしたグラファ
イト、カーボンブラックまたは金属等の導電性材料とア
ルミナ、酸化アンチモンその他のセラミック質材料等の
前記溶剤に不溶性な材料、合成樹脂系結着剤、難燃剤、
老化防止剤、その他のそれぞれの処要量を1・伏拌機付
処理槽に添加、攪拌しながら温度を約700℃に保持し
て一定時間例えば約7時間処理し、これに超音波を印荷
せず若しくは超音波を適当な時間印荷した後、急冷して
調製される。このように調製された発熱体用抵抗ペース
トは均一安定性が極めてよく、形成された発熱抵抗体脱
も均質にでき、局部的過熱等が一層防止できる。また上
記の場合溶剤に投入される材料の添加を次の如くすると
更(ニ一層均−安定性のすぐれたペーストが得られる。
As with the conventional method described above, heating resistor removal α3 is performed using conductive material powders such as carbon or metal powders, alumina, antimony oxide and other ceramic material powders, synthetic resin binders, flame retardants, anti-aging agents, etc. The required amount of each was added to a treatment tank with a stirrer together with the required amount of tetralin or other solvent containing or not containing a surfactant, and the temperature was kept at about 100°C while stirring for about 7 hours, and then cooled with water. It can be formed using a resistance paste for heating elements. Also,
There are also resistance pastes for heating elements prepared by the following special method. That is, a conductive material such as graphite, carbon black, or metal made into ultrafine particles with an average particle diameter of about 7 microns or less, preferably on the order of submicrons, and alumina, antimony oxide, or other ceramics in a solvent such as xylene, calpitol, tetralin, or decalin. Materials insoluble in the above solvents such as synthetic materials, synthetic resin binders, flame retardants,
1. Add the required amount of anti-aging agent and other ingredients to a treatment tank with an agitator, maintain the temperature at about 700°C while stirring, and treat for a certain period of time, for example, about 7 hours, and then apply ultrasonic waves. It is prepared by applying no pressure or applying ultrasonic waves for an appropriate period of time, and then rapidly cooling it. The heat generating resistor paste prepared in this way has extremely good uniformity and stability, and the formed heat generating resistor can be removed uniformly, thereby further preventing localized overheating. In the above case, if the materials added to the solvent are added as follows, a paste with even better uniformity and stability can be obtained.

即ち溶剤に超微粒子にした導電性材料とセラミック質材
料等の溶剤に不溶性な材料を攪拌しながら順に添加、添
加後必要に応じてこれに超音波を印荷し、ついで結着剤
、難燃剤、老化防止剤等を順次攪拌しつつ添加後、超音
波を一定時間印荷し、急冷して調製できる。印荷される
超音波は汚染した機械部品その他の物品の洗浄等の場合
に一般に使用される周波数でよい場合が多い。
That is, a conductive material in the form of ultrafine particles and a material insoluble in the solvent, such as a ceramic material, are added to a solvent in order while stirring, and after the addition, ultrasonic waves are applied to this as necessary, and then a binder and a flame retardant are added. It can be prepared by sequentially adding , anti-aging agent, etc. with stirring, applying ultrasonic waves for a certain period of time, and rapidly cooling. The applied ultrasonic waves may often be of a frequency commonly used for cleaning contaminated mechanical parts or other articles.

以下に本発明の面状発熱体の例を示す。各側について破
壊試験(toov、30分間印荷)、表面温度差(/ 
00V、30分間通電後の表面温度分布を測定した時の
最大温度差)、及び推定寿命C24tOV、/♂0日間
通電後の特性変化から推定)は第7表に示す通りであっ
た。又各側について基材の厚みと表面温度差(℃)の関
係は第9図のとおりであった。なお前記従来法により作
成した面状発熱体についても、比較例として同様の試験
結果を併記した。
Examples of the planar heating element of the present invention are shown below. Destructive test (toov, 30 minute impression) on each side, surface temperature difference (/
The maximum temperature difference when measuring the surface temperature distribution after energizing for 00V for 30 minutes) and the estimated life C24tOV (estimated from the change in characteristics after energizing for 0 days) were as shown in Table 7. Furthermore, the relationship between the thickness of the base material and the difference in surface temperature (°C) on each side was as shown in FIG. Note that similar test results for the sheet heating element produced by the conventional method are also shown as a comparative example.

