JPH069548B2 - 二重周波数nmrコイル対 - Google Patents

二重周波数nmrコイル対

Info

Publication number
JPH069548B2
JPH069548B2 JP3225340A JP22534091A JPH069548B2 JP H069548 B2 JPH069548 B2 JP H069548B2 JP 3225340 A JP3225340 A JP 3225340A JP 22534091 A JP22534091 A JP 22534091A JP H069548 B2 JPH069548 B2 JP H069548B2
Authority
JP
Japan
Prior art keywords
coil
dual frequency
protrusions
coils
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3225340A
Other languages
English (en)
Other versions
JPH04297231A (ja
Inventor
ラルフ・サーキス・ハショイアン
ケニス・ワレイス・ベルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH04297231A publication Critical patent/JPH04297231A/ja
Publication of JPH069548B2 publication Critical patent/JPH069548B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil
    • G01R33/3635Multi-frequency operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3642Mutual coupling or decoupling of multiple coils, e.g. decoupling of a receive coil from a transmission coil, or intentional coupling of RF coils, e.g. for RF magnetic field amplification
    • G01R33/365Decoupling of multiple RF coils wherein the multiple RF coils have the same function in MR, e.g. decoupling of a receive coil from another receive coil in a receive coil array, decoupling of a transmission coil from another transmission coil in a transmission coil array

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明の分野は、個々のコイルを
異なる共振周波数に同調させた、核磁気共鳴信号を受信
する二重周波数コイル対である。
【0002】
【従来の技術】本技術分野で周知である核磁気共鳴用の
磁界条件が満たされると、対象の特定の核に応じたラー
モア周波数と本技術分野で称されている独特の特性周波
数において核磁気共鳴現象が発生する。検査される核は
特定の用途に依存して決められる。例えば、2つの最も
普通の核磁気共鳴検査は撮像(イメージング)処理およ
び分光処理である。NMR撮像処理はNMR現象を対象
の領域内の小さな画素に繰り返し局限化することによっ
て合成空間像を獲得するのに使用される。核磁気共鳴現
象の他の別の用途はNMR分光処理である。NMR分光
処理の分野は本技術分野で周知であり、対象の特定の領
域に対する周波数領域におけるNMR信号を詳細に分析
することを行う。
【0003】NMR分光処理を行う場合に、まず分光を
実行しようとする対象の領域にNMR現象を局限化する
必要があるという問題が発生する。実際、この局限化
は、まずNMR装置を撮像モードで使用し、次に続く分
光処理のために使用される領域の空間座標を確かめるた
めに画像を獲得することによって実行される。正しい空
間座標がNMR撮像処理によって設定されると、NMR
装置は分光モードで動作するように変化し、所望のスペ
クトルが得られる。撮像処理は一般に対象の核として陽
子( 1H)を使用して実行されるが、分光処理は通常実
質的に異なるラーモア周波数を有する他の核、例えばリ
ン、ナトリウム、フッ素または炭素核で実行されるとい
う問題がある。
【0004】従来、まずNMR撮像処理を使用して対象
