WO2005012429A1 - Polyurethane resin formed product and method for production thereof - Google Patents

Polyurethane resin formed product and method for production thereof Download PDF

Info

Publication number
WO2005012429A1
WO2005012429A1 PCT/JP2004/010988 JP2004010988W WO2005012429A1 WO 2005012429 A1 WO2005012429 A1 WO 2005012429A1 JP 2004010988 W JP2004010988 W JP 2004010988W WO 2005012429 A1 WO2005012429 A1 WO 2005012429A1
Authority
WO
WIPO (PCT)
Prior art keywords
antistatic
polyurethane resin
agent
molded article
antistatic agent
Prior art date
Application number
PCT/JP2004/010988
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Masumoto
Tamotsu Sakamoto
Katsuhide Nishimura
Original Assignee
Dainippon Ink And Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink And Chemicals, Inc. filed Critical Dainippon Ink And Chemicals, Inc.
Priority to CN2004800161775A priority Critical patent/CN1871304B/en
Priority to KR1020057023516A priority patent/KR100658111B1/en
Publication of WO2005012429A1 publication Critical patent/WO2005012429A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0075Antistatics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic

Definitions

  • the present invention relates to a polyurethane resin molded article having excellent antistatic properties and antistatic properties at low temperatures, and a method for producing the same.
  • Examples of applying these methods to polyurethane resins include: 1) a method of adding carbon black, a conductive boiler, etc., 2) a method of applying or adding an ionic surfactant, 3) a perchloric acid, A method of adding an alkali metal salt such as thiocyanic acid or nitric acid (see Patent Documents 1 and 2), 4) A method of adding quaternary ammonium alkyl sulfate / quaternary ammonium park mouthrate (Patent Document 2, Patent Documents 3), 5) Non-metallic antistatic compounds such as substituted quaternary ammonium sulfonic acid, metal antistatic compounds such as sulfonic acid metal salts, and methods of adding polar organic solvents have been proposed. (See Patent Document 4).
  • a mixture of a nonmetallic antistatic compound and a metal antistatic compound is added to a cyclic carbonate such as formamide, ethylene carbonate, or propylene carbonate in order to achieve excellent antistatic performance even at low temperatures.
  • a method has been proposed in which an antistatic agent composition to which a polar organic solvent such as described above is added is added to polyurethane (for example, see Patent Document 4).
  • Patent Document 2 (Patent Document 2).
  • Patent Document 3 Patent Document 3
  • Patent Document 4 Patent Document 4
  • An object of the present invention is to provide a polyurethane resin molded article having excellent antistatic performance and exhibiting an excellent antistatic rate and antistatic property under normal temperature, low temperature and low humidity conditions.
  • Another object of the present invention is to provide a premixed polyol solution prepared by premixing a polyol, an antistatic agent, an antistatic auxiliary agent, a foaming agent, and a catalyst, which is excellent in storage stability even after storage in a heated state, and which is excellent in organic stability.
  • An object of the present invention is to provide a production method capable of producing a polyurethane resin foam molded article excellent in bending resistance and other physical properties without producing an abnormal foaming behavior, a decrease in hardness and a decrease in strength.
  • the present inventors have conducted intensive studies on antistatic aids that improve antistatic performance in order to achieve the above object, and as a result, by adding a lactone-based monomer as an antistatic aid, control at room temperature was achieved.
  • the present inventors have found that it is possible to stably obtain an antistatic property and an excellent antistatic property under low-temperature and low-humidity conditions, and have completed the present invention.
  • the present invention provides a polyurethane resin molded article containing an antistatic agent and an antistatic auxiliary agent comprising a lactone monomer.
  • the present invention provides a method for reacting an organic polyisocyanate with a polyol in a molding die in the presence of an antistatic agent and an antistatic auxiliary agent comprising a rataton-based monomer, or Provided is a method for producing a polyurethane resin molded article by reacting an urethane prepolymer containing an isocyanate group with a polyamine-based curing agent.
  • the present invention uses a combined use of an antistatic agent and a lactone-based monomer as an antistatic auxiliary agent to provide a polyurethane resin molded article with excellent antistatic performance under low-temperature and low-humidity conditions. And an effect of imparting stable antistatic performance.
  • the present invention provides a polyol, an antistatic agent, an antistatic agent, since the rataton-based monomer used as an antistatic auxiliary can be stably present without being decomposed in the presence of a urethanization catalyst.
  • the storage stability of the stock solution prepared by premixing the agent and the catalyst in a heated state is greatly improved, and when the stock solution is reacted with an organic polyisocyanate to produce a polyurethane resin foam molded article, the foaming behavior of It is possible to provide a foam molded article with excellent flex resistance and excellent antistatic performance under low-temperature and low-humidity conditions without causing physical property deterioration such as abnormality, hardness reduction and strength reduction.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
  • polyurethane resin molded article of the present invention examples include polyurethane resin molded articles such as thermoplastic polyurethane resin, cast polyurethane resin, and foamed polyurethane (polyurethane elastomer foam, rigid and flexible polyurethane foam). Particularly preferred is a polyurethane resin foam molded article.
  • the polyurethane resin molded article of the present invention is obtained by reacting an organic polyisocyanate with a polyol in a molding die in the presence of an antistatic agent and an antistatic auxiliary comprising a lactone monomer, or It can be produced by reacting a polyurethane prepolymer containing a terminal isocyanate group with a polyamine-based curing agent.
  • the organic polyisocyanate used in the present invention includes, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4,1-diphenylmethane diisocyanate, carbodiimidate.
  • Examples thereof include range isocyanate, hydrogenated diphenylmethane diisocyanate, hexamethylene diisocyanate, and urethane prepolymers having terminal isocyanate groups obtained by reacting these polyisocyanates with polyols.
  • a terminal isocyanate group-containing perethane prepolymer is preferred.
  • Terminal isocyanate group-containing ⁇ Used as a raw material for urethane prepolymer ⁇
  • molecular weight polyols include poly (oxynorylene) glycol, poly (oxytetramethylene) dalicol, and other polyether polyols, polyester polyols, polylactone polyols, and polyether esters.
  • Polyols, polycarbonate polyols, and high molecular weight polyols such as polybutadiene polyol.
  • Low molecular weight used as a raw material for urethane prepolymers containing terminal isocyanate groups examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene propylene glycol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,8-octanediol, neopentinole glycol, 2-methinole 1,3-propanediol, 3-methyl-1,5-pentanediol, glycerin, trimethylolpropane, diethylene glycol, triethylene glycol, tetraethylene
  • the polyol amount examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene propylene glycol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6- He
  • Examples of the polyol used for the reaction with the organic polyisocyanate include starting materials having at least two hydroxyl groups such as 1,2-propylene glycolone, glycerin, trimethylonolepropane, pentaerythritol, and sorbitol.
  • Polyether polyols such as poly (oxyalkylene) glycol and poly (oxytetramethylene) glycol obtained by addition polymerization of alkylene oxides such as oxide, propylene oxide and butylene oxide; adipic acid, sebacic acid, Polycarboxylic acids such as azelaic acid, succinic acid, maleic acid and phthalic acid and ethylene glycol, 1,2-propylene glycolone, 1,3-propylene glycol, 1,4-butanediol, 2,3-butane Diol, 1, 5-pentane Honole, 1,6-hexanediole, 1,8-octanediol, neopentyl glycol, 2-methinole 1,3-propanediol, 3-methyl-1,5-pentanedionole, glycerin, trimethyi Polyester polyols obtained by polycondensation of polyhydric alcohols such as norepropane, di
  • the number average molecular weight of these polyols is preferably from 500 to 100,000, more preferably from 100 to 500.
  • the foamed polyurethane resin article of the present invention it is preferable to react an organic polyisocynate with a polyol containing an antistatic agent, a lactone-based monomer, a foaming agent, and a urethanizing catalyst.
  • a polyol containing an antistatic agent e.g., a lactone-based monomer, a foaming agent, and a urethanizing catalyst.
  • the terminal isocyanate group-containing ethane prepolymer when used, it contains an antistatic agent, a ratatone monomer, a foaming agent and a retethane-forming catalyst.
  • the urethane prepolymer is reacted with a polyamine-based curing agent.
  • Water is mainly used as the blowing agent.
  • foaming aids for example, 1,1-dichloro-1-fluoroethane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, methylene Low boiling compounds such as chloride and pentane can be used.
  • urethanization catalysts include organic acid metal salts such as stannus octoate and dibutyltin dilaurate; triethylenediamine, triethylamine, N-ethylmorpholine, dimethylethanolamine, and pentamethylethylene.
  • organic acid metal salts such as stannus octoate and dibutyltin dilaurate
  • triethylenediamine triethylamine, N-ethylmorpholine, dimethylethanolamine, and pentamethylethylene.
  • amines such as triamine and panolemicyldimethylamine.
  • polyamine-based curing agents examples include 4,4'-diamino-3,3, dichlorodiphenylmethane (referred to as MB OCA), trimethylenebis (4-aminobenzoate), and methylenebis (2-ethyl-1-6-methylaniline).
  • MB OCA 4,4'-diamino-3,3, dichlorodiphenylmethane
  • trimethylenebis (4-aminobenzoate)
  • phenylmethane compounds such as methylenebis (2,3-dichloroaniline), polyaminochloromethane, toluenediamine, 4,4′-diaminodiphenylmethane and the like.
  • a foam stabilizer In the production of the polyurethane resin foam molded article, a foam stabilizer, a chain extender, and the like can be used as necessary.
  • any one that is effective for producing a polyurethane resin foam molded article can be used.
  • examples thereof include silicon-based compounds such as polydimethylsiloxane and polysiloxane-polyalkylene oxide block copolymer, and surfactants such as metal oxides, alkylphenols, and ethylene oxide and / or propylene oxide adducts of fatty acids. .
  • chain extender known chain extenders can be used in addition to the low-molecular-weight polyol described above.
  • ethylene glycol, 1,4-butanediol and diethylene glycol are preferable, and among these, ethylene glycol Is particularly preferred.
  • antistatic agent used in the present invention known antistatic agents can be used without particular limitation. However, it is preferable to use at least one kind of a substituted sulfonic acid quaternary ammonium-based cationic antistatic compound and an organic acid metal salt-based anionic antistatic compound, more preferably a mixture of both. .
  • substituted quaternary ammonium thiothion-based antistatic compound examples include quaternary ammonium sulfonic acid substituted with a hydrocarbon group and an oxyhydrocarbon group (hereinafter, quaternary ammonium substituted sulfonic acid). Etc.)
  • substituted sulfonic acid quaternary ammonium examples include, for example, methyl sulfate, tris-trimethyl-dodecyl ammonium, methyl sulfate, tri-, di-, tri-trimethyl mono-myristyl ammonium, methyl ⁇ , ⁇ , ⁇ -Trimethyl sulfate-palmityl ammonium, methyl sulfate, ⁇ , ⁇ , ⁇ -trimethyl mono-stearyl ammonium, ethyl sulphate, ⁇ -ethyl ⁇ , ⁇ -dimethyl ⁇ -dodecyl ammonium ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • Substituted sulfonic acid quaternary ammonium is reacted by dropping an equivalent amount of dialkyl sulfuric acid to tertiary amine in one or more solvents such as ethylene glycol, 1,4-butanediol, and diethylene dalicol. Thus, it can be easily prepared.
  • organic acid metal salt-based anion-based antistatic compound examples include metal salts of bis (trifluoromethanesulfonyl) imid, metal salts of tris (trifluoromethanesulfonyl) methane, metal salts of 'alkylsulfonic acid, benzene
  • An organic metal salt such as a metal sulfonic acid salt or a metal alkyl benzene sulfonic acid salt is mentioned, and a metal salt of bis (trifluoromethanesulfonyl) imid and a metal salt of tris (trifluoromethanesulfonyl) methane are particularly preferable.
  • an alkali metal such as lithium, sodium, or potassium, or an alkaline earth metal such as magnesium is preferable, and lithium is particularly preferable. Particularly preferred.
  • bis (trifluoromethanesulfonyl) imid metal salt and tris (trifluoromethanesulfonyl) methane metal salt include bis (trifluoromethanesulfonolino) imidolithium and bis (trifluoromethanesulfonyl) Imidonadium, bis (trifluoromethanesulfonyl) imidium potassium, tris (trifluoronorethosulfonyl) methanelithium, tris (trifluoromethanesulfonyl methanesulfonyl) methane sodium, and tris (trifluoromethanesulfonyl) methane potassium, p- And lithium toluenesulfonate.
  • lithium bis (trifluoromethanesulfonyl) imidium, lithium tris (trifluoromethanesulfonyl) methane, and lithium p-toluenesulfonate are particularly preferred.