例/ 厚さ/θ0μのアルミニウム箔を陽極酸化して表面にア
ルミナ被覆膜を形成した後前記被覆膜に封孔処理を施こ
し、電気絶縁性基材を得た。この基材の面の所定部位に
市販の銀ペーストを用い自動印刷機によりスクリーン印
刷し、約/♂0℃で70分間焼成し銀電極を設け、この
電極間に次に示す方法で調製したエチレン−酢酸ビニル
共重合体、グラファイト系♂0℃発熱体用抵抗ペースト
を自動印刷機により所定厚にスクリーン印刷した後、7
2♂〜//J℃で70分間焼成して発熱抵抗体脱を形成
した。ついで前記銀電極に端子、リード線を取りつけた
後、これをオルガノシルセスキオキサン(商品名グラス
レジン)!θ係エタノール溶液中に浸漬し、取出して風
乾後、温度77♂〜/♂2℃で30分間焼成し全表面に
+f+it熱性セラミックス被覆膜を有する面状発熱体
を得た。
Example: An aluminum foil having a thickness of θ0μ was anodized to form an alumina coating on the surface, and then the coating was sealed to obtain an electrically insulating base material. Screen printing was performed using a commercially available silver paste on a predetermined part of the surface of the base material using an automatic printing machine, and the silver electrodes were provided by baking at approximately /♂0℃ for 70 minutes. - Vinyl acetate copolymer, graphite-based ♂0℃ heating element resistance paste was screen printed to a predetermined thickness using an automatic printing machine, and then
It was fired for 70 minutes at 2♂~//J°C to form a heating resistor. Next, after attaching a terminal and lead wire to the silver electrode, this is coated with organosilsesquioxane (trade name: glass resin)! It was immersed in a θ-related ethanol solution, taken out, air-dried, and fired at a temperature of 77♂ to /♂2°C for 30 minutes to obtain a planar heating element having a +f+it thermal ceramic coating film on the entire surface.

発熱体用抵抗ペーストの製造原料配合例グラファイト粉
末       /7乙2(平均粒子径2μ) アルミナ粉末          グ!〃酸化アンチモ
ン粉末      22.6Nエチレン−酢酸ビニル共
重合体−2、!y #難燃剤            
 グ!〃老化防止剤           グ3z上記
配合原料をテトラリン/700f中に碓加攪拌しつつ7
00℃にして/時間i#拌混合し水冷する。
Example of blending raw materials for manufacturing resistance paste for heating elements Graphite powder /7 Otsu2 (average particle size 2μ) Alumina powder Gu! Antimony oxide powder 22.6N ethylene-vinyl acetate copolymer-2,! y #Flame retardant
Gu! 〃Anti-aging agent Gu3zThe above blended raw materials were added to Tetralin/700f while stirring.
Mix at 00°C/hour i# and cool with water.

例コ 電気絶縁性基材として、厚さ、200μのアルミニウム
箔をオルガノシルセスキオキサン!θチェタノール溶液
中に浸漬した後、引き上げて風乾し、温度200℃で3
0分間焼成してその表面に絶縁被覆膜を設けたものを使
用した以外は実施例/と同様に形成した面状発熱体を得
た。
Example: Organosilsesquioxane is used as an electrically insulating base material using aluminum foil with a thickness of 200μ. After immersing in the θ chetanol solution, it was pulled out and air-dried, and then heated at a temperature of 200°C for 3
A planar heating element was obtained in the same manner as in Example 1, except that the heating element was fired for 0 minutes and an insulating coating film was provided on the surface.

例3 厚さ300μのアルミニウム箔の表面にポリチタノカル
ボンラン20%エタノール溶液をスプレーした後、温度
250℃で30分間焼成して絶縁被覆膜を形成した電気
絶縁性基材を使用したことと、オルガノシルセスキオキ
チンの代りにポリチタノカルボシラ・ン!0チアルコー
ル溶液に浸漬し風乾後、温度260℃で30分間焼成し
て全表面に絶縁被覆膜を形成したこと、以外は実施例/
とほぼ同様に形成して面状発熱体を得た。
Example 3 An electrically insulating base material was used in which an insulating coating film was formed by spraying a 20% ethanol solution of polytitanocarbonane on the surface of a 300μ thick aluminum foil and then baking it at a temperature of 250°C for 30 minutes. And instead of organosilsesquiochitin, polytitanocarbosila-n! Example/Except that the insulating coating film was formed on the entire surface by immersing it in a 0-thialcohol solution, air-drying it, and then baking it at a temperature of 260°C for 30 minutes.
A planar heating element was obtained in substantially the same manner as above.