の特定領域を局限化し、それから選択された領域に対し
てNMR分光処理を行うという2つの処理ステップを実
行するのに2つの異なる方法が実行されている。第1の
方法は二重周波数コイル対を使用するものである。二重
周波数コイル対においては、第1のコイルは撮像処理用
に使用される核のラーモア周波数に同調され、第2のコ
イルは分光するように使用される核のラーモア周波数に
同調されている。従来の二重周波数コイル対はコイル対
の個々のコイルの間に誘導される相互損失によって非常
に妨害されている。二重コイル対における個々の各コイ
ルは、他のコイルが異なる周波数に同調されていても、
他のコイルへの電磁結合によって生ずる負荷によりコイ
ルの品質係数Qが低下するという問題がある。それにも
関わらず、このような二重周波数コイル対は、その結果
の低下が許容し得るものである場合にのみ、撮像処理と
分光処理の組合せに使用されている。他の種類の二重周
波数コイル対も知られており、これはコイル対の間の相
互結合が互いに幾何学的関係によって最小になるように
対の個々のコイルが位置決めされているものである。こ
の場合、コイルのQの相互低下は減るが、二重周波数コ
イル対の各コイルが異なる視野を有するという別の問題
が発生する。視野における差は二重周波数コイル対の個
々のコイルの幾何学的関係を知ることでほぼ補償される
が、このような補償はせいぜい推定であり、達成し得る
結果を低下させることになる。
【0005】従来の二重周波数コイル対における上述し
た問題のために、このような従来の二重周波数コイル対
は実際には使用することができない。代わりに、従来広
く行われている方法は撮像処理を行って、対象の領域を
局限化する第1の単一の周波数コイルを使用することで
ある。撮像処理によって対象の所望の領域を局限化した
後、オペレータは注意深く撮像コイルの位置をマーク
し、該撮像コイルを取り除き、分光処理用に使用される
周波数に同調された第2の単一の周波数コイルで置き換
えなければならない。この処理は明らかに時間がかか
り、第2の分光用コイルを置き換える場合に誤配置が生
じやすい。従って、二重周波数コイル対の個々の各コイ
ルがほぼ同じ視野を有し、コイル対の他のコイルによっ
て負荷がかからないという要望が二重コイル周波数対に
対して存在する。
【0006】
【発明の概要】二重周波数NMRコイル対は、第1およ
び第2のコイルを有し、この各々は異なる共振周波数に
同調される。第1のコイルは第1の周囲を画定する第1
の導電ループを有する。第1の周囲は内部領域および該
内部領域から外側に延出している第1の複数の突出部か
らなる第1の領域を囲んでいる。同様に、第2のコイル
は第2の周囲を画定する第2の導電ループを有し、第2
の周囲は第2の内部領域および該内部領域から外側に延
出している第2の複数の突出部からなる第2の領域を囲
んでいる。第1および第2のコイルは互いに隣接し、非
常に接近して配置され、第1および第2の内部領域が該
第1および第2の内部領域に対する磁束結合に関してほ
ぼ一致するようになっている。更に、第1の複数の突出
部は第2の複数の突出部とインターリーブすなわち互い
違いに配置されて、第1および第2の複数の突出部に対
応するそれぞれの領域が磁束結合に関して実質的に一致
しないようになっている。
【0007】本発明による二重周波数コイル対の1つの
利点は、対の両方の個々のコイルが同じ視野を「見てい
る」ことであり、しかもそれぞれの突出部を互い違いに
配置することによって互いに実質的に「負荷」がかから
ないということである。この結果、両方の各コイルは高
い品質係数「Q」を維持し、また次に続くNMR信号処
理において高い信号対雑音比(SNR)が得られる。
【0008】他の利点は、本発明による単一の二重周波
数コイル対によって交互にNMR撮像処理および分光処
理を行った場合に非常に優れた結果が得られることであ
る。従って、本発明による二重コイル対は、撮像処理用
に第1の単一の周波数コイルを利用し、それからこの撮
像用のコイルを分光処理用に使用される他のコイルで物
理的に置き換える必要性を排除している。
【0009】
【発明の目的】本発明の目的は、コイル対が湾曲した場
合に、個々のコイルの突出部を互い違いに配置したこと
によって得られる有利な減結合が弱くならないので、調
査すべき特定の検体、例えば患者の端部に合致し得るよ
うに柔軟性を有している上述した二重コイル対を提供す
ることにある。本発明による柔軟な二重コイル対は第1
および第2の導電ループの第1の部分を支持する第1の
基板を有している。同様に、第2の基板は第1および第
2の導電ループの第2の部分を支持するように設けられ
ている。第1の導電ループの第1および第2の部分は第
1の組の柔軟な金属導体によって接続され、第2の導電
ループの第1および第2の部分は第2の組の柔軟な金属