  • lactone-based monomer used as the antistatic auxiliary in the present invention examples include:] lactones such as 3-propiolactone, y-butyrolactone, ⁇ -valerolactone, ⁇ -force prolacton, and ⁇ -crotonolactone. Monomers can be used, and each can be used alone or in combination of two or more. From the viewpoint of improving and exhibiting particularly excellent antistatic performance, ⁇ -butyrolataton and ⁇ -force prolataton are preferred. When only the cationic antistatic compound or the metal salt anionic antistatic compound is added to the polyurethane resin, the antistatic effect has a large temperature and humidity dependency, and adsorbs moisture in the atmosphere under high humidity conditions.
  • the present invention can further provide a stable and excellent antistatic expression rate and antistatic property even under low-temperature and low-humidity conditions by using a rataton-based monomer in combination.
  • a cyclic ketone a sorbitan fatty acid ester or the like may be used in combination as an antistatic assistant.
  • the cyclic ketone include cyclic ketones such as cyclopentanone, cyclohexanone, and cycloheptanone, and derivatives thereof.
  • sorbitan fatty acid esters examples include sorbitan sesquioleate, recbitan monooleate, sorbitan monostearate, recbitan monolaurate, polyoxyethylene sonorebitan monodiolate, polyoxyethylene sonorebitan Monostearate, polyoxyethylene sorbitan monooleate, and the like.
  • the content of the antistatic agent in the polyurethane resin molded article is preferably 0.5% by weight or more, and more preferably 1% by weight or more, from the viewpoint of sufficiently exhibiting the antistatic performance. From the viewpoint of maintaining the mechanical properties of the resin, the content is preferably 10% by weight or less, more preferably 7% by weight or less. Therefore, the content of the antistatic agent is preferably from 0 :! to 10% by weight, more preferably from 1 to 7% by weight.
  • the content of the rataton-based monomer in the polyurethane resin molded article is preferably 0.1% by weight or more, more preferably 1% by weight or more, from the viewpoint of sufficiently exhibiting antistatic performance.
  • the content is preferably 6% by weight or less, more preferably 4% by weight or less. Therefore, the content of the rataton-based monomer in the polyurethane resin molded body is preferably 0.1 to 6% by weight, and more preferably 1 to 4% by weight.
  • the content ratio of the rataton-based monomer to the antistatic agent is set to 1 / 2 to 2 OZl are preferred, and 2 to 3 OZl is particularly preferred.
  • the antistatic agent is appropriately used to adjust the flexibility of the polyol or the molded product, as a raw material of the polyurethane resin molded product, so that the antistatic agent is uniformly contained in the polyurethane resin molded product. It is preferable to use it in the state of being dissolved in advance in a plasticizer or the like when producing a polyurethane resin molded article.
  • ethylene glycol, diethylene glycol and 1,4-butanediol have good solubility with an antistatic agent, particularly a cationic antistatic compound and an aion antistatic compound, and thus a concentrated solution is used. It can be made and is preferable from this viewpoint.
  • ethylene glycol is preferred.
  • polyester plasticizers such as azide type and benzoic acid type are preferable.
  • the polyurethane resin molded article of the present invention has a flame retardant, a plasticizer, a filler, a coloring agent, a weather stabilizer, a light stabilizer, and an antioxidant in addition to the components described above, as long as the antistatic property and the moldability are not impaired.
  • An additive such as an agent can be appropriately used.
  • the mold used in the present invention can be used without any particular limitation as long as it is used as a mold for forming a molded body, and may have any shape.
  • it includes not only the commonly used upper mold and lower mold open molds, flat molds, cylindrical molds and concave molds, but also closed molds used in injection molding.
  • the material of the mold may be any commonly used material such as iron, aluminum, epoxy resin and the like.
  • a foaming agent and a urethanization catalyst are added to the polyol, and, if necessary, a foam stabilizer and a chain extender optionally added to the extent that the antistatic property and moldability are not impaired. It is preferable to use a mixture in which a flame retardant, a plasticizer, a filler, a colorant, a weather stabilizer, a light stabilizer, an antioxidant and the like are premixed in advance.
  • the organic polyisocyanate and such premixed mixture can be mixed and foamed by high-speed stirring in a foam molding machine.
  • the foam molding machine for example, a commonly used low-pressure foam molding machine, injection foam molding machine, or the like can be used.
  • a molding method a usual method can be adopted.
  • a molding method in which the mixed foaming liquid discharged from the molding machine is openly injected into the mold, and an injection in which the mixed foaming liquid is directly injected into a closed mold directly connected to the discharge port of the molding machine.
  • a molding method or the like can be adopted.
  • Examples of a method of adding an antistatic agent and a lactone monomer in producing a polyurethane resin molded article include (1) a method of premixing an antistatic agent and a rataton monomer into a polyol, (2) ) A method in which the antistatic agent and the rataton-based monomer are not premittently added and are independently added from the organic polyisocyanate and the polyol. (3) The anti-static agent is premitted in the polyol and the lactone-based monomer is converted into an organic compound.
  • the lactone monomer used as an antistatic auxiliary in the present invention can be stably stored without decomposition even when stored in a heated state in the presence of a urethanization catalyst.
  • Any of the addition methods 1) to (4) can be adopted.
  • the method (1) is a method in which an antistatic agent and a lactone-based monomer are premixed with a polyol, a foaming agent, and a catalyst, the foaming stock solution is stored in a heated state, and then foamed by a reaction with an organic polyisocyanate. Without foaming behavior abnormality, hardness decrease and strength decrease,
  • polyurethane is particularly preferable because it can produce a foamed molded article having excellent antistatic performance under low temperature and low humidity conditions.
  • L gZcm 3 is preferably, 0. 3 ⁇ 0. 8 gZcm 3 more favorable preferred, 0. 4 ⁇ 0. 7 g / 7 cm 3 being most preferred.
  • the polyurethane resin foam molded article of the present invention is used as a polyurethane elastomer foam to prevent safety explosion in workplaces and the like, and to prevent traces of dust, dust, and static electricity in IC factories. It can be suitably used as shoe soles.
  • Polyol A Polyester polyol with a hydroxyl value of 66 mgK ⁇ H / g synthesized from ethylene glycol / 1,4-butylene glycol and adipic acid. Ethylene glycolone Zl, 4-butyleneglycol mole ratio 5/5.
  • Polyol B Polyester polyol with a hydroxyl value of 6 OmgK ⁇ H / g synthesized from diethylene glycol Z trimethylolpropane and adipic acid. Methylene glycol / trimethylolpropane molar ratio 15/1.
  • Ethylene dalicol containing 90% by weight of antistatic compound A Ethylene glycol solution containing 90% by weight of mono-N-ethyl-N, N-dimethyl-N-dodecylammonium sulfate.
  • Ethylene glycol containing 50% by weight of antistatic compound B Ethylene glycol solution containing 50% by weight of bis (trifluoromethanesulfol) imidolithium.
  • Plasticizer solution containing 20% by weight of antistatic compound C An adipate-based plasticizer solution containing 20% by weight of lithium bis (trifluoromethanesulfonyl) imide.
  • Silicone foam stabilizer SH-193, Toray's Dow Corning Silicone Co., Ltd.
  • Product Foaming agent water
  • Urethane-forming catalyst Triethylenediamine (hereinafter referred to as TED A)
  • Examples 1 to 6 Comparative Examples 1 to 4 (Production of polyurethane elastomer foam)
  • the polyol, foaming agent, catalyst, foam stabilizer, chain extender, antistatic composition And an isocyanate component (hereinafter referred to as Liquid B) comprising the above-mentioned organic polyisocyanate.
  • Solution A and Solution B each adjusted to 40 ° C are mixed and stirred using a low-pressure foaming machine, and the mixed foaming solution is poured into a mold having an inner dimension of 150 ⁇ 100 ⁇ 1 OHmm, and the mold temperature is 45 ⁇ Samples were molded at 1 ° C with a demold time of 4 minutes.
  • the mixing ratio of Liquid A / B is such that the strength of the free foam becomes the strongest 2.5 minutes after the start of the discharge of the mixed foaming liquid.
  • the sample molded by the above method was subjected to a high pressure test, a mold density, an ASKER C hardness, and an electrical resistance value.
  • the test method and evaluation criteria for each item are described below. 2.
  • the liquid A / liquid B was mixed and stirred at a predetermined mixing ratio with a low-pressure foaming machine, and 150 g of the mixed foaming liquid was poured into a wooden foaming box of 100 ⁇ 100 ⁇ 5 OHmm to cause free foaming. 2.5 minutes after the start of the foaming liquid discharge, the foam was taken out of the foam box, immediately applied a strong pressure to the foam with a fist, bent, and the appearance of foam strength was evaluated based on the degree of collapse of the foam according to the following criteria. .
  • Sample weight (g) was measured and calculated by dividing the volume of 0.99 cm 3.
  • the hardness of the sample was measured with an Asker C hardness tester.
  • a Antistatic compound B-I 1.27 3.17-3.17 Liquid Butyrolactone 5.06 5.06 5.06 5.06 ⁇ One-pot prolactone---5.06-
  • Solution A 50 ° C storage days (days) 0 4 0 4 0 4 0 4 0 4 0 4
  • a Antistatic compound B 1.27-1.27 3.17-Liquid 7 "-butyrolactone 2.50---Propylene carbonate--5.06
  • Solution A 50 ° C storage days (days) 0 4 0 4 0 4 0 4 0 4 0 4
  • a foamed mixed solution was prepared by the above method, and foamed to obtain a sample. After 2.5 minutes, the sample was subjected to a high pressure test, a mold density, an Asker C hardness, an electric resistance value, a tensile strength, a tear strength and a flex resistance. Each item was evaluated in the same manner as described above. 2.After 5 minutes, high pressure test, mold density, ASKER C hardness and electric resistance value are performed in the same manner as above, and tensile strength, tear strength and flex resistance are performed in the following way. Was. The results are shown in Tables 1 and 2.
  • the maximum tear force up to was defined as the tear strength.
  • A The electrical resistance value on the first day at 25 is 30 ⁇ or less and the expression rate is 60% or more
  • B The electrical resistance value on the first day at 25 ° C exceeds 30 ⁇ and the expression rate is less than 60%
  • the temperature of the urethane prepolymer containing terminal isocyanate groups was adjusted to 80 ° C, and the temperature of MBOCA (polyamine curing agent) was adjusted to 120 ° C. C and y-butyrolactone are stirred and mixed at an R value (NH 2 ZNCO ratio) of 0.9 between the prepolymer and the curing agent, and after sufficient defoaming, cast into a mold at a mold temperature of 110 ° C. Then, molding was performed under the curing conditions shown in Tables 3 and 4 to obtain samples.
  • MBOCA polyamine curing agent
  • the hardness, tensile strength, elongation, 100% modulus, 300% modulus, tear strength, rebound resilience, and compression set of the molded products in Tables 3 and 4 were determined using the samples described above and in accordance with JI SK-731 by the following methods. It was measured. Electric resistance value is measured by the above method Hardness test method (molded product hardness)
  • the hardness of the elastomer was measured using a type A durometer (DUROMETER) hardness test.
  • test piece was a 2 mm-thick elastomer molded product, and the shape of the test piece was a dumbbell-shaped No. 3 test piece.
  • the maximum stress (tensile strength) and the elongation at the time of cutting of the elastomer, and the stress (100% modulus, 300% modulus) for a specific elongation were measured. Tear test
  • test piece was a 2 mm-thick elastomer molded product, the shape of which was cut at an angle and the tear strength before cutting was measured. Rebound resilience test
  • the test piece is a 12.5mm thick (height), 29mm diameter, right cylindrical elastomer molded product.
  • An iron bar suspended horizontally by four fishing lines using a rebound resilience tester (a product of Ueshima Seisakusho). (A round bar with a length of 356 mm, a diameter of 12.5 mm, and a mass of 0.35 kg) was suspended from the top at a height of 2000 mm, dropped freely from the horizontal position of the horizontal bar to a height of 100 mm vertically, and dropped onto the molded product. To determine the rebound resilience. Compression set test
  • the test piece is a 12.5 mm thick (height), 29 mm diameter, right cylindrical elastomer molded article. Compressed at 70 ° C for 22 hours, 25% in the thickness direction, and calculated compression set I asked.
  • INDUSTRIAL APPLICABILITY The present invention provides an excellent polyurethane resin molded article under low temperature and low humidity conditions by using an antistatic agent and a rataton-based monomer as an antistatic auxiliary agent in combination. Also imparts antistatic performance and stable antistatic performance.
  • the present invention provides a polyol, an antistatic agent, an antistatic agent, since the lactone monomer used as an antistatic auxiliary can be stably present without being decomposed in the presence of a urethanization catalyst.
  • the storage stability of the stock solution prepared by premixing the agent and the catalyst in a heated state is greatly improved, and when the stock solution is reacted with an organic polyisocyanate to produce a polyurethane resin foam molded article, the foaming behavior of The foamed molded article can be provided with excellent flex resistance and excellent antistatic performance under low-temperature and low-humidity conditions without causing physical properties such as abnormality, hardness reduction, and strength reduction.