例グ 厚さグ00μのアルミニウム箔の表面にオルガノシルセ
スキオキサン3θチアルコール溶液をスプレーし、温度
、20θ士2℃で3θ分間焼成して絶縁被覆膜を形成し
た電気絶縁性基材を使用したことと、オルガノシルセス
キオキサンの代りにポリチタノカルボンランの!θチア
ルコール溶液に浸し風乾後、2!0℃で30分間焼成し
て全表面にセラミック被田膜を形成した以外は、実施例
/とほぼ同様にして面状発熱体を得た。
For example, an electrically insulating base material is prepared by spraying an organosilsesquioxane 3θ thialcohol solution on the surface of an aluminum foil with a thickness of 00μ and baking it for 3θ minutes at a temperature of 20θ to 2℃ to form an insulating coating film. of polytitanocarbonrane instead of organosilsesquioxane! A planar heating element was obtained in substantially the same manner as in Example 1, except that it was immersed in a θ-thialcohol solution, air-dried, and then fired at 2!0° C. for 30 minutes to form a ceramic coating film on the entire surface.

例! 厚さ200μのアルミニクム基板をエチルシリケートの
!θ%アルコール溶液(−浸漬した後風乾し、これを、
200℃で30分間焼成して絶縁被覆膜を形成した絶縁
性基材を使用したこと以外は例グと同様にして面状発熱
体を得た。
example! A 200μ thick aluminum substrate made of ethyl silicate! θ% alcohol solution (- immersed, air-dried,
A planar heating element was obtained in the same manner as in Example G, except that an insulating base material on which an insulating coating film was formed by firing at 200° C. for 30 minutes was used.

例乙 厚さご00μのカラーアルミニクム基板を用いた以外は
例夕と同様にして面状発熱体を得た。
Example 2 A planar heating element was obtained in the same manner as in Example 2 except that a colored aluminum substrate having a thickness of 00 μm was used.

例2 厚さ100μのアルミニウム箔の表面に実施例3と同様
にして形成した電気絶縁性基材を使用したことと、次に
示す方法で製造した発熱体用抵抗ペーストを使用したこ
と以外は実施例3とほぼ同様にして面状発熱体を得た。
Example 2 Implemented except that an electrically insulating base material formed in the same manner as in Example 3 was used on the surface of an aluminum foil with a thickness of 100μ, and a resistance paste for a heating element manufactured by the following method was used. A planar heating element was obtained in substantially the same manner as in Example 3.

発熱体用抵抗ペーストの製造例 アルミナ超微粉末         グ!l(平均粒径
θ、2μ) 酸化アンチモン超微粉末    22.31(乳鉢で粉
砕平均粒径o、sμ) エチレン−酢酸ビニル共重合体   22Z〃難燃剤 
            グ!I老化防止剤     
      グ、3Nテトラリン/♂o0vを攪拌し昇
温(10O℃)しながら上記の配合原料を加え、温度1
0o℃で7時間電動・撹拌混合し、撹拌を継続しながら
水冷し、室温に72時間放置し、所要のペーストを得た
Manufacturing example of resistance paste for heating elements Ultrafine alumina powder Gu! l (Average particle size θ, 2μ) Antimony oxide ultrafine powder 22.31 (Average particle size crushed in a mortar o, sμ) Ethylene-vinyl acetate copolymer 22Z〃Flame retardant
Gu! I anti-aging agent
Stir 3N tetralin/♂o0v and add the above blended raw materials while raising the temperature (100℃),
The mixture was mixed with electric stirring at 0° C. for 7 hours, cooled with water while stirring, and left at room temperature for 72 hours to obtain the desired paste.

例! 厚さλ00μのカラーアルミニクムを使用したことと、
発熱体用抵抗ペーストを下記の方法で製造した以外は、
実施例2とほぼ同様にして面状発熱体を得た。テトラリ
ン/♂0o1を撹拌し昇温(700℃)しながらグラフ
ァイト、アルミナ、酸化アンチモンの各超微粒子および
エチレン−酢酸ビニル共重合体、難燃剤、老化防止剤の
各所要量を順次添加し、700℃で7時間攪拌をつづけ
た後、これに超音波(30キロヘルツ)を70分間印荷
し、そのまま急冷し、所要のペーストを得た。
example! The use of colored aluminum with a thickness of λ00μ,
Except that the resistance paste for the heating element was manufactured by the following method,
A planar heating element was obtained in substantially the same manner as in Example 2. Tetralin/♂0o1 was stirred and heated to 700°C, while the required amounts of graphite, alumina, antimony oxide ultrafine particles, ethylene-vinyl acetate copolymer, flame retardant, and antiaging agent were sequentially added. After continuing to stir at .degree. C. for 7 hours, ultrasonic waves (30 kilohertz) were applied to the mixture for 70 minutes, and the mixture was rapidly cooled to obtain the desired paste.