導体に接続され、これにより第1および第2の基板が互
いに湾曲し得るようになっている。
【0010】本発明の上述したおよび他の目的および利
点は次の説明から明らかになるであろう。この説明にお
いては、その一部を構成し、本発明の好適実施例を例示
している添付図面が参照されている。しかしながら、こ
の実施例は本発明の全範囲を示しているものではないの
で、本発明の範囲の解釈には特許請求の範囲を参照され
たい。
【0011】
【実施例の説明】本発明による二重周波数コイル対10
は、互いに重なり、極めて近接して設けられた第1およ
び第2の個別コイル11および12を有している。各コ
イル11および12は、導電ループ13および14、お
よび各ループ13および14を中断するギャップ15お
よび16を有するものとして図1にモデル化されてい
る。本技術分野で知られているように、導電ループ13
および14はインダクタンス素子として作用し、17お
よび18で示す個別のコンデンサが容量素子として作用
するギャップ15および16に並列に設けられ、それぞ
れ各コイル11および12の共振周波数を決定するL−
C共振回路を形成している。また、本技術分野で知られ
ているように、図1のモデルは簡単化のために単一のギ
ャップ/コンデンサに基づいているものであるが、導電
ループの周りに多数のギャップおよび並列コンデンサを
分配してもよい。多数のギャップ/コンデンサの場合は
以下に説明する詳細な実施例において示されている。出
力リード線19および20がギャップ15および17の
両側に接続され、コイル出力を通常の方法で処理する受
信機に供給する。
【0012】コイル11および12を2つの異なる周波
数で共振させるようにコンデンサ15および16に対し
て異なる値が使用されている。例えば、コイル11はリ
ンの原子核(31P)でNMR分光処理を行うために約2
6MHZで共振し、コイル12は陽子( 1H原子核)を
撮像するために約64MHZで共振させられる。これは
1.5テスラの分極磁界(Bo )を仮定したものであ
る。代わりとして、コイル11および12は撮像処理ま
たは分光処理用の対象とする特定の核に対して同調させ
てもよい。このような二重周波数コイルの好ましい点に
ついては本発明の従来技術の説明のところで上述した通
りである。しかしながら、本発明による二重周波数コイ
ル対は従来の二重周波数コイル対にあったようなコイル
のQおよび信号対雑音比(SNR)を低減することなく
所望の二重周波数動作を達成することができる。この結
果を達成するように利用される本発明による原理は以下
に詳細に説明するが、コイル11および12がほぼ同じ
視野をもつように実質的に同一平面にあっても、これら
のコイル間において相互に負荷がかかることを最小にす
るようにコイル11および12に対する特殊な構造およ
び構成にある。
【0013】導電ループ13および14は各々外側の周
囲導体13aおよび14aと内側の周囲導体13bおよ
び14bの間を交互に曲がりくねっており、交差導体1
3cおよび14cがそれぞれ外側の周囲導体13aおよ
び14aを内側の周囲導体13bおよび14bに接続し
ている。この結果、各導電ループ13および14の周囲
はそれぞれ内部領域13dおよび14d、ならびに外側
領域すなわち「突出部」13eおよび14eからなると
考えられる領域を画定している。
【0014】第1および第2のコイル11および12は
互いに重なるように非常に接近して設けられているの
で、導電ループ13および14は両者間に電気的絶縁を
維持するようにわずかに分離されている。この結果、両
コイル11および12はほぼ同じ視野を有している。更
に、導電ループ13および14はそれぞれほぼ同じ形状
を有し、かつその内部領域13dおよび14dが互いに
重なるように形成されている。この結果、一方の内部領
域13dまたは14dに結合する磁束はほぼ完全に他方
の内部領域14dまたは13dと結合する。内部領域1
3dおよび14dが図示のように互いに重なって構成さ
れている場合に、導電ループ13および14が互いにわ
ずかな量変位したとしても、これらの間の磁束鎖交数に
おける差は無視し得るものである。
【0015】本発明の重要な原理は、突出部13eおよ
び14eの相互の重なりが最小になるように突出部13
eおよび14eを互い違いに配置してコイル11および
12が構成されていることである。このようにして、コ
イル11または12の一方において循環する共振電流は
それぞれ他方のコイル12または11に負荷をかけない
ような磁界を発生する。この「負荷をかけない」現象の
詳細な説明については図2の説明において以下で行う。
好ましいことには、必要とする互い違いの配列は両方の
導電ループ13および14を同じ形に形成して、ループ
13および14を互いに対して回転させることによって