Abstract

A polyurethane resin formed product, characterized in that it comprises an antistatic agent and an antistatic agent auxiliary comprising a lactone type monomer; and a method for producing the polyurethane resin formed product, which comprises reacting, in a mold for forming, an organic polyisocyanate with a polyol or a urethane prepolymer containing a terminal isocyanate group with a polyamine based curing agent in the presence of an antistatic agent and an antistatic agent auxiliary comprising a lactone type monomer. The use of a combination of an antistatic agent and a lactone type monomer results in the excellent and stable manifestation of the antistatic performance capability of the agent. Further , since a lactone type monomer can be present without decomposition in the co-existence with a urethane formation catalyst, the polyol premix raw material fluid used in the method exhibits satisfactory storage stability, and, in the production of an expanded formed product from the raw material fluid, a product having excellent resistance to bending and excellent antistatic characteristics under low temperature and low moisture conditions ca be produced without an extraordinary behavior in a foaming step and the reduction of physical properties such as hardness, strength and the like.

Description

明 細 書 ポリウレタン樹脂成形体及びその製造方法 技術分野  Description Polyurethane resin molded article and method for producing the same
本発明は、 帯電防止性と低温での制電発現性に優れたポリウレタン樹脂成形体 及びその製造方法に関する。 背景技術  The present invention relates to a polyurethane resin molded article having excellent antistatic properties and antistatic properties at low temperatures, and a method for producing the same. Background art
近年、 作業場等における静電気爆発を防止する観点から、 人体に着用する靴、 衣服、 手袋等に使用される樹脂及び繊維に制電性能を付与する検討がなされてお り、 例えば静電気帯電防止用安全靴の靴底等に応用されている。  In recent years, from the viewpoint of preventing static electricity explosion in workplaces and the like, studies have been made to impart antistatic performance to resins and fibers used in shoes, clothes, gloves, etc. worn on the human body. It is applied to shoe soles and the like.
従来より、 樹脂に制電性を付与する方法として、 導電性物質、 イオン性物質等 からなる帯電防止剤を樹脂成形品の表面にコーティング、 または樹脂中に內部添 加する方法が行われている。 これらの方法をポリウレタン樹脂に応用した事例と して、 例えば、 1)カーボンブラック、 導電ブイラ一等を添加する方法、 2)イオン 性界面活性剤の塗布または添加する方法、 3)過塩素酸、 チォシアン酸または硝酸 等のアルカリ金属塩を添加する方法(特許文献 1及び特許文献 2参照)、 4)アルキ ル硫酸第四級アンモニゥムゃ第四級アンモニゥムパーク口レートを添加する方法 (特許文献 2、特許文献 3 )、 5)置換スルホン酸第四級ァンモニゥム等の非金属系 帯電防止化合物、 スルホン酸金属塩等の金属系帯電防止化合物及び極性有機溶媒 を添加する方法等が提案されている (特許文献 4参照)。  Conventionally, as a method of imparting antistatic properties to a resin, a method of coating an antistatic agent made of a conductive substance, an ionic substance, or the like on the surface of a resin molded product or adding a part of the resin into the resin has been used. . Examples of applying these methods to polyurethane resins include: 1) a method of adding carbon black, a conductive boiler, etc., 2) a method of applying or adding an ionic surfactant, 3) a perchloric acid, A method of adding an alkali metal salt such as thiocyanic acid or nitric acid (see Patent Documents 1 and 2), 4) A method of adding quaternary ammonium alkyl sulfate / quaternary ammonium park mouthrate (Patent Document 2, Patent Documents 3), 5) Non-metallic antistatic compounds such as substituted quaternary ammonium sulfonic acid, metal antistatic compounds such as sulfonic acid metal salts, and methods of adding polar organic solvents have been proposed. (See Patent Document 4).
しかしながら、 導電フイラ一等を添カ卩する方法 1)においては、 ポリウレタン原 料への添加時に著しい増粘を伴うため、 成形性に問題を生じる。 また、 通常のィ オン性界面活性剤を単独で添加する方法 2)では充分な制電性能を付与させるこ とができない。 また、 過塩素酸塩、 チォシアン酸塩等を添加する方法 3)は、 過塩 素酸塩、 チォシアン酸塩等単独では制電性効果の発現が早いが、 成形品の最終的 な性能は不充分である。 また、 アルキル硫酸第四級アンモニゥムパーク口レート を添加する方法 4)では、 成形直後の制電性の発現が遅く、 成形品の最終的な性能 も湿度依存性が高く低温、 低湿度条件において充分な制電性効果を得ることはで きなかった。 However, in the method 1) of adding a conductive filler or the like, a significant increase in viscosity is caused when added to a raw material of polyurethane, which causes a problem in moldability. In addition, sufficient antistatic performance cannot be imparted by the method 2) in which a normal ionic surfactant is added alone. In addition, the perchlorate, thiocyanate, etc. method 3) produces an antistatic effect quickly by using perchlorate, thiocyanate, etc. alone, but the final performance of the molded product is not good. Is enough. In addition, in the method 4) of adding alkyl quaternary ammonium permeate, the antistatic property immediately after molding is slow, and the final performance of the molded product is low. However, it was highly dependent on humidity and could not obtain sufficient antistatic effect under low temperature and low humidity conditions.
これらの方法に対し、 低温条件においても優れた帯電防止性能を発現させるた め、 非金属系帯電防止化合物と金属系帯電防止化合物との混合物にホルムアミ ド や炭酸エチレン、 炭酸プロピレン等の環状炭酸エステル等の極性有機溶媒を添加 した帯電防止剤組成物をポリウレタン中に添加する方法が提案されている (例え ば特許文献 4参照)。  In contrast to these methods, a mixture of a nonmetallic antistatic compound and a metal antistatic compound is added to a cyclic carbonate such as formamide, ethylene carbonate, or propylene carbonate in order to achieve excellent antistatic performance even at low temperatures. A method has been proposed in which an antistatic agent composition to which a polar organic solvent such as described above is added is added to polyurethane (for example, see Patent Document 4).
し力 しながら、 ポリウレタン樹脂あるいは樹脂原料のポリオール中にホルムァ ミ ドゃ環状炭酸エステルを添加すると、 これらは、 成形後にブリードアウトした り、 保存安定性が悪かったりし、 特にホルムアミ ドは人体への安全性に影響する ので、 衛生上問題がある。 環状炭酸エステルは、 触媒の存在下で加温すると容易 に分解するため、 発泡原液としてポリオール成分にプレミッタスして使用した場 合に、 経時的に発泡挙動異常を引き起こし、 安定した物性の成形物が得られない ことから、 ライン生産において実用上不具合があった。  However, when formamide and cyclic carbonate are added to the polyurethane resin or polyol as a raw material of the resin, these may bleed out after molding and have poor storage stability. There is a hygiene problem as it affects safety. Cyclic carbonates are easily decomposed when heated in the presence of a catalyst, so when used as a foaming stock solution as a premix for the polyol component, foaming behavior abnormally occurs over time, resulting in a molded product with stable physical properties. Since it could not be obtained, there was a practical problem in line production.
(特許文献 1 )  (Patent Document 1)
特開昭 6 3 - 4 3 9 5 1号公報 Japanese Patent Application Laid-Open No. Sho 63-343995
(特許文献 2 ) .  (Patent Document 2).
特開平 4一 2 9 8 5 1 7号公報 Japanese Patent Application Laid-Open No. Hei 2-1 9 8 5 17
(特許文献 3 )  (Patent Document 3)
特開平 4一 2 9 8 5 1 8号公報 Japanese Patent Application Laid-Open No. Hei 4-1 998 518
(特許文献 4 )  (Patent Document 4)
特開 2 0 0 1— 3 2 9 2 5 3号公報 発明の開示 Unexamined Japanese Patent Publication No. JP-A-2001-322953
本発明の目的は、 帯電防止性能に優れ、 常温、 低温及び低湿度条件下で優れた 制電発現率と制電発現性を示すポリウレタン樹脂成形体を提供することにある。 本発明の他の目的は、 ポリオール、 帯電防止剤、 帯電防止助剤、 発泡剤及び触 媒をプレミックスしたポリオール原液が加温状態で保存した後においても保存安 定性に優れ、 且つそれを有機ポリイソシァネートと反応させて発泡ポリウレタン を製造する際に、 発泡挙動異常、 硬度低下及び強度低下がなく、 耐屈曲性その他 の物性に優れたポリウレタン樹脂発泡成形体を製造することのできる製造方法を 提供することにある。 An object of the present invention is to provide a polyurethane resin molded article having excellent antistatic performance and exhibiting an excellent antistatic rate and antistatic property under normal temperature, low temperature and low humidity conditions. Another object of the present invention is to provide a premixed polyol solution prepared by premixing a polyol, an antistatic agent, an antistatic auxiliary agent, a foaming agent, and a catalyst, which is excellent in storage stability even after storage in a heated state, and which is excellent in organic stability. Polyurethane foam by reacting with polyisocyanate An object of the present invention is to provide a production method capable of producing a polyurethane resin foam molded article excellent in bending resistance and other physical properties without producing an abnormal foaming behavior, a decrease in hardness and a decrease in strength.
本発明者らは、 上記目的を達成すべく、 帯電防止性能を向上する帯電防止助剤 について鋭意研究した結果、 ラクトン系単量体を帯電防止助剤として添加するこ とにより、 常温での制電発現性と制電発現率、 低温低湿度条件下での制電発現性 と制電発現率に優れた帯電防止性能が安定して得られることを見出し、 本発明を 完成するに至った。 ""  The present inventors have conducted intensive studies on antistatic aids that improve antistatic performance in order to achieve the above object, and as a result, by adding a lactone-based monomer as an antistatic aid, control at room temperature was achieved. The present inventors have found that it is possible to stably obtain an antistatic property and an excellent antistatic property under low-temperature and low-humidity conditions, and have completed the present invention. ""
本発明は、 帯電防止剤及びラクトン系単量体からなる帯電防止助剤を含有する ことを特徴とするポリウレタン樹脂成形体を提供するものである。  The present invention provides a polyurethane resin molded article containing an antistatic agent and an antistatic auxiliary agent comprising a lactone monomer.
更に、 本発明は、 成型金型内において、 帯電防止剤とラタトン系単量体からな る帯電防止助剤との存在下において、 有機ポリイソシァネートとポリオールとを 反応させることにより、 又は末端イソシァネート基含有ウレタンプレボリマーと ポリアミン系硬化剤とを反応させることにより、 ポリウレタン樹脂成形体を製造 する方法を提供する。  Furthermore, the present invention provides a method for reacting an organic polyisocyanate with a polyol in a molding die in the presence of an antistatic agent and an antistatic auxiliary agent comprising a rataton-based monomer, or Provided is a method for producing a polyurethane resin molded article by reacting an urethane prepolymer containing an isocyanate group with a polyamine-based curing agent.
本発明は、 帯電防止剤と帯電防止助剤としてのラクトン系単量体とを併用する ことにより、 ポリウレタン樹脂成形体に対して、 低温 ·低湿度条件下での優れた 帯電防止性能の発現性と安定した帯電防止性能を付与するという作用効果を奏す る。  The present invention uses a combined use of an antistatic agent and a lactone-based monomer as an antistatic auxiliary agent to provide a polyurethane resin molded article with excellent antistatic performance under low-temperature and low-humidity conditions. And an effect of imparting stable antistatic performance.
また、 本発明は、 帯電防止助剤として使用するラタトン系単量体がウレタン化 触媒との共存下において分解せずに安定して存在し得るために、 ポリオール、 帯 電防止剤、 帯電防止助剤、 及び触媒をプレミックスした原液の加温状態における 保存安定性を大幅に向上させ、 且つ、 その原液を有機ポリイソシァネートと反応 させてポリウレタン樹脂発泡成形体を製造するとき、 発泡挙動の異常、 硬度低下 及び強度低下等の物性低下を引き起こさずに、 優れた耐屈曲性と低温かつ低湿度 の条件下での優れた制電性能を発泡成形体に付与することができる、 という作用 効果を奏する。 発明を実施す ための最良の形態 以下本発明をさらに詳しく説明する。 In addition, the present invention provides a polyol, an antistatic agent, an antistatic agent, since the rataton-based monomer used as an antistatic auxiliary can be stably present without being decomposed in the presence of a urethanization catalyst. The storage stability of the stock solution prepared by premixing the agent and the catalyst in a heated state is greatly improved, and when the stock solution is reacted with an organic polyisocyanate to produce a polyurethane resin foam molded article, the foaming behavior of It is possible to provide a foam molded article with excellent flex resistance and excellent antistatic performance under low-temperature and low-humidity conditions without causing physical property deterioration such as abnormality, hardness reduction and strength reduction. To play. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
本発明のポリウレタン樹脂成形体としては、 例えば、 熱可塑性ポリウレタン樹 月旨、 注型ポリウレタン樹脂、 発泡ポリウレタン (ポリウレタンエラストマーフォ ーム、 硬質 '軟質ポリウレタンフォーム) 等のポリウレタン樹脂成形体が挙げら れ、 特に好ましくは、 ポリウレタン樹脂発泡成形体である。  Examples of the polyurethane resin molded article of the present invention include polyurethane resin molded articles such as thermoplastic polyurethane resin, cast polyurethane resin, and foamed polyurethane (polyurethane elastomer foam, rigid and flexible polyurethane foam). Particularly preferred is a polyurethane resin foam molded article.
本発明のポリウレタン樹脂成形体は、 成型金型内において、 帯電防止剤とラク トン系単量体からなる帯電防止助剤との存在下において、 有機ポリイソシァネー トとポリオールとを反応させることにより、 又は末端イソシァネート基含有ゥレ タンプレボリマーとポリアミン系硬化剤とを反応させることにより、 製造するこ とができる。  The polyurethane resin molded article of the present invention is obtained by reacting an organic polyisocyanate with a polyol in a molding die in the presence of an antistatic agent and an antistatic auxiliary comprising a lactone monomer, or It can be produced by reacting a polyurethane prepolymer containing a terminal isocyanate group with a polyamine-based curing agent.