例9 3θ0μのアルミニクム基板の表面にオルガノシルセス
キオキサン3θチアルコール溶液を塗布し、風乾後2!
0℃で30分間焼成して絶縁被覆膜を形成した絶縁性基
材を使用した以外は例♂と同様にして面状発熱体を得た
Example 9 Organosilsesquioxane 3θ thialcohol solution was applied to the surface of a 3θ0μ aluminum substrate, and after air drying, 2!
A planar heating element was obtained in the same manner as in Example ♂, except that an insulating base material on which an insulating coating film was formed by firing at 0° C. for 30 minutes was used.

例10 4tooμアルミニウム基板を使用した以外は例ワと同
様にして面状発熱体を得た。
Example 10 A planar heating element was obtained in the same manner as in Example 1 except that a 4tooμ aluminum substrate was used.

例// 600μのアルミニウム基板を使用した以外は例9と同
様にして面状発熱体を得た。
Example // A planar heating element was obtained in the same manner as in Example 9 except that a 600 μm aluminum substrate was used.

例/2 7000μのアルミニウム基板を使用した以外は例りと
同様にして面状発熱体を得た。
Example/2 A planar heating element was obtained in the same manner as in Example except that a 7000 μm aluminum substrate was used.

(第1表)(Table 1)

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第7図は従来型の面状発
熱体の説明用概略断面図、第2図は本発明の面状発熱体
の説明用概略断面図、第3図は変形例を示す第2図同様
の断面図である。 αDは基材、(Ila)は絶縁被覆膜、a2は電極、Q
3は発熱抵抗体脱、Q4および0eは絶縁被良膜、0り
は端子、αeはリード線 特許出願人  池田物産株式会社 特許出願人  菰  渕  慶  造 築1図 第2図 第3図 手続補正書 昭和62年グ月r日
The drawings show embodiments of the present invention; FIG. 7 is a schematic cross-sectional view of a conventional planar heating element, FIG. 2 is a schematic cross-sectional view of a planar heating element of the present invention, and FIG. FIG. 3 is a sectional view similar to FIG. 2 showing a modification. αD is the base material, (Ila) is the insulating coating film, a2 is the electrode, Q
3 is the removal of the heating resistor, Q4 and 0e are insulating coatings, 0 is the terminal, αe is the lead wire Patent applicant Ikeda Bussan Co., Ltd. Patent applicant Kei Komobuchi Construction 1 Figure 2 Figure 3 Procedure amendment Book dated 1986

Claims (1)

【特許請求の範囲】 1 電気絶縁被覆膜を設けた金属箔または金属板の表面
に電極を存して発熱抵抗体膜を設けその上面に電気絶縁
被覆膜を形成した面状発熱体であつて、前記絶縁被覆膜
は表面に有機金属化合物の被覆膜を設けた後焼成して形
成した面状発熱体。 2 電気絶縁性基材の表面に電極を存して発熱抵抗体脱
を設けその上に電気絶縁性被覆を形成した面発熱体であ
つて、前記発熱抵抗体膜は溶剤に超微粒子にした導電性
材料とセラミック質材料等の溶剤に不溶性な材料、合成
樹脂系結着剤その他の配合材料を添加混合しこれに超音
波を印荷して若しくは印荷しないで得られる発熱体用抵
抗ペーストを均一に塗布し焼成して形成した面状発熱体
。 3 電気絶縁被覆膜を設けた金属製基材の面に電極を存
して発熱抵抗体膜を設けその上面に電気絶縁被覆膜を形
成した面状発熱体であつて、前記絶縁被覆膜は表面に有
機金属化合物の被覆膜を設けた後焼成して形成し、発熱
抵抗体膜は溶剤に超微粒子にした該溶剤に不溶性な材料
、合成樹脂系結着剤その他の配合材料を添加混合し、こ
れに超音波を印荷して若しくは印荷しないで得られる発
熱体用抵抗ペーストを塗布し焼成して形成した面状発熱
体。
[Scope of Claims] 1. A planar heating element in which an electrode is provided on the surface of a metal foil or metal plate provided with an electrically insulating coating film, a heating resistor film is provided, and an electrically insulating coating film is formed on the top surface of the heating resistor film. The insulating coating film is a planar heating element formed by providing a coating film of an organometallic compound on the surface and then firing it. 2. A surface heating element in which an electrode is provided on the surface of an electrically insulating base material, a heating resistor is provided on the surface, and an electrically insulating coating is formed thereon, wherein the heating resistor film is formed by ultrafine conductive particles in a solvent. Resistance paste for heating elements is obtained by adding and mixing solvent-insoluble materials such as organic materials and ceramic materials, synthetic resin binders and other compounded materials, and applying or not applying ultrasonic waves to the mixture. A sheet heating element formed by uniformly coating and firing. 3. A planar heating element in which an electrode is provided on the surface of a metal base material provided with an electrically insulating coating, a heating resistor film is provided, and an electrically insulating coating is formed on the upper surface of the heating resistor film, wherein the electrically insulating coating is The film is formed by providing a coating film of an organometallic compound on the surface and then firing it, and the heating resistor film is formed by adding a material insoluble to the solvent, a synthetic resin binder, and other compounded materials in the form of ultrafine particles to a solvent. A planar heating element formed by adding and mixing, applying a resistance paste for a heating element obtained with or without applying ultrasonic waves thereto, and firing.
JP28641186A 1986-11-29 1986-11-29 Panel heater Granted JPS63138683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28641186A JPS63138683A (en) 1986-11-29 1986-11-29 Panel heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28641186A JPS63138683A (en) 1986-11-29 1986-11-29 Panel heater