本発明で使用する有機ポリイソシァネートとしては、 例えば、 2, 4一トリレ ンジイソシァネート、 2, 6—トリ レンジイソシァネート、 4 , 4, 一ジフエ二 ルメタンジイソシァネート、 カルボジィミ ド変性ジフエニルメタンジィソシァネ ート、 1 , 5—ナフタレンジイソシァネート、 トリジンジイソシァネート、 パラ フエ二レンジイソシァネート、 キシリ レンジイソシァネート、 イソホロンジイソ シァネート、 水素化トリ レンジイソシァネート、 水素化ジフエニルメタンジィソ シァネート、 へキサメチレンジィソシァネート、 及びこれらポリイソシァネート とポリオールとを反応させて得られる末端ィソシァネート基含有ウレタンプレポ リマーが挙げられる。 これらのうち、 物性、 反応性、 保存安定性の点で末端イソ シァネート基含有ゥレタンプレボリマーが好ましい。  The organic polyisocyanate used in the present invention includes, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4,1-diphenylmethane diisocyanate, carbodiimidate. Modified diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, trizine diisocyanate, paraphenylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, trihydrogen hydride Examples thereof include range isocyanate, hydrogenated diphenylmethane diisocyanate, hexamethylene diisocyanate, and urethane prepolymers having terminal isocyanate groups obtained by reacting these polyisocyanates with polyols. Among these, from the viewpoints of physical properties, reactivity and storage stability, a terminal isocyanate group-containing perethane prepolymer is preferred.
末端イソシァネート基含有ウレタンプレボリマ一の原料として使用するポリオ ールとしては、 高分子量ポリオール単独又は高分子量ポリオールと低分子量ポリ オールとの組み合わせが好ましい。 末端イソシァネート基含有ゥレタンプレポリ マーの原料として使用する髙分子量ポリオールとしては、 例えばポリ (ォキシァ ノレキレン) グリコール、 ポリ (ォキシテトラメチレン) ダリ コール等のボリエー テルポリオール、 ポリエステルポリオール、 ポリラク トンポリオール、 ポリエー テルエステルポリオール、 ポリカーボネートポリオール、 及びポリブタジエンポ リオール等の高分子量ポリオールが挙げられる。  As the polyol used as a raw material of the urethane prepolymer containing a terminal isocyanate group, a high molecular weight polyol alone or a combination of a high molecular weight polyol and a low molecular weight polyol is preferable. Terminal isocyanate group-containing ゥ Used as a raw material for urethane prepolymer 髙 Examples of molecular weight polyols include poly (oxynorylene) glycol, poly (oxytetramethylene) dalicol, and other polyether polyols, polyester polyols, polylactone polyols, and polyether esters. Polyols, polycarbonate polyols, and high molecular weight polyols such as polybutadiene polyol.
末端イソシァネート基含有ウレタンプレボリマーの原料として使用する低分子 量ポリオールとしては、 例えばエチレングリコール、 1 , 2—プロピレングリコ ール、 1 , 3 _プロピレンダリコール、 1 , 4一ブタンジォーノレ、 2 , 3—ブタ ンジオール、 1, 5—ペンタンジオール、 1 , 6—へキサンジオール、 1, 8— 才クタンジオール, ネオペンチノレグリコール、 2ーメチノレー 1 , 3一プロパンジ オール、 3—メチル一 1, 5—ペンタンジオール、 グリセリン、 トリメチロール プロパン、 ジエチレングリコール、 トリエチレングリコール、 テトラエチレングLow molecular weight used as a raw material for urethane prepolymers containing terminal isocyanate groups Examples of the polyol amount include ethylene glycol, 1,2-propylene glycol, 1,3-propylene propylene glycol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,8-octanediol, neopentinole glycol, 2-methinole 1,3-propanediol, 3-methyl-1,5-pentanediol, glycerin, trimethylolpropane, diethylene glycol, triethylene glycol, tetraethylene The
Vコール等が挙げられる。 V-call and the like.
有機ポリイソシァネートとの反応に使用するポリオールとしては、 例えば 1, 2—プロピレングリコーノレ、 グリセリン、 トリメチローノレプロパン、 ペンタエリ スリ トール、 ソルビトール等の少なくとも 2個以上の水酸基を有する出発原料に エチレンオキサイド、 プロピレンオキサイド、 ブチレンオキサイ ド等のアルキレ ンォキサイ ドを付加重合して得られるポリ (ォキシアルキレン) グリコール、 ポ リ (ォキシテトラメチレン) グリコール等のポリエーテルポリオール;アジピン 酸、 セバシン酸、 ァゼライン酸、 コハク酸、 マレイン酸、 フタル酸等の多価カル ボン酸とエチレングリコール、 1 , 2—プロピレングリコーノレ、 1 , 3—プロピ レングリコール、 1 , 4ーブタンジォ一ノレ、 2 , 3一ブタンジオール、 1, 5 - ペンタンジォーノレ、 1 , 6一へキサンジォーノレ、 1, 8一オタンジ才一ル, ネオ ペンチルグリコール、 2—メチノレー 1 , 3—プロパンジオール、 3—メチルー 1, 5—ペンタンジォーノレ、 グリセリン、 トリメチ口一ノレプロパン、 ジエチレングリ コール、 トリエチレングリコール、 テトラエチレングリコール等の多価アルコー ルを重縮合して得られるポリエステルポリオール; さらに、 ポリラタ トンポリオ —ル、 ポリエーテルエステルポリオール、 ポリカーボネートポリオ一ノレ、 及ぴポ リブタジエンポリオール等が挙げられる。 これらの中でもポリエーテルポリオ一 ル及びポリエステルポリオールが好ましい。  Examples of the polyol used for the reaction with the organic polyisocyanate include starting materials having at least two hydroxyl groups such as 1,2-propylene glycolone, glycerin, trimethylonolepropane, pentaerythritol, and sorbitol. Polyether polyols such as poly (oxyalkylene) glycol and poly (oxytetramethylene) glycol obtained by addition polymerization of alkylene oxides such as oxide, propylene oxide and butylene oxide; adipic acid, sebacic acid, Polycarboxylic acids such as azelaic acid, succinic acid, maleic acid and phthalic acid and ethylene glycol, 1,2-propylene glycolone, 1,3-propylene glycol, 1,4-butanediol, 2,3-butane Diol, 1, 5-pentane Honole, 1,6-hexanediole, 1,8-octanediol, neopentyl glycol, 2-methinole 1,3-propanediol, 3-methyl-1,5-pentanedionole, glycerin, trimethyi Polyester polyols obtained by polycondensation of polyhydric alcohols such as norepropane, diethylene glycol, triethylene glycol, and tetraethylene glycol; and polylatatone polyols, polyetherester polyols, polycarbonate polyols, and polyester polyols. Butadiene polyol and the like. Of these, polyether polyols and polyester polyols are preferred.
これらポリオールの数平均分子量は、 好ましくは 5 0 0〜 1 0 0 0 0、 より好 ましくは 1 0 0 0〜 5 0 0 0である。  The number average molecular weight of these polyols is preferably from 500 to 100,000, more preferably from 100 to 500.
本発明のポリウレタン樹脂発泡成形体を製造する際には、 帯電防止剤、 ラク ト ン系単量体、 発泡剤及びウレタン化触媒を含有するポリオールと、 有機ポリイソ シァネートとを反応させることが好ましい。 ポリウレタン樹脂発泡成形体を製造する際に前記末端イソシァネート基含有ゥ レタンプレボリマーを使用する場合は、 帯電防止剤、 ラタ トン系単量体、 発泡剤 及ぴゥレタン化触媒を含有する末端イソシァネート基含有ゥレタンプレポリマー とポリアミン系硬化剤とを反応させることが好ましい。 In producing the foamed polyurethane resin article of the present invention, it is preferable to react an organic polyisocynate with a polyol containing an antistatic agent, a lactone-based monomer, a foaming agent, and a urethanizing catalyst. When the above-mentioned terminal isocyanate group-containing ethane prepolymer is used in producing a polyurethane resin foam molded article, when the terminal isocyanate group-containing phthalate prepolymer is used, it contains an antistatic agent, a ratatone monomer, a foaming agent and a retethane-forming catalyst. Preferably, the urethane prepolymer is reacted with a polyamine-based curing agent.
発泡剤としては、 主として水を使用する。 更に、 発泡助剤として、 例えば 1 , 1—ジクロロー 1 _フルォロェタン、 1 , 1 , 1 , 3 , 3—ペンタフルォロプロ パン、 1 , 1 , 1 , 3 , 3 _ペンタフルォロブタン、 メチレンクロライ ド、 ペン タン等の低沸点の化合物を使用することができる。  Water is mainly used as the blowing agent. Further, as foaming aids, for example, 1,1-dichloro-1-fluoroethane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, methylene Low boiling compounds such as chloride and pentane can be used.
ウレタン化触媒としては、 スタナスォク トエート (Stannus Octoate)、 ジブチ ル錫ジラウレートのような有機酸金属塩; トリエチレンジァミン、 トリェチルァ ミン、 N—ェチルモルフォリン、 ジメチルエタノールァミン、 ペンタメチルジェ チレントリアミン、 パノレミチルジメチルァミン等のアミン類が挙げられる。  Examples of urethanization catalysts include organic acid metal salts such as stannus octoate and dibutyltin dilaurate; triethylenediamine, triethylamine, N-ethylmorpholine, dimethylethanolamine, and pentamethylethylene. Examples include amines such as triamine and panolemicyldimethylamine.
ポリアミン系硬化剤としては、 例えば、 4, 4 ' ージアミノー 3 , 3, ージク ロロジフエニルメタン (MB O C Aと言う)、 トリメチレンビス (4一アミノベン ゾエート)、メチレンビス(2—ェチル一 6—メチルァニリン)、メチレンビス(2, 3—ジクロロア二リン) 等ポリアミノクロ口フエニルメタン化合物、 トルエンジ ァミン、 4 , 4 ' ージアミノジフエニルメタン等が挙げられる。  Examples of polyamine-based curing agents include 4,4'-diamino-3,3, dichlorodiphenylmethane (referred to as MB OCA), trimethylenebis (4-aminobenzoate), and methylenebis (2-ethyl-1-6-methylaniline). And phenylmethane compounds such as methylenebis (2,3-dichloroaniline), polyaminochloromethane, toluenediamine, 4,4′-diaminodiphenylmethane and the like.
ポリウレタン樹脂発泡成形体の製造には、 その他に、 必要により整泡剤、 鎖伸 長剤等を使用することができる。  In the production of the polyurethane resin foam molded article, a foam stabilizer, a chain extender, and the like can be used as necessary.
整泡剤としては、 ポリウレタン樹脂発泡成形体の製造用として効果のあるもの 全てを使用することができる。 例えば、 ポリジメチルシロキサンやポリシロキサ ンーポリアルキレンォキシドプロック共重合体等のシリコン系化合物、金属石鹼、 アルキルフエノールや脂肪酸のエチレンォキシド及び/又はプロピレンォキシド 付加物等の界面活性剤が挙げられる。  As the foam stabilizer, any one that is effective for producing a polyurethane resin foam molded article can be used. Examples thereof include silicon-based compounds such as polydimethylsiloxane and polysiloxane-polyalkylene oxide block copolymer, and surfactants such as metal oxides, alkylphenols, and ethylene oxide and / or propylene oxide adducts of fatty acids. .
鎖伸長剤としては、 前記の低分子量ポリオールの他に公知の鎖伸長剤を使用す ることができるが、 中でも、 エチレングリコール、 1 , 4—ブタンジオール及び ジエチレングリコールが好ましく、 これらのうち、 エチレングリコールが特に好 ましい。  As the chain extender, known chain extenders can be used in addition to the low-molecular-weight polyol described above. Among them, ethylene glycol, 1,4-butanediol and diethylene glycol are preferable, and among these, ethylene glycol Is particularly preferred.
本発明で使用する帯電防止剤としては、 公知の帯電防止剤をとくに制限なく使 用できるが、 置換スルホン酸第四級アンモニゥム系のカチオン系制電性化合物と 有機酸金属塩系のァニオン系制電性化合物の少なくとも 1種の使用が好ましく、 それら両者の混合物の使用がより好ましい。 その混合割合は、 カチオン系制電性 化合物:ァニオン系制電性化合物 = 70〜 9 9重量% : 1 -3 0重量%が好まし レ、。 As the antistatic agent used in the present invention, known antistatic agents can be used without particular limitation. However, it is preferable to use at least one kind of a substituted sulfonic acid quaternary ammonium-based cationic antistatic compound and an organic acid metal salt-based anionic antistatic compound, more preferably a mixture of both. . The mixing ratio is preferably cationic antistatic compound: anionic antistatic compound = 70 to 99% by weight: 1 to 30% by weight.
置換スルホン酸第四級アンモユウム系の力チオン系制電性化合物としては、 例 えば炭化水素基及びォキシ炭化水素基で置換されたスルホン酸第四級アンモニゥ ム (以下、 置換スルホン酸第四級アンモニゥムという) 等が拳げられる。  Examples of the substituted quaternary ammonium thiothion-based antistatic compound include quaternary ammonium sulfonic acid substituted with a hydrocarbon group and an oxyhydrocarbon group (hereinafter, quaternary ammonium substituted sulfonic acid). Etc.)
置換スルホン酸第四級アンモニゥムとしては、 例えば、 メチル硫酸一 Ν,Ν,Ν —トリメチルー Ν—ドデシルアンモニゥム、 メチル硫酸一 Ν,Ν,Ν— トリメチル 一 Ν—ミ リスチルアンモニゥム、 メチル硫酸一 Ν,Ν,Ν—トリメチル一 Ν—パル ミチルアンモニゥム、 メチル硫酸一Ν,Ν,Ν—トリメチル一Ν—ステアリルアン モニゥム、ェチル硫酸一 Ν—ェチルー Ν,Ν—ジメチルー Ν—ドデシルアンモニゥ ム、 ェチル硫酸一 Ν—ェチル一Ν,Ν—ジメチルー Ν—ミ リスチルアンモニゥム、 ェチル硫酸一 Ν—ェチル _Ν,Ν—ジメチルー Ν—パルミチルアンモニゥム、ェチ ル硫酸一 Ν—ェチル一 Ν,Ν—ジメチルー Ν—ステアリアルアンモニゥム、ェチル 硫酸一 Ν,Ν—ジェチルモルホリニゥム等のジアルキル硫酸誘導体、メタンスルホ ン酸ー Ν,Ν,Ν— トリメチル— Ν—ドデシルアンモニゥム、 メタンスルホン酸一 Ν,Ν,Ν-トリメチノレー Ν—ミ リスチノレアンモニゥム、メタンスノレホン酸一 Ν,Ν, Ν—トリメチルー Ν—パルミチルアンモニゥム、 メタンスルホン酸一Ν,Ν, Ν- トリメチノレー Ν—ステアリルアンモニゥム、メタンスルホン酸一 Ν—ェチル _Ν, Ν—ジメチノレー Ν_ドデシルアンモニゥム、メタンスルホン酸一 Ν—ェチルー Ν, Ν—ジメチノレー Ν—ミ リスチノレアンモニゥム、 メタンスノレホン酸一 Ν—ェチノレ一 Ν, Ν—ジメチル一 Ν—パルミチルアンモニゥム、 メタンスルホン酸一Ν—ェチ ノレ一 Ν, Ν—ジメチル一 Ν—ステアリルアンモニゥム、 メタンスルホン酸一 Ν, Ν—ジェチノレモルホリニゥム等のメタンスルホン酸エステル誘導体、 ρ -トルェ ンスルホン酸一 Ν, Ν, Ν—トリメチルー Ν—ドデシルアンモニゥム、 ρ—トル エンスルホン酸一 Ν, Ν, Ν— トリメチル一Ν—ミ リスチルアンモニゥム、 ρ— トルエスルホン酸一 Ν, Ν, Ν—トリメチル一Ν—パルミチルアンモニゥム、 ρ 一トルエンスルホン酸一 N, N , N—トリメチル一N—ステアリルアンモニゥム、 p -トノレエンスノレホン酸一 N—ェチル一N, N—ジメチルー N—ドデシルアンモ -ゥム、 p— トルエンスルホン酸一 N—ェチルー N , N—ジメチル一 N—ミ リス チルアンモニゥム、 p—トルエンスルホン酸一 N—ェチルー N, N—ジメチノレ一 N—パルミチルアンモニゥム、 p—トノレエンスルホン酸一 N—ェチルー N, N— ジメチルー N—ステアリルアンモニゥム、 一 トルエンスルホン酸一 N, N—ジ ェチルモルホリ二ゥム、 p -トルエンスルホン酸一 N—ェチノレー N—メチルモノレ ホリニゥム等の p—トルエンスルホン酸エステル誘導体等が挙げられる。 これら は、 単独或いは 2種以上を混合して用いることができる。 Examples of the substituted sulfonic acid quaternary ammonium include, for example, methyl sulfate, tris-trimethyl-dodecyl ammonium, methyl sulfate, tri-, di-, tri-trimethyl mono-myristyl ammonium, methyl Ν, Ν, Ν-Trimethyl sulfate-palmityl ammonium, methyl sulfate, Ν, Ν, Ν-trimethyl mono-stearyl ammonium, ethyl sulphate, ェ -ethyl Ν, Ν-dimethyl ド -dodecyl ammoniumゥ 硫酸 、 ェ ェ ェ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Dialkyl sulfate derivatives such as ethyl ethyl, di-dimethyl di-stearial ammonium, ethyl ethyl sulfate, di-ethyl morpholinium, methanesulfonate Methyl-dodecylammonium, methanesulfonic acid Ν, Ν, Ν-trimethinoleate レ ー -myristinoleammonium, methanesnolephonate Ν, Ν, Ν-trimethyl パ ル -palmitylammonium, methanesulfone Acid mono-, di-, tri-methylinoleate, stearyl ammonium, monoethyl methanesulfonate _, dimethinolate _ dodecylammonium, monomethyl methanesulfonate, dimethylinole Ν, dimethinolate Listinoleammonium, methansnolephonate, dimethylsulfonate, palmitylammonium, methanesulfonate, dimethylsulfonate, dimethylsulfonate, stearylammonium Methanesulfonic acid ester derivatives such as methanesulfonic acid Ν, Ν-jetinole morpholinium, ρ-toluenesulfonic acid 一Ν, Ν-trimethyl Ν-dodecylammonium, ρ-toluenesulfonic acid Ν, Ν, Ν-trimethylone-myristyl ammonium, ρ-toluenesulfonic acid Ν, Ν, Ν-trimethylone Ν—Palmityl ammonium, ρ Mono-toluenesulfonic acid-N, N, N-trimethyl-N-stearylammonium, p-tonorenesnolephonate-N-ethyl-N, N-dimethyl-N-dodecylammonium, p-toluenesulfonic acid N-ethyl-N, N-dimethyl-1-N-myristylammonium, p-toluenesulfonic acid-N-ethyl-N, N-dimethinole-1-N-palmitylammonium, p-tonolenesulfonic acid-N-ethyl-N P-toluenesulfonic acid ester derivatives such as N, N-dimethyl-N-stearylammonium, mono-toluenesulfonic acid, N, N-diethylmorpholine, p-toluenesulfonic acid, 1-N-ethynoleic N-methylmonophorinium No. These can be used alone or in combination of two or more.
置換スルホン酸第四級アンモニゥムは、 例えばエチレングリコール、 1 , 4一 ブタンジオール及びジエチレンダリコール等のいずれか 1種以上の溶媒中で、 第 3級ァミンに当量のジアルキル硫酸を滴下して反応させることによって容易に調 製することができる。  Substituted sulfonic acid quaternary ammonium is reacted by dropping an equivalent amount of dialkyl sulfuric acid to tertiary amine in one or more solvents such as ethylene glycol, 1,4-butanediol, and diethylene dalicol. Thus, it can be easily prepared.
前記有機酸金属塩系のァニオン系制電性化合物としては、 例えばビス (トリフ ルォロメタンスルホニル) イミ ド金属塩、 トリス (トリフルォロメタンスルホ二 ル) メタン金属塩、'アルキルスルホン酸金属塩、 ベンゼンスルホン酸金属塩また はアルキルベンゼンスルホン酸金属塩等の有機金属塩が挙げられ、 特にビス (ト リフルォロメタンスルホニル) イミ ド金属塩、 トリス (トリフルォロメタンスル ホニル) メタン金属塩が好ましい。  Examples of the organic acid metal salt-based anion-based antistatic compound include metal salts of bis (trifluoromethanesulfonyl) imid, metal salts of tris (trifluoromethanesulfonyl) methane, metal salts of 'alkylsulfonic acid, benzene An organic metal salt such as a metal sulfonic acid salt or a metal alkyl benzene sulfonic acid salt is mentioned, and a metal salt of bis (trifluoromethanesulfonyl) imid and a metal salt of tris (trifluoromethanesulfonyl) methane are particularly preferable.
前記金属塩の金属成分としては、 例えば有機溶媒への溶解性の観点から、 リチ ゥム、 ナトリウム、 力リゥム等のアルカリ金属、 もしくはマグネシゥム等のァノレ 力リ土類金属が好ましく、 なかでもリチウムが特に好ましい。  As the metal component of the metal salt, for example, from the viewpoint of solubility in an organic solvent, an alkali metal such as lithium, sodium, or potassium, or an alkaline earth metal such as magnesium is preferable, and lithium is particularly preferable. Particularly preferred.
上記ビス (トリフルォロメタンスルホニル) イミ ド金属塩、 トリス (トリフル ォロメタンスルホニル) メタン金属塩の好適な具体例としては、 ビス (トリフル ォロメタンスノレホニノレ) イミ ドリチウム、 ビス (トリフルォロメタンスルホニル) イミ ドナトリ ウム、 ビス (トリフルォロメタンスルホニル) イミ ドカリ ウム、 ト リス (トリフノレオロメタンスルホニル) メタンリチウム、 トリス (トリフノレオ口 メタンスルホニル) メタンナトリゥム、 及びトリス (トリフルォロメタンスルホ ニル) メタンカリウム、 p— トルエンスルホン酸リチウムが挙げられる。 これら の中では、 ビス (トリフルォロメタンスルホニル) イミ ドリチウム、 トリス (ト リフルォロメタンスルホニル) メタンリチウム、 p— トルエンスルホン酸リチウ ムが特に好ましい。 Preferable specific examples of the above bis (trifluoromethanesulfonyl) imid metal salt and tris (trifluoromethanesulfonyl) methane metal salt include bis (trifluoromethanesulfonolino) imidolithium and bis (trifluoromethanesulfonyl) Imidonadium, bis (trifluoromethanesulfonyl) imidium potassium, tris (trifluoronorethosulfonyl) methanelithium, tris (trifluoromethanesulfonyl methanesulfonyl) methane sodium, and tris (trifluoromethanesulfonyl) methane potassium, p- And lithium toluenesulfonate. these Among them, lithium bis (trifluoromethanesulfonyl) imidium, lithium tris (trifluoromethanesulfonyl) methane, and lithium p-toluenesulfonate are particularly preferred.
本発明で帯電防止助剤として使用するラク トン系単量体としては、 例えば ]3— プロピオラク トン、 yーブチロラク トン、 δ —バレロラク トン、 ε —力プロラク トン、 γ —クロ トノラク トン等のラク トンモノマーが挙げられ、 それぞれ単独ま たは 2種以上を組み合わせて使用することができる。 特に優れた帯電防止性能を 向上発現する観点より、 γ —ブチロラタ トン及び ε—力プロラタトンが好ましい。 前記カチオン系制電性化合物のみ又は金属塩系ァニオン系制電性化合物のみを ポリウレタン樹脂に添加すると、 その帯電防止効果は温度及び湿度依存性が大き く、 高湿度条件では大気中の湿気を吸着することにより水が帯電防止剤として作 用し、 より安定した帯電防止性能を発現するが、 低温低湿度条件においては充分 な帯電防止性能を発現できない。 本発明は更に、 ラタ トン系単量体を併用するこ とにより、 低温低湿度条件においても安定した優れた制電発現率、 制電発現性を 付与することができるものである。 Examples of the lactone-based monomer used as the antistatic auxiliary in the present invention include:] lactones such as 3-propiolactone, y-butyrolactone, δ-valerolactone, ε -force prolacton, and γ-crotonolactone. Monomers can be used, and each can be used alone or in combination of two or more. From the viewpoint of improving and exhibiting particularly excellent antistatic performance, γ-butyrolataton and ε-force prolataton are preferred. When only the cationic antistatic compound or the metal salt anionic antistatic compound is added to the polyurethane resin, the antistatic effect has a large temperature and humidity dependency, and adsorbs moisture in the atmosphere under high humidity conditions. By doing so, water acts as an antistatic agent and exhibits more stable antistatic performance, but cannot exhibit sufficient antistatic performance under low temperature and low humidity conditions. The present invention can further provide a stable and excellent antistatic expression rate and antistatic property even under low-temperature and low-humidity conditions by using a rataton-based monomer in combination.
また本発明においては、 さらに環状ケトン、 ソルビタン脂肪酸エステル等を帯 電防止助剤として併用しても良い。 環状ケトンとしては、 例えばシクロペンタノ ン、 シクロへキサノン、 シクロへプタノン等の環状ケトン及びその誘導体等が挙 げられる。  Further, in the present invention, a cyclic ketone, a sorbitan fatty acid ester or the like may be used in combination as an antistatic assistant. Examples of the cyclic ketone include cyclic ketones such as cyclopentanone, cyclohexanone, and cycloheptanone, and derivatives thereof.
ソルビタン脂肪酸エステルとしては、 例えばソルビタンセスキォレエート、 ソ ノレビタンモノォレエート、 ソルビタンモノステアレート、 ソノレビタンモノラウレ ート、 ポリォキシエチレンソノレビタンモノラゥレート、 ポリオキシエチレンソノレ ビタンモノステアレート、 ポリオキシエチレンソルビタンモノォレエート等が挙 げられる。  Examples of sorbitan fatty acid esters include sorbitan sesquioleate, sonorebitan monooleate, sorbitan monostearate, sonorebitan monolaurate, polyoxyethylene sonorebitan monodiolate, polyoxyethylene sonorebitan Monostearate, polyoxyethylene sorbitan monooleate, and the like.
前記帯電防止剤のポリウレタン樹脂成形体中の含有量は、 帯電防止性能を充分 に発現させる観点から、 0 . 5重量%以上が好ましく、 1重量%以上がより好ま しい。 また樹脂の機械的特性を維持させる観点からは、 1 0重量%以下が好まし く、 7重量%以下がより好ましい。 従って、 帯電防止剤の含有量は、 好ましくは 0 . :!〜 1 0重量%であり、 より好ましくは 1〜 7重量%である。 前記ラタトン系単量体のポリウレタン樹脂成形体中の含有量は、 帯電防止性能 を充分に発現させる観点から、 0 . 1重量%以上が好ましく、 1重量%以上がよ り好ましい。また、樹脂成形体としての機械的特性を維持する観点から、 6重量% 以下が好ましく、 4重量%以下がより好ましい。 従って、 ラタトン系単量体のポ リウレタン樹脂成形体中の含有量は、 0 . 1〜6重量%が好ましく、 1〜4重量% がより好ましい。 The content of the antistatic agent in the polyurethane resin molded article is preferably 0.5% by weight or more, and more preferably 1% by weight or more, from the viewpoint of sufficiently exhibiting the antistatic performance. From the viewpoint of maintaining the mechanical properties of the resin, the content is preferably 10% by weight or less, more preferably 7% by weight or less. Therefore, the content of the antistatic agent is preferably from 0 :! to 10% by weight, more preferably from 1 to 7% by weight. The content of the rataton-based monomer in the polyurethane resin molded article is preferably 0.1% by weight or more, more preferably 1% by weight or more, from the viewpoint of sufficiently exhibiting antistatic performance. In addition, from the viewpoint of maintaining the mechanical properties of the resin molded product, the content is preferably 6% by weight or less, more preferably 4% by weight or less. Therefore, the content of the rataton-based monomer in the polyurethane resin molded body is preferably 0.1 to 6% by weight, and more preferably 1 to 4% by weight.
帯電防止剤に対するラタトン系単量体の含有割合は、 充分な帯電防止性能とポ リウレタン樹脂成形体の物性を維持する観点から、 童量比で帯電防止剤/ラタト ン系単量体 = 1 / 2〜 2 O Z lが好ましく、 2ノ3〜1 O Z lが特に好ましい。 前記の帯電防止剤は、 それがポリウレタン樹脂成形体中に均一に含まれるよう にするために、 ポリウレタン樹脂成形体の原料となる前記ポリオールや、 成形体 の柔軟性を調節するために適宜使用される可塑剤などに予め溶解させた状態でポ リウレタン樹脂成形体の製造時に使用するのが好ましい。  From the viewpoint of maintaining sufficient antistatic performance and physical properties of the polyurethane resin molded article, the content ratio of the rataton-based monomer to the antistatic agent is set to 1 / 2 to 2 OZl are preferred, and 2 to 3 OZl is particularly preferred. The antistatic agent is appropriately used to adjust the flexibility of the polyol or the molded product, as a raw material of the polyurethane resin molded product, so that the antistatic agent is uniformly contained in the polyurethane resin molded product. It is preferable to use it in the state of being dissolved in advance in a plasticizer or the like when producing a polyurethane resin molded article.
前記ポリオールの中でも、エチレングリコーノレ、ジエチレングリコール及ぴ 1, 4—ブタンジオールは、 帯電防止剤特にカチオン系制電性化合物及びァユオン系 制電性化合物との溶解性が良好であるから、 濃厚溶液をつくることができ、 この 観点から好ましい。特にエチレングリコールが好ましレ、。また、可塑剤としては、 例えばアジぺート系、 安息香酸系等ポリエステル可塑剤等が好ましい。  Among the above-mentioned polyols, ethylene glycol, diethylene glycol and 1,4-butanediol have good solubility with an antistatic agent, particularly a cationic antistatic compound and an aion antistatic compound, and thus a concentrated solution is used. It can be made and is preferable from this viewpoint. In particular, ethylene glycol is preferred. As the plasticizer, for example, polyester plasticizers such as azide type and benzoic acid type are preferable.
本発明のポリウレタン樹脂成形体は、 既に述べた成分以外にも制電性ゃ成形性 を損ねない範囲で、 難燃剤、 可塑剤、 充填剤、 着色剤、 耐候安定剤、 耐光安定剤 及び酸化防止剤等の添加剤を適宜使用することができる。  The polyurethane resin molded article of the present invention has a flame retardant, a plasticizer, a filler, a coloring agent, a weather stabilizer, a light stabilizer, and an antioxidant in addition to the components described above, as long as the antistatic property and the moldability are not impaired. An additive such as an agent can be appropriately used.
ポリウレタン樹脂成形体は、 有機ポリイソシァネートとポリオール、 さらに必 要に応じて任意に添加されるポリアミン類等の活性水素原子含有化合物の反応成 分全体を、 当量比で N C OZ活性水素原子 (O H基、 NH基等) = 0 . 9〜1 . 1の範囲で反応させることによって得られる。  The polyurethane resin molded body is composed of an NCO OZ active hydrogen atom (equivalent ratio) of the entire reaction component of an organic polyisocyanate, a polyol, and optionally an active hydrogen atom-containing compound such as a polyamine. (OH group, NH group, etc.) = 0.9 to 1.1.
本発明に使用される成形型としては、 成形体を形成する型として使用されるも のであれば特に制限なく使用でき、 その形状はいずれでも良い。 例えば、 通常使 用される上型、 下型からなるオープン型、 平面状型、 筒状型、 凹型だけでなく、 インジェクション成形で使用されるクローズドモールド等も含まれる。 また、 成 形型の材質は、 鉄、 アルミ、 エポキシ樹脂等の一般的に使用されるものであれば 何れのものでも良い。 The mold used in the present invention can be used without any particular limitation as long as it is used as a mold for forming a molded body, and may have any shape. For example, it includes not only the commonly used upper mold and lower mold open molds, flat molds, cylindrical molds and concave molds, but also closed molds used in injection molding. In addition, The material of the mold may be any commonly used material such as iron, aluminum, epoxy resin and the like.
ポリウレタン樹脂発泡成形体を製造する場合、 ポリオール中に発泡剤及びウレ タン化触媒、 さらに必要に応じて制電性ゃ成形性を損ねない範囲で任意に添カロさ れる整泡剤、 鎖伸長剤、 難燃剤、 可塑剤、 充填剤、 着色剤、 耐候安定剤、 耐光安 定剤及び酸化防止剤等を予めプレミックスした混合物を使用するのが好ましい。 有機ポリイソシァネートとそのようなプレミックスした混合物を発泡成形機で高 速攪拌することによつて混合し発泡させることができる。 発泡成形機としては、 例えば通常用いられる低圧発泡成形機、 射出発泡成形機等を使用することができ る。  When producing a polyurethane resin foam molded article, a foaming agent and a urethanization catalyst are added to the polyol, and, if necessary, a foam stabilizer and a chain extender optionally added to the extent that the antistatic property and moldability are not impaired. It is preferable to use a mixture in which a flame retardant, a plasticizer, a filler, a colorant, a weather stabilizer, a light stabilizer, an antioxidant and the like are premixed in advance. The organic polyisocyanate and such premixed mixture can be mixed and foamed by high-speed stirring in a foam molding machine. As the foam molding machine, for example, a commonly used low-pressure foam molding machine, injection foam molding machine, or the like can be used.
また、 成形方法としては、 通常の方法を採用することができる。 ポリウレタン 樹脂発泡成形体を製造する場合、 成形機より吐出した混合発泡液をモールドにォ ープン注入するモールド成形方法、 成形機の吐出口に直結したク口ーズドモール ドに混合発泡液を直接射出するインジェクション成形方法等を採用できる。  Further, as a molding method, a usual method can be adopted. When producing polyurethane resin foam molded products, a molding method in which the mixed foaming liquid discharged from the molding machine is openly injected into the mold, and an injection in which the mixed foaming liquid is directly injected into a closed mold directly connected to the discharge port of the molding machine. A molding method or the like can be adopted.