Publications (2)

Publication Number Publication Date
JPS63138683A true JPS63138683A (en) 1988-06-10
JPS6366036B2 JPS6366036B2 (en) 1988-12-19

Family

ID=17704050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28641186A Granted JPS63138683A (en) 1986-11-29 1986-11-29 Panel heater

Country Status (1)

Country Link
JP (1) JPS63138683A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214691U (en) * 1988-07-08 1990-01-30
JP2001102159A (en) * 1999-07-27 2001-04-13 Toto Ltd Metal heater for heating water, hot water supplier using it, and hygienic cleaner with it
JP2002289330A (en) * 2001-03-23 2002-10-04 Nippon Dennetsu Co Ltd Heater
JP2009277353A (en) * 2008-05-12 2009-11-26 Ihi Corp Method of manufacturing exothermic body, and method of manufacturing heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214691U (en) * 1988-07-08 1990-01-30
JP2001102159A (en) * 1999-07-27 2001-04-13 Toto Ltd Metal heater for heating water, hot water supplier using it, and hygienic cleaner with it
JP2002289330A (en) * 2001-03-23 2002-10-04 Nippon Dennetsu Co Ltd Heater
JP2009277353A (en) * 2008-05-12 2009-11-26 Ihi Corp Method of manufacturing exothermic body, and method of manufacturing heating device

Also Published As

Publication number Publication date
JPS6366036B2 (en) 1988-12-19

Similar Documents

Publication Publication Date Title
US2950996A (en) Electrical resistance material and method of making same
US3694627A (en) Heating element & method of making
CN100428368C (en) Electro-conductive composition, electro-conductive coating and method for producing the coating
EP0300685B1 (en) Improvements in or relating to thick film track material
JP2013541812A (en) Planar heating element using ceramic glass
EP0140585A1 (en) A method of forming a solderable, electrically conductive film on a substrate and the conductive composition itself
JPS6410468B2 (en)
US20100102052A1 (en) Self-regulating electrical resistance heating element
US4535012A (en) Fast curing solderable conductor
JPH0371726B2 (en)
US4410598A (en) Process for preparation of insulating coatings upon steel
JPS63138683A (en) Panel heater
JPH09190873A (en) Manufacture of sheet heater unit
CN2794090Y (en) Thin-membrane heater
CA1102106A (en) Conductor compositions
JP3136300B2 (en) Conductive ceramics, method for producing conductive ceramics film, method for producing conductive ceramics molded product, composition for forming conductive ceramics, and electric heating element
KR20200142319A (en) The surface heater and the manufacturing method for the same
JP3417964B2 (en) Electronic components and their manufacturing method
JP2001203066A (en) Hot plate and conductive paste
JPS63138685A (en) Manufacture of resistance paste for panel heater
JP2002309181A (en) Coating material and coating method
JPH0644521B2 (en) Resistance paste
JPS6012747B2 (en) Manufacturing method of heating element for electric mosquito repellent
JP2001267043A (en) Ceramic heater for semiconductor manufacture and inspection device
JPH0238459A (en) Composition suited for organic thick film resistance element