ポリウレタン樹脂成形体を製造する際における帯電防止剤及ぴラクトン系単量 体の添加方法としては、 例えば (1 ) 帯電防止剤及びラタトン系単量体をポリオ ールにプレミックスする方法、 (2 )帯電防止剤及びラタトン系単量体をプレミツ タスせず、 有機ポリイソシァネート及びポリオールから独立して添加する方法、 ( 3 ) 帯電防止剤をポリオールにプレミッタスし、 ラクトン系単量体を有機ポリ イソシァネートにプレミックスする方法、 ( 4 )有機ポリイソシァネートとして末 端イソシァネート基含有ウレタンプレボリマー使用し、 これとポリアミン系硬ィ匕 剤を反応させる場合、 該ウレタンプレボリマーに帯電防止剤及びラクトン系単量 体を添加する等を採用できる。  Examples of a method of adding an antistatic agent and a lactone monomer in producing a polyurethane resin molded article include (1) a method of premixing an antistatic agent and a rataton monomer into a polyol, (2) ) A method in which the antistatic agent and the rataton-based monomer are not premittently added and are independently added from the organic polyisocyanate and the polyol. (3) The anti-static agent is premitted in the polyol and the lactone-based monomer is converted into an organic compound. (4) When a urethane prepolymer containing a terminal isocyanate group is used as the organic polyisocyanate, and this is reacted with a polyamine-based curing agent, an antistatic agent is added to the urethane prepolymer. Addition of a lactone monomer may be employed.
本発明で帯電防止助剤として使用するラクトン系単量体はウレタン化触媒の存 在下に加温状態で保存しても分解することなく安定に保存することができるため、 本発明においては前記(1 )〜(4 )のいずれの添加方法も採用可能である。 (1 ) の方法は、 帯電防止剤及びラクトン系単量体をポリオール、 発泡剤及び触媒にプ レミックスした発泡原液を加温状態で保存した後に、 有機ポリイソシァネートと の反応で発泡させるものであり、 発泡挙動異常、 硬度低下及び強度低下がなく、 しかも、 低温低湿度条件下での優れた帯電防止性能が安定したポリウレタン榭月旨 発泡成形体を製造できる点で、 特に好ましい。 The lactone monomer used as an antistatic auxiliary in the present invention can be stably stored without decomposition even when stored in a heated state in the presence of a urethanization catalyst. Any of the addition methods 1) to (4) can be adopted. The method (1) is a method in which an antistatic agent and a lactone-based monomer are premixed with a polyol, a foaming agent, and a catalyst, the foaming stock solution is stored in a heated state, and then foamed by a reaction with an organic polyisocyanate. Without foaming behavior abnormality, hardness decrease and strength decrease, In addition, polyurethane is particularly preferable because it can produce a foamed molded article having excellent antistatic performance under low temperature and low humidity conditions.
ポリウレタン樹脂発泡成形体の密度は、 機械的特性、 耐久性を維持させる観点 から、 0. 2〜1. l gZcm3が好ましく、 0. 3〜0. 8 gZcm3がより好 ましく、 0. 4〜0. 7 g/7 cm3が最も好ましい。 The density of the polyurethane resin expanded molded article, from the viewpoint of maintaining mechanical properties, durability, 0. 2~1. L gZcm 3 is preferably, 0. 3~0. 8 gZcm 3 more favorable preferred, 0. 4~0. 7 g / 7 cm 3 being most preferred.
本発明のポリウレタン樹脂発泡成形体は、 ポリウレタンエラストマ一フォーム として、 作業場等における静電気爆発の防止、 I C工場における微量ホコリ、 ダ スト、 静電気防止の観点から、 安全靴、 作業靴、 クリーンルーム用靴等の靴底と して好適に使用しうる。  The polyurethane resin foam molded article of the present invention is used as a polyurethane elastomer foam to prevent safety explosion in workplaces and the like, and to prevent traces of dust, dust, and static electricity in IC factories. It can be suitably used as shoe soles.
実施例 Example
以下、 実施例を挙げて、 本発明を具体的に説明する。 ただし、 本発明は以下の 各実施例に限定されるものではなく、 例えばこれら実施例の構成要素同士を適宜 組み合わせてもよい。 また、本文中の「部」、 「%」は重量基準であるものとする。 実施例において使用した各原料を示す。  Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited to the following embodiments. For example, the components of these embodiments may be appropriately combined. “Parts” and “%” in the text are based on weight. Each raw material used in the examples is shown.
ポリオール Polyol
ポリオ一ノレ A: エチレングリコール/ 1 , 4ーブチレングリコーノレとアジピン 酸から合成された水酸基価 66mgK〇H/gのポリエステルポリオール。 ェチ レングリコーノレ Zl , 4 -ブチレングリコ一ノレのモル比 5/5。  Polyol A: Polyester polyol with a hydroxyl value of 66 mgK〇H / g synthesized from ethylene glycol / 1,4-butylene glycol and adipic acid. Ethylene glycolone Zl, 4-butyleneglycol mole ratio 5/5.
ポリオール B : ジエチレングリコール Zトリメチロールプロパンとアジピン酸か ら合成された水酸基価 6 OmgK〇H/gのポリエステルポリオール。 ジェチレ ングリコール/トリメチロールプロパンのモル比 1 5/1。 Polyol B: Polyester polyol with a hydroxyl value of 6 OmgK〇H / g synthesized from diethylene glycol Z trimethylolpropane and adipic acid. Methylene glycol / trimethylolpropane molar ratio 15/1.
有機ポリィソシァネート (末端イソシァネート基含有ゥレタンプレボリマー) NCO基末端プレポリマー 1 : NCO%= 16. 8重量%含有のアジピン酸、 ェ チレングリコール、 1, 4一プチレンダリコールから得られるポリエステルポリ オールと 4, 4 ' ージフエニルメタンジイソシァネートとを反応して得られるゥ レタンプレポリマー。 Organic Polysocyanate (Rethane Prepolymer Containing Terminal Isocyanate Group) NCO-terminated prepolymer 1: NCO% = 16.8% by weight containing adipic acid, ethylene glycol, polyester obtained from 1,4-butylendalcol A urethane prepolymer obtained by reacting a polyol with 4,4'-diphenylmethane diisocyanate.
NCO基末端プレポリマー 2 : NCO%= 3. 1重量0 /0含有、 ポリプロピレング リコールと トリレンジィソシァネー卜とを反応して得られるウレタンプレポリマ NCO基末端プレポリマー 3 : NCO%=4. 4重量%含有、 ポリテトラメチレ ングリコールとトリレンジィソシァネートとを反応して得られるゥレタンプレボ ])マー。 . NCO-terminated Prepolymer 2: NCO% = 3. 1 wt 0/0 containing polypropylene grayed recall and tolylene I Société § Natick Bok urethane prepolymer obtained by reacting NCO group-terminated prepolymer 3: NCO% = 4.4% by weight, perethane prevo]) mer obtained by reacting polytetramethylene glycol with tolylene disocyanate. .
制電性化合物 Antistatic compound
·制電性化合物 A 90重量%含有エチレンダリコール: ェチル硫酸一 N—ェチル 一 N,N—ジメチル一 N—ドデシルアンモニゥムを 90重量%含有するエチレン グリコール溶液。  · Ethylene dalicol containing 90% by weight of antistatic compound A: Ethylene glycol solution containing 90% by weight of mono-N-ethyl-N, N-dimethyl-N-dodecylammonium sulfate.
•制電性化合物 B 50重量%含有エチレングリコール: ビス (トリフルォロメタ ンスルホ -ル) イミ ドリチウムを 50重量%含有するエチレングリコール溶液。 ·制電性化合物 C 20重量%含有可塑剤溶液: ビス (トリフルォロメタンスルホ ニル) イミドリチウムを 20重量%含有するァジぺート系可塑剤溶液。  • Ethylene glycol containing 50% by weight of antistatic compound B: Ethylene glycol solution containing 50% by weight of bis (trifluoromethanesulfol) imidolithium. · Plasticizer solution containing 20% by weight of antistatic compound C: An adipate-based plasticizer solution containing 20% by weight of lithium bis (trifluoromethanesulfonyl) imide.
MB OCA (硬化剤) : 4, 4' ージアミノー 3, 3, 一ジクロロジフエニルメタ ン MB OCA (curing agent): 4,4 'diamino-3,3,1-dichlorodiphenylmethane
シリコーン整泡剤: SH— 1 93、 東レ'ダウコーニングシリコーン (株) 製品 発泡剤:水 Silicone foam stabilizer: SH-193, Toray's Dow Corning Silicone Co., Ltd. Product Foaming agent: water
ウレタン化触媒: トリエチレンジァミン (以後 TED Aという) Urethane-forming catalyst: Triethylenediamine (hereinafter referred to as TED A)
実施例 1〜6、 比較例 1〜4 (ポリウレタンエラストマ一フォームの製造) 表 1、 2に示す配合表に従って、 前記ポリオール、 発泡剤、 触媒、 整泡剤、 鎖 伸長剤、 制電性組成物とからなるポリオール成分 (以後 A液という) と前記有機 ポリイソシァネートからなるイソシァネート成分(以後 B液という)を調製した。 それぞれ 40°Cに調整した A液と B液を低圧発泡機を用いて混合攪拌し、 混合 発泡液を内寸 1 5 0 X 1 0 0 X 1 OHmmの金型に注入し、 型温 45 ± 1 °C、 脱 型時間を 4分間に設定してサンプルを成形した。  Examples 1 to 6, Comparative Examples 1 to 4 (Production of polyurethane elastomer foam) According to the composition table shown in Tables 1 and 2, the polyol, foaming agent, catalyst, foam stabilizer, chain extender, antistatic composition And an isocyanate component (hereinafter referred to as Liquid B) comprising the above-mentioned organic polyisocyanate. Solution A and Solution B each adjusted to 40 ° C are mixed and stirred using a low-pressure foaming machine, and the mixed foaming solution is poured into a mold having an inner dimension of 150 × 100 × 1 OHmm, and the mold temperature is 45 ± Samples were molded at 1 ° C with a demold time of 4 minutes.
A液/ B液の混合比率は NCO/OH比が 0. 9〜1. 1の範囲内において混 合発泡液の吐出開始から 2. 5分後におけるフリーフォームの強度が最も強くな る配合比に設定した。  When the NCO / OH ratio is in the range of 0.9 to 1.1, the mixing ratio of Liquid A / B is such that the strength of the free foam becomes the strongest 2.5 minutes after the start of the discharge of the mixed foaming liquid. Set to.
まず上記方法にて成形したサンプルについて 2. 5分後強圧テス ト、 モールド 密度、 ァスカー C硬度、 及ぴ電気抵抗値を測定した。 各項目の試験方法及び評価 基準を以下に説明する。 2. 5分後強圧テスト First, after 2.5 minutes, the sample molded by the above method was subjected to a high pressure test, a mold density, an ASKER C hardness, and an electrical resistance value. The test method and evaluation criteria for each item are described below. 2. After 5 minutes
A液/ B液を低圧発泡機にて所定の混合比率で混合攪拌し、 混合発泡液 1 50 gを 1 00 X 1 00 X 5 OHmmの木製発泡箱に注入しフリ^ "発泡させた。 混合 発泡液の吐出開始から 2. 5分後に発泡箱からフォームを取り出し、 直ちに拳で フォームに強圧をかけた後、 屈曲させ、 フォームの潰れ度合いからフォームの強 度出現を以下の判定基準で評価した。  The liquid A / liquid B was mixed and stirred at a predetermined mixing ratio with a low-pressure foaming machine, and 150 g of the mixed foaming liquid was poured into a wooden foaming box of 100 × 100 × 5 OHmm to cause free foaming. 2.5 minutes after the start of the foaming liquid discharge, the foam was taken out of the foam box, immediately applied a strong pressure to the foam with a fist, bent, and the appearance of foam strength was evaluated based on the degree of collapse of the foam according to the following criteria. .
A: フォームがほぼ原形を保持した状態  A: Form retains its original shape
B : フォームの強圧面が窪んだ状態  B: Form where the high pressure surface of the foam is depressed
モールド密度測定 Mold density measurement
サンプルの重量 (g) を測定し、 体積 150 cm3で除して算出した。 Sample weight (g) was measured and calculated by dividing the volume of 0.99 cm 3.
硬度測定 Hardness measurement
サンプルの硬度を A s k e r C硬度計にて測定した。  The hardness of the sample was measured with an Asker C hardness tester.
電気抵抗値の測定 Measurement of electrical resistance
電池式絶縁抵抗計 (横河電機 (株) 製、 2604 01型) を使用して、 サン プルの下面に 300 X 200 X It mmの鉄板、 上面に 75 X 75 X 31 mm の鉄板を接触させて、 成形後、 1日及び 7日経過時点の電気抵抗値を測定した。 成形後のサンプルはデシケータ内で保存し、 常温低湿度状態 (25°CX 1 5%R H)と低温低湿度状態(10°CX 1 5 %RH)の 2条件で電気抵抗値を測定した。 結果は表 1及ぴ表 2のとおりである。 Using a battery-type insulation resistance meter (Yokogawa Electric Corporation, type 260401), contact a 300 x 200 x It mm iron plate on the bottom surface of the sample and a 75 x 75 x 31 mm iron plate on the top surface. Then, after the molding, the electric resistance value was measured 1 day and 7 days later. The molded sample was stored in a desiccator, and the electrical resistance was measured under two conditions: normal temperature and low humidity (25 ° C x 15% RH) and low temperature and low humidity (10 ° C x 15% RH). The results are shown in Table 1 and Table 2.
表 1 table 1
実施例  Example
1 2 3 4 5 ポリオ一ル A 95 95 95 95 95 ポリオール B 5 5 5 5 5 エチレンゲリコ—ル 8.5 8.5 8.5 8.5 8.5 配 整泡剤 SH- 193 0.5 0.5 0.5 0.5 0.5 水 0.45 0.45 0.45 0.45 0.45 液 TEDA 0.76 0.76 0.76 0.76 0.76 制電性化合物 A 6.33 6.33 - 6.33 6.33 1 2 3 4 5 Polyol A 95 95 95 95 95 Polyol B 5 5 5 5 5 Ethylene gercol 8.5 8.5 8.5 8.5 8.5 Control foaming agent SH-193 0.5 0.5 0.5 0.5 0.5 0.5 Water 0.45 0.45 0.45 0.45 0.45 Liquid TEDA 0.76 0.76 0.76 0.76 0.76 Antistatic compound A 6.33 6.33-6.33 6.33
A 制電性化合物 B 一 1.27 3.17 - 3.17 液 ーブチロラク卜ン 5.06 5.06 5.06 5.06 ε一力プロラクトン 一 - - 5.06 -A Antistatic compound B-I 1.27 3.17-3.17 Liquid Butyrolactone 5.06 5.06 5.06 5.06 ε One-pot prolactone---5.06-
B液 NCO末端プレホ °リマー 117.4 118.2 113.8 117.4 119.2Solution B NCO-end pre-polymer 7.4 117.4 118.2 113.8 117.4 119.2
A液 50°C保存日数(日) 0 4 0 4 0 4 0 4 0 4Solution A 50 ° C storage days (days) 0 4 0 4 0 4 0 4 0 4
2.5分後強圧テスト 15 A A A A A A A A A A モ—ルド密度 (gん m3) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 硬度(AskerG) 69 69 70 70 70 70 69 69 70 70 電気抵抗値 (ΜΩ) High pressure test after 2.5 minutes 15 AAAAAAAAAA Mold density (g m 3 ) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 Hardness (AskerG) 69 69 70 70 70 70 69 69 70 70 Electric resistance (ΜΩ)
10°CX15%RHX1 曰 75 80 48 50 90 90 80 90 25 27 10 ° CX15% RHX1 says 75 80 48 50 90 90 80 90 25 27
10°C 15%RHX7曰 65 70 38 40 75 75 70 80 20 2210 ° C 15% RHX7 65 70 38 40 75 75 70 80 20 22
25°CX15%RHX1 曰 14 16 9 8 18 20 17 19 8 825 ° CX15% RHX1 14 16 9 8 18 20 17 19 8 8
25°CX15%RHX7曰 12 13 8 7 14 15 14 16 6 5 引張強度 (MPa) 7.30 7.25 7.10 7.03 7.11 7.09 6.99 7.21 6.98 7.0125 ° CX15% RHX7 12 13 8 7 14 15 14 16 6 5 Tensile strength (MPa) 7.30 7.25 7.10 7.03 7.11 7.09 6.99 7.21 6.98 7.01
100<½モジュラス(MPa) 1.89 1.96 1.80 1.81 1.78 1.88 1.69 1.77 1.88 1.85100 <½ modulus (MPa) 1.89 1.96 1.80 1.81 1.78 1.88 1.69 1.77 1.88 1.85
300%モジュラス(MPa) 3.86 3.90 3.60 3.78 3.89 3.91 3.88 3.91 3.71 3.69 伸び(%) 500 520 480 490 480 480 490 500 470 470 引裂強度(KN/m) 28.9 30.8 27.9 29.0 29.2 28.8 28.2 29.9 27.7 26.6 耐屈曲性 2) A A A A A A A A A A 制電発現性 (10°C) A A A A A A A A A A 制電発現率(10°C) 87% 88% 79% 80% 83% 83% 88% 89% 80% 81% 制電発現性 (25°C) A A A A A A A A A A 制電発現率 (25°C) 83% 81% 81% 88% 82% 75% 82% 84% 75% 63% 表 2 300% modulus (MPa) 3.86 3.90 3.60 3.78 3.89 3.91 3.88 3.91 3.71 3.69 Elongation (%) 500 520 480 490 480 480 490 500 470 470 Tear strength (KN / m) 28.9 30.8 27.9 29.0 29.2 28.8 28.2 29.9 27.7 26.6 Flex resistance 2) AAAAAAAAAA Antistatic manifestation (10 ° C) AAAAAAAAAA Antistatic manifestation rate (10 ° C) 87% 88% 79% 80% 83% 83% 88% 89% 80% 81% Antistatic manifestation (25 ° C ) AAAAAAAAAA Antistatic rate (25 ° C) 83% 81% 81% 88% 82% 75% 82% 84% 75% 63% Table 2
実施例 比 較 例  Example Comparison example
6 1 2 3 4 ポリオール A 95 95 95 95 95 ポリオール B 5 5 5 5 5 エチレンゲリコ—ル 8.5 8.5 8.5 8.5 8.5 配 整泡剤 SH- 193 0.5 0.5 0.5 0.5 0.5 a 水 , 0.45 0.45 0.45 0.45 0.45 液 - TEDA 0.76 0.76 0.76 0.76 0.76 制電性化合物 A 6.33 6.33 6.33 - 6.33 6 1 2 3 4 Polyol A 95 95 95 95 95 Polyol B 5 5 5 5 5 Ethylene glycol 8.5 8.5 8.5 8.5 8.5 Control foam SH-193 0.5 0.5 0.5 0.5 0.5 a Water, 0.45 0.45 0.45 0.45 0.45 Liquid-TEDA 0.76 0.76 0.76 0.76 0.76 Antistatic compound A 6.33 6.33 6.33-6.33
A 制電性化合物 B 1.27 - 1.27 3.17 - 液 7"—ブチロラクトン 2.50 - - - 炭酸プロピレン - - 5.06A Antistatic compound B 1.27-1.27 3.17-Liquid 7 "-butyrolactone 2.50---Propylene carbonate--5.06
B液 NCO末端フ °レホ 'リマー 118.4 117.4 120.0 112.5 117.4Solution B NCO end terminal Remar 118.4 117.4 120.0 112.5 117.4
A液 50°C保存日数(日) 0 4 0 4 0 4 0 4 0 4 Solution A 50 ° C storage days (days) 0 4 0 4 0 4 0 4 0 4
2.5分後強圧テスト 1) A A A A A A A A A B モ—ルド密度 (gん m3) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 硬度(Asker C) 70 70 72 72 73 72 73 72 69 63 電気抵抗値 (ΜΩ) High pressure test after 2.5 minutes 1) AAAAAAAAAB Mold density (g m 3 ) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 Hardness (Asker C) 70 70 72 72 73 72 73 72 69 63 Electric resistance (ΜΩ)
10°CX15%RHX1曰 60 66 480 510 200 250 600 650 75 95 10 ° CX15% RHX1 60 66 480 510 200 250 600 650 75 95
10°CX15%RHX7曰 40 40 250 280 150 200 350 400 65 8010 ° CX15% RHX7 40 40 250 280 150 200 350 400 65 80
25°CX15%RHX1曰 10 9 80 85 35 40 100 200 14 1925 ° CX15% RHX1 10 9 80 85 35 40 100 200 14 19
25¾x15%RH 7曰 8 8 40 46 27 30 60 70 12 16 引張強度(M Pa) 7.54 7.33 7.19 7.13 7.34 7.55 7.23 7.20 7.28 4.4525¾x15% RH 7 8 8 40 46 27 30 60 70 12 16 Tensile strength (M Pa) 7.54 7.33 7.19 7.13 7.34 7.55 7.23 7.20 7.28 4.45
100%モジュラス(MPa) 1.88 1.77 1.86 1.89 1.78 1.91 1.90 1.85 1.86 0.95100% modulus (MPa) 1.88 1.77 1.86 1.89 1.78 1.91 1.90 1.85 1.86 0.95
3000 モジュラス(M Pa) 3.66 3.45 3.88 3.78 3.92 3.86 3.88 3.80 3.78 1.99 伸ぴ(%) 460 450 480 480 470 480 490 460 500 360 引裂強度 (KNZm) 26.7 35.8 30.4 29.9 28.9 29.6 29.8 28.8 29.6 18.9 耐屈曲性 2) A A A A A A A A A B 制電発現性 (10°C) A A B B B B B B A B 制電発現率(10°C) 67% 61% 52% 55% 75% 80% 58% 62% 87% 84% 制電発現性 (25°C) A A B B B B B B A A 制電発現率 (25°C) 80% 89% 50% 54% 77% 75% 60% 35% 86% 84% A液をプレンド直後より 4日間、 50°C乾燥機内に保存した。 50°Cでの保存 日数が 4日経過した A液について、 それぞれ上記方法にて発泡混合液を作製し、 発泡成形し、 サンプルを得た。 このサンプルについて、 2. 5分後強圧テスト、 モールド密度、 ァスカー C硬度、 電気抵抗値、 引張強度、 引裂強度及ぴ耐屈曲性 を評価した。 それぞれの項目の評価は上記方法と同様の方法で行った。 2. 5分 後強圧テス ト、 モールド密度、 ァスカー C硬度及び電気抵抗値については、 前記 の方法と同様の方法で行い、 引張強度、 引裂強度及ぴ耐屈曲性については、 次ぎ の方法で行った。 結果は表 1及び表 2に示すとおりである。 3000 Modulus (M Pa) 3.66 3.45 3.88 3.78 3.92 3.86 3.88 3.80 3.78 1.99 Elongation (%) 460 450 480 480 470 480 490 460 500 360 Tear strength (KNZm) 26.7 35.8 30.4 29.9 28.9 29.6 29.8 28.8 29.6 18.9 Flexibility 2 ) AAAAAAAAAB Antistatic manifestation (10 ° C) AABBBBBBAB Antistatic manifestation rate (10 ° C) 67% 61% 52% 55% 75% 80% 58% 62% 87% 84% Antistatic manifestation (25 ° C) AABBBBBBAA Antistatic rate (25 ° C) 80% 89% 50% 54% 77% 75% 60% 35% 86% 84% Solution A was stored in a 50 ° C dryer for 4 days immediately after the blend. With respect to the solution A having been stored at 50 ° C for 4 days, a foamed mixed solution was prepared by the above method, and foamed to obtain a sample. After 2.5 minutes, the sample was subjected to a high pressure test, a mold density, an Asker C hardness, an electric resistance value, a tensile strength, a tear strength and a flex resistance. Each item was evaluated in the same manner as described above. 2.After 5 minutes, high pressure test, mold density, ASKER C hardness and electric resistance value are performed in the same manner as above, and tensile strength, tear strength and flex resistance are performed in the following way. Was. The results are shown in Tables 1 and 2.
引張強度 Tensile strength
J I S K 6252-93に準じて試験装置 AUTOGRAPH AG— I (島津製 作所製品) を用い、 試験片をダンベル形状 3号形の形状にサンプリングして、 引 張速度 = 500 mm/min.で試験片が切断に至るまでの最大引張力を引張強度と し、 切断時の標線間距離を測定し破断伸びを求めた。 引張強度試験では 100% モジュラス、 300%モジュラス、 破断時の伸度も併せて測定した。 JISK using 6252-93 in accordance with the test apparatus AUTOGRAPH AG- I (Shimadzu works plant products), by sampling test pieces in the shape of a dumbbell shape No. 3 shape, tested at tensile speed = 500 mm / mi n. The maximum tensile force until the piece was cut was defined as the tensile strength, and the distance between the marked lines at the time of cutting was measured to determine the breaking elongation. In the tensile strength test, 100% modulus, 300% modulus, and elongation at break were also measured.
引裂強度 Tear strength
J I S K 625 1 -93に準じて試験装置 AUTOGRAPH AG— I (島津 製作所製品) を用い、 試験片を切込無しアングル形の形状にサンプリングして、 引裂速度 = 500 nim/min.で試験片が切断に至るまでの最大引裂力を引裂強度 とした。  Using a test device AUTOGRAPH AG-I (manufactured by Shimadzu Corporation) in accordance with JISK 625 1 -93, the test specimen is sampled into an angled shape without cutting, and the test specimen is cut at a tearing rate = 500 nim / min. The maximum tear force up to was defined as the tear strength.
耐屈曲性 Flex resistance
J I S K 6260— 93準じて試験装置デマッテアフレックスクラツキン グテスタ (DE MATT I A FLEX CRACK I NG TESTER, 東洋 精機製品)を用い、試験片を 1 5 0 X 2 5 X 6 mmの短冊状にサンプリングし、 屈曲部に 2 mmのノッチを入れ、屈曲速度 = 300 rpm、常温下で行った。 屈曲回数 2万回毎に、 亀裂成長度合いをノギスで測定し成長巾を記録した。 試験 回数は、 最大 10万回まで行った。 10万回到達時の亀裂の生長を調べ、 以下の 判定基準に従って評価した。  Using a testing device DE MATTIA FLEX CRACK I NG TESTER (TOYO SEIKI products) in accordance with JISK 6260-93, sample the specimen into a 150 x 25 x 6 mm strip shape, A 2 mm notch was made in the bend, and the bend speed was 300 rpm at room temperature. The degree of crack growth was measured with a vernier caliper every 20,000 bending cycles, and the growth width was recorded. The test was performed up to 100,000 times. The growth of the crack when it reached 100,000 times was examined and evaluated according to the following criteria.
A:亀裂の生長なし。  A: No crack growth.
B :亀裂の生長あり。 制電発現性 B: There is crack growth. Antistatic manifestation
吊 ¾nL Hanging ¾nL
A: 25 での 1日目の電気抵抗値が 30ΜΩ以下で、 発現率が 60 %以上 B: 25°Cでの 1日目の電気抵抗値が 30ΜΩを越える値で、 発現率が 60 % 未満  A: The electrical resistance value on the first day at 25 is 30ΜΩ or less and the expression rate is 60% or more B: The electrical resistance value on the first day at 25 ° C exceeds 30ΜΩ and the expression rate is less than 60%
低温 Low temperature
A: 10°Cでの 1日目の電気抵抗値が 9 ΟΜΩ以下で、 発現率が 60 %以上 B: 10 °Cでの 1日目の電気抵抗値が 90 M Ωを越える値で、 発現率が 60 % Yf¾  A: On the first day at 10 ° C, the electrical resistance is 9 9Ω or less, and the onset rate is 60% or more. B: On the first day at 10 ° C, the electrical resistance exceeds 90 MΩ. Rate is 60% Yf¾
制電発現率 Antistatic rate
25 °Cにおける [( 7日目の電気抵抗値/ 1日目の電気抵抗値) X 100 ]の値 (%)  The value of [(electric resistance on day 7 / electric resistance on day 1) X 100] at 25 ° C (%)
10°Cにおける [(7日目の電気抵抗値 Z1日目の電気抵抗値) X 100] の値 (%)  The value of [(electric resistance value on day 7 Z electric resistance value on day 1) X 100] at 10 ° C (%)
実施例 7〜8、 比較例 5〜6  Examples 7-8, Comparative Examples 5-6
表 3、 4に示す配合表に従って、 末端イソシァネート基含有ウレタンプレポリ マーは 80 °Cに、 MBOCA (ポリアミン硬化剤) は 120°Cに温度調整し、 ゥ レタンプレボリマーに対して制電性化合物 Cと y—ブチロラクトンとを、 プレポ リマーと硬化剤との R値 (NH2ZNCO比) =0. 9で撹拌混合、 充分脱泡し た後に、 型温 1 10°Cの金型に注型し、 表 3、 表 4に示すようなキュア条件で成 形を行い、 サンプルを得た。 According to the recipes shown in Tables 3 and 4, the temperature of the urethane prepolymer containing terminal isocyanate groups was adjusted to 80 ° C, and the temperature of MBOCA (polyamine curing agent) was adjusted to 120 ° C. C and y-butyrolactone are stirred and mixed at an R value (NH 2 ZNCO ratio) of 0.9 between the prepolymer and the curing agent, and after sufficient defoaming, cast into a mold at a mold temperature of 110 ° C. Then, molding was performed under the curing conditions shown in Tables 3 and 4 to obtain samples.
表 3 Table 3
Figure imgf000021_0001
表 4
Figure imgf000021_0001
Table 4
Figure imgf000021_0002
表 3, 4の成形品硬度、 引張強度、 伸び、 100%モジュラス, 300%モジュ ラス、 引裂強度、 反発弾性率、 圧縮永久歪みは、 前記サンプルを用い J I SK— 7312に準じて以下の方法で測定した。 電気抵抗値は、 前記の方法により測定 した 硬さ試験方法 (成形品硬度)
Figure imgf000021_0002
The hardness, tensile strength, elongation, 100% modulus, 300% modulus, tear strength, rebound resilience, and compression set of the molded products in Tables 3 and 4 were determined using the samples described above and in accordance with JI SK-731 by the following methods. It was measured. Electric resistance value is measured by the above method Hardness test method (molded product hardness)
エラストマ一の硬度は、 デュロメーター (DUROMETER) 硬さ試験のタ ィプ Aを用いて測定した。 引張試験  The hardness of the elastomer was measured using a type A durometer (DUROMETER) hardness test. Tensile test
試験装置 AUTOGRAPH AG— I (島津製作所製品) を用い、試験片は厚み 2 mmのエラストマ一成形品で、 試験片の形状はダンベル状 3号試験片を用いた。 エラストマ一の切断に至る最大応力 (引張強度) および切断時の伸び、 並びに特 定の伸びに対する応力(100%モジュラス, 300%モジュラス)を測定した。 引裂試験  Using a test device AUTOGRAPH AG-I (manufactured by Shimadzu Corporation), the test piece was a 2 mm-thick elastomer molded product, and the shape of the test piece was a dumbbell-shaped No. 3 test piece. The maximum stress (tensile strength) and the elongation at the time of cutting of the elastomer, and the stress (100% modulus, 300% modulus) for a specific elongation were measured. Tear test
試験装置 AUTOGRAPH AG— I (島津製作所製品) を用い、試験片は厚み 2 mmのエラストマ一成形品で、 形状は切込みなしアングル形で切断に至るまでの 引裂強度を測定した。 反発弾性試験  Using a test device AUTOGRAPH AG-I (manufactured by Shimadzu Corporation), the test piece was a 2 mm-thick elastomer molded product, the shape of which was cut at an angle and the tear strength before cutting was measured. Rebound resilience test
試験片は厚さ (高さ) 12.5mm、 直径 29 mmの直円柱形のエラストマ一成形 品で、 反発弾性試験機 (上島製作所製品) を使用し、 4本の釣り糸によって水平 に懸垂された鉄棒 (長さ 356mm、 直径 12.5mm、 質量 0.35 k gの丸棒) を上から懸垂高さ 2000mmの位置でつり、 鉄棒の水平位置から落下高さ垂直 方向に 100mmとして、 自由落下させ該成形品に当てて反発弾性率を求めた。 圧縮永久歪み試験 The test piece is a 12.5mm thick (height), 29mm diameter, right cylindrical elastomer molded product. An iron bar suspended horizontally by four fishing lines using a rebound resilience tester (a product of Ueshima Seisakusho). (A round bar with a length of 356 mm, a diameter of 12.5 mm, and a mass of 0.35 kg) was suspended from the top at a height of 2000 mm, dropped freely from the horizontal position of the horizontal bar to a height of 100 mm vertically, and dropped onto the molded product. To determine the rebound resilience. Compression set test
試験片は厚さ (高さ) 12.5mm、 直径 29 mmの直円柱形のエラストマ一成形 品で、 70°Cで 22時間、 厚み方向に対して 25%圧縮を行い、 圧縮永久歪みを 計算により求めた。 産業上の利用の可能性 本発明は、 帯電防止剤と帯電防止助剤としてのラタトン系単量体とを併用する ことにより、 ポリウレタン樹脂成形体に対して、 低温 ·低湿度条件下での優れた 帯電防止性能の発現性と安定した帯電防止性能を付与する。 The test piece is a 12.5 mm thick (height), 29 mm diameter, right cylindrical elastomer molded article. Compressed at 70 ° C for 22 hours, 25% in the thickness direction, and calculated compression set I asked. INDUSTRIAL APPLICABILITY The present invention provides an excellent polyurethane resin molded article under low temperature and low humidity conditions by using an antistatic agent and a rataton-based monomer as an antistatic auxiliary agent in combination. Also imparts antistatic performance and stable antistatic performance.
また、 本発明は、 帯電防止助剤として使用するラクトン系単量体がウレタン化 触媒との共存下において分解せずに安定して存在し得るために、 ポリオール、 帯 電防止剤、 帯電防止助剤、 及び触媒をプレミックスした原液の加温状態における 保存安定性を大幅に向上させ、 且つ、 その原液を有機ポリイソシァネートと反応 させてポリウレタン樹脂発泡成形体を製造するとき、 発泡挙動の異常、 硬度低下 及び強度低下等の物性低下を引き起こさずに、 優れた耐屈曲性と低温かつ低湿度 の条件下での優れた制電性能を発泡成形体に付与することができる。  In addition, the present invention provides a polyol, an antistatic agent, an antistatic agent, since the lactone monomer used as an antistatic auxiliary can be stably present without being decomposed in the presence of a urethanization catalyst. The storage stability of the stock solution prepared by premixing the agent and the catalyst in a heated state is greatly improved, and when the stock solution is reacted with an organic polyisocyanate to produce a polyurethane resin foam molded article, the foaming behavior of The foamed molded article can be provided with excellent flex resistance and excellent antistatic performance under low-temperature and low-humidity conditions without causing physical properties such as abnormality, hardness reduction, and strength reduction.

Claims

請求の範囲 The scope of the claims
1 . 帯電防止剤及びラクトン系単量体からなる帯電防止助剤を含有することを特 徴とするポリウレタン榭脂成形体。 1. A polyurethane resin molded article characterized by containing an antistatic agent and an antistatic auxiliary agent comprising a lactone monomer.
2 . 前記ラタ トン系単量体が、 γ—ブチロラタ トン及び ε—力プロラク トンから 選ばれる少なくとも 1種である請求項 1記載のポリウレタン樹脂成形体。 2. The polyurethane resin molded article according to claim 1, wherein the rataton-based monomer is at least one selected from γ-butyrolataton and ε-force prolactone.
3 . 前記帯電防止剤が、 置换スルホン酸第四級アンモニゥム系のカチオン系制電 性化合物及ぴ金属塩系のァニオン系制電性化合物から選ばれる少なくとも 1種で あり、 前記ラク トン系単量体が、 0 —ブチロラタ トン及ぴ ε—力プロラタ トンか ら選ばれる少なくとも 1種である請求項 1記載のポリウレタン樹脂成形体。 3. The antistatic agent is at least one selected from quaternary ammonium cation-based antistatic compounds and metal salt-based anionic antistatic compounds, and the lactone monomer 2. The polyurethane resin molded article according to claim 1, wherein the body is at least one member selected from 0-butyrolataton and ε-force prolataton.
4 . 前記ポリウレタン樹脂成形体が、 ポリウレタン樹脂発泡成形体である請求項 1記载のポリゥレタン樹脂成形体。 4. The polyurethane resin molded article according to claim 1, wherein the polyurethane resin molded article is a polyurethane resin foam molded article.
5 . 成形型内において、 (1 ) 有機ポリイソシァネートと (2 ) 前記帯電防止剤お よびラク トン系単量体を含有するポリオールを反応させることを特徴とするポリ ウレタン樹脂成形体の製造方法。 5. Production of a polyurethane resin molded article characterized by reacting (1) an organic polyisocyanate with (2) a polyol containing the antistatic agent and a lactone-based monomer in a molding die. Method.
6 . 前記ポリオールが更に発泡剤を含有する請求項 5記載のポリウレタン樹脂成 形体の製造方法。 6. The method for producing a polyurethane resin molded article according to claim 5, wherein the polyol further contains a foaming agent.
7 . 成形型内において、 (1 )前記帯電防止剤およぴラク トン系単量体を含有する 末端イソシァネート基含有ウレタンプレボリマーと (2 ) ポリアミン系硬化剤と 反応させることを特徴とするポリウレタン樹脂成形体の製造方法。 7. Polyurethane characterized in that (1) a urethane prepolymer containing terminal isocyanate group containing the antistatic agent and a lactone monomer and (2) a polyamine curing agent in a molding die. A method for producing a resin molded article.
PCT/JP2004/010988 2003-07-31 2004-07-26 Polyurethane resin formed product and method for production thereof WO2005012429A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2004800161775A CN1871304B (en) 2003-07-31 2004-07-26 Polyurethane resin molded item and its manufacturing method
KR1020057023516A KR100658111B1 (en) 2003-07-31 2004-07-26 Polyurethane resin formed product and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003204481 2003-07-31
JP2003-204481 2003-07-31

Publications (1)

Publication Number Publication Date
WO2005012429A1 true WO2005012429A1 (en) 2005-02-10

Family

ID=34113646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010988 WO2005012429A1 (en) 2003-07-31 2004-07-26 Polyurethane resin formed product and method for production thereof

Country Status (5)

Country Link
JP (2) JP3772897B2 (en)
KR (1) KR100658111B1 (en)
CN (1) CN1871304B (en)
TW (1) TWI327163B (en)
WO (1) WO2005012429A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630183A1 (en) * 2004-08-31 2006-03-01 Bayer MaterialScience AG Polyurethane elastomers having improved antistatic behaviour
US11008439B2 (en) 2015-10-02 2021-05-18 The Chemours Company Fc, Llc Solid polymeric articles having hydrophobic compounds intermixed therein

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061571A1 (en) * 2003-12-24 2005-07-07 Nippon Polyurethane Industry Co., Ltd. Process for producing soft polyurethane foam, process for producing conductive soft polyurethane foam, conductive roll and process for producing the same
CN101486890B (en) * 2008-04-30 2012-11-14 上海工程技术大学 Anstatic agent and antistatic urethane elastomer material thereof
KR101105874B1 (en) * 2009-07-28 2012-01-16 최진국 apparatus of polyurethane coating for roller
KR101762327B1 (en) * 2009-10-15 2017-07-27 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 Electrostatic dissipative tpu and compositions thereof
KR100986969B1 (en) 2010-01-29 2010-10-11 차윤종 Microporous polyurethane material having antistatic property for polishing pad and method for preparing the same and polishing pad using the same
CN102161742A (en) * 2011-03-24 2011-08-24 上海科华聚氨酯制品有限公司 Organic polymer polyurethane elastomer and preparation method thereof
CN102337020B (en) * 2011-06-24 2013-03-20 苏州新纶超净技术有限公司 Anti-static polyurethane elastomer material used under ultralow humidity condition and preparation method thereof
JP5810767B2 (en) * 2011-09-06 2015-11-11 Dic株式会社 Two-component curable polyurethane foam resin composition, urethane molded body, shoe sole, and industrial member
EP2771380B1 (en) * 2011-10-28 2018-12-05 Lubrizol Advanced Materials, Inc. Polyurethane based membranes and/or separators for electrochemical cells
CN104245773A (en) * 2012-04-26 2014-12-24 迈图高新材料日本合同公司 Polyurethane foaming composition and method for producing flexible polyurethane foam
CN102717660B (en) * 2012-06-14 2015-04-01 青岛富盛德塑胶有限公司 Anti-static caster structure, anti-static polyurethane material for producing caster and production method
KR101733081B1 (en) 2015-03-19 2017-05-08 한국화학연구원 Antistactic agnet for polyurethane form and articles of polyurethane form having antistactic properties using the same
KR101790215B1 (en) * 2016-01-08 2017-10-26 주식회사 엔에스엠 Anti-static mold for packaging of piling up and carrying a display panel and method of manufacturing the same
KR102136253B1 (en) * 2018-12-24 2020-07-22 윤주영 Cable cover composition having flame resistance and antistatic properties, and cable cover using the same
CN109796748B (en) * 2019-02-15 2021-09-17 美瑞新材料股份有限公司 Flame-retardant antistatic thermoplastic polyurethane elastomer and preparation method and application thereof
JP7243941B2 (en) 2021-04-13 2023-03-22 Dic株式会社 Laminates and soles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287660A (en) * 1990-04-04 1991-12-18 Dai Ichi Kogyo Seiyaku Co Ltd Antistatic urethane resin composition
JPH0696843A (en) * 1992-06-22 1994-04-08 Nippon Carbon Co Ltd Temperature self-control conductive composition, temperature self-control surface heating element and temperature self-control pipe heater
JPH08100169A (en) * 1994-09-30 1996-04-16 Daikin Ind Ltd Antistatic agent
JPH11100347A (en) * 1997-07-29 1999-04-13 Bridgestone Corp Quaternary ammonium salt of citric acid, its production and use
JPH11199643A (en) * 1998-01-09 1999-07-27 Asahi Denka Kogyo Kk Production of conductive urethane resin
JP2000103958A (en) * 1998-09-29 2000-04-11 Kao Corp Polyurethane
JP2001329253A (en) * 2000-03-14 2001-11-27 Kao Corp Antistatic agent composition
JP2002526582A (en) * 1998-09-21 2002-08-20 ザ ビー.エフ.グッドリッチ カンパニー Salt-modified electrostatic dissipative polymer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213231A (en) * 1985-03-18 1986-09-22 Shiraishi Chuo Kenkyusho:Kk Antistatic agent composition
JPS6343951A (en) * 1986-08-11 1988-02-25 Kao Corp Production of polyurethane having excellent antistatic property
EP0375029A3 (en) * 1988-12-21 1991-03-27 The Procter & Gamble Company Process for preparing substituted imidazoline fabric conditioning compounds
JP3147909B2 (en) * 1991-01-10 2001-03-19 花王株式会社 Additive for polyurethane production and method for producing polyurethane
JP3167137B2 (en) * 1991-01-10 2001-05-21 花王株式会社 Method for producing polyurethane
JP3488163B2 (en) * 1999-02-10 2004-01-19 三洋化成工業株式会社 Block polymer and antistatic agent comprising the same
JP2001261956A (en) * 2000-03-23 2001-09-26 Kao Corp Polyurethane
JP4172924B2 (en) * 2001-06-26 2008-10-29 大日精化工業株式会社 Thermal recording material
JP4251839B2 (en) * 2001-10-22 2009-04-08 三菱化学株式会社 Write-once optical disk substrate, write-once optical disk, and write-once optical disk manufacturing method
JP2003137960A (en) * 2001-10-31 2003-05-14 Yokohama Rubber Co Ltd:The Curable resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287660A (en) * 1990-04-04 1991-12-18 Dai Ichi Kogyo Seiyaku Co Ltd Antistatic urethane resin composition
JPH0696843A (en) * 1992-06-22 1994-04-08 Nippon Carbon Co Ltd Temperature self-control conductive composition, temperature self-control surface heating element and temperature self-control pipe heater
JPH08100169A (en) * 1994-09-30 1996-04-16 Daikin Ind Ltd Antistatic agent
JPH11100347A (en) * 1997-07-29 1999-04-13 Bridgestone Corp Quaternary ammonium salt of citric acid, its production and use
JPH11199643A (en) * 1998-01-09 1999-07-27 Asahi Denka Kogyo Kk Production of conductive urethane resin
JP2002526582A (en) * 1998-09-21 2002-08-20 ザ ビー.エフ.グッドリッチ カンパニー Salt-modified electrostatic dissipative polymer
JP2000103958A (en) * 1998-09-29 2000-04-11 Kao Corp Polyurethane
JP2001329253A (en) * 2000-03-14 2001-11-27 Kao Corp Antistatic agent composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630183A1 (en) * 2004-08-31 2006-03-01 Bayer MaterialScience AG Polyurethane elastomers having improved antistatic behaviour
US11008439B2 (en) 2015-10-02 2021-05-18 The Chemours Company Fc, Llc Solid polymeric articles having hydrophobic compounds intermixed therein

Also Published As

Publication number Publication date
JP2005060682A (en) 2005-03-10
CN1871304B (en) 2010-04-21
KR100658111B1 (en) 2006-12-14
CN1871304A (en) 2006-11-29
KR20060016111A (en) 2006-02-21
JP2005060683A (en) 2005-03-10
TW200513528A (en) 2005-04-16
JP3772897B2 (en) 2006-05-10
TWI327163B (en) 2010-07-11

Similar Documents

Publication Publication Date Title
WO2005012429A1 (en) Polyurethane resin formed product and method for production thereof
CN101585901B (en) Polyurethane foam material and preparing method and application thereof
AU738330B2 (en) Process for making microcellular polyurethane elastomers
CN108602934B (en) Composition for polyurethane foam containing polyrotaxane, polyurethane foam derived from the composition, and method for producing polyurethane foam
JP5211452B2 (en) Method for producing foamed polyurethane elastomer
JP6759648B2 (en) Polyurethane integral skin foam and its manufacturing method
JP2006104404A (en) Polyurethane pad for vehicle seat
JP2011038005A (en) Manufacturing method of foamed polyurethane elastomer
US20130053463A1 (en) Polyurethanes and polyurethane-ureas having improved properties
JPH02138328A (en) Manufacture of rigid polyurethane
JP2006342305A (en) Method for producing rigid polyurethane foam
US3575896A (en) Microcellular foams having a low glass transition temperature
CN112752818B (en) Two-part curable adhesive composition
EP0646154B1 (en) Flexible water-blown polyurethane foams
WO2000050483A1 (en) Process for making microcellular polyurethane elastomers with improved processability
JP2000086792A (en) Polyurea elastomeric microporous foam
US10316129B2 (en) Resin composition for golf ball cover
US6790871B1 (en) Isocyanate-based polymer foam and process for production thereof
CN112752819B (en) Two-part curable adhesive composition
JP6847523B2 (en) Polyurethane foam
JP3770744B2 (en) Flexible polyurethane foam and method for producing the same
JPH0692478B2 (en) Method for producing thermosetting polyurethane resin
JP2003147044A (en) Method for producing flexible polyurethane foam
JPH0718055A (en) Flexible polyurethane foam
JP2007186640A (en) Method for producing conductive non-foamed urethane elastomer molded article

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057023516

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048161775

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057023516

Country of ref document: KR

122 Ep: pct application non-entry in european phase