達成される。ここに記載されている好適実施例において
は、各コイル11および12はそれぞれ4つの突出部1
3eおよび14eをもって形成されているので、コイル
11および12の間で45゜の相対的回転を行うことに
よって図1に示すような所望の互い違いの配列を行うこ
とができる。
【0016】図2を参照すると、突出部13eおよび1
4eの互い違いの配列の効果は次の通りである。導電ル
ープ13および14の電流は右手の法則に従って各電流
路を取り囲む磁界を各電流路に発生する。説明のため、
コイル11の一例の電流が矢印30で示され、その結果
の円形磁界がそれぞれ分布33−35で示されている。
磁界分布33−35は、図面に向かっている磁界の線に
対しては「X」で示され、図面から出てくる磁界の線に
対しては円で囲った点で示されている。電流30はコイ
ル12の全ての個所において同じ大きさであるので、そ
の結果の分布33−35もまた大きさがほぼ同じである
が、方向が図示のように異なることを理解されたい。更
に、実際のコイル電流は無線周波(RF)交流電流(A
C)であり、ここに使用されている静的表現は実際のR
FAC電流のベクトル表現を考慮しており、導体の電流
による磁界密度は個々のXおよびドット付き円の間の間
隔によって示されるように導体近くで最大になり、導体
から横方向に離れるに従って小さくなっていることに注
意されたい。
【0017】磁界分布33−35は、他方のコイル12
に局部的な電流を誘導し、コイル12における合成電流
はゼロに非常に近いかまたはゼロに等しくなる。更に詳
しくは、磁束33および34はコイル12の周りに時計
方向の局部電流31をコイル12に誘導しようとし、同
時に34および35で示される磁束分布は反対方向、す
なわち反時計方向の局部電流32をコイル12に誘導し
ようとする。31および32で表される電流対に類似し
た反対方向の電流対はコイル12の周り全体に発生し、
この反対方向の電流は互いに打ち消し合おうとする。更
に、突出部13eおよび14eに対する寸法を適当に変
更することによって局部電流、特に外側の電流32の大
きさを調整することができる。局部電流31および32
の大きさがほぼ等しくなるように構成することによっ
て、電流31および32は局部的に留まって正味すなわ
ち全体の電流が無視できるようにする。コイル11およ
び12の対称的な構造のために、上述した分析はコイル
12からコイル11への電流の結合を考慮した反対の場
合にも同様に適用できる。この結果、各コイルは他方の
コイルによる負荷または損失を無視して自分自身の別々
の共振周波数で動作することができる。本質的に、他方
のコイルは電磁結合の観点からも「影響がない」ように
みえる。
【0018】更に、図2を参照すると、実際に特に有効
であると証明された好適な実施例の幾何学的構造におい
ては、各コイル11および12が90゜の間隔で位置決
めされている4つのほぼ矩形の突出部を有し、対向する
突出部の外側縁部間の距離(図2において40で示され
る)は約5インチであり、各突出部の幅(41で示され
る)は約1.5インチであり、各突出部の長さ(42で
示される)を定めている各交差導体の長さは約1インチ
である。
【0019】図2の実施例における導電ループ13およ
び14は両面プリント配線基板50の両面上にエッチン
グにより約1/4インチの幅の銅のパターンとして形成
されている。多数のギャップ15および16に設けた多
数の並列コンデンサ18および19が各コイル11およ
び12に使用されている。多数の直列コンデンサを使用
することは、直列の個々のコンデンサが同じ値の単一の
集中容量よりも漂遊容量に対して大きな値を有するの
で、漂遊容量の効果を減らす手段として本技術分野で周
知のものである。例えば、この実施例のコイル11(プ
リント配線基板50の上面上の)は陽子( 1H)を撮像
するための約64MHZの周波数に同調されているが、
下側のコイル12はリン原子核(31P)上に分光を行う
ための約26MHZの周波数に同調されている。陽子用
のコイル11の高い共振周波数のために、小さい値の容
量が必要である。このため、コイル11には多数のギャ
ップ14およびコンデンサ18を設け、比較的大きな個
々の値を有しているコンデンサ18を使用しても正味の
容量は小さくすることができる。低い周波数のリン用の
コイル12には比較的少ないギャップ15およびコンデ
ンサ19が必要である。ギャップ15および16は導電
ループ13および14のエッチング処理の一部として形
成されている。コンデンサ18および19は例えば51
で示す平らな導電細片尾部を有するセラミックチップコ
ンデンサである。コンデンサの尾部51はギャップ15
および16の両側に半田付けされて、コンデンサ18お
よび19をそれぞれギャップ15および16に並列に電
気的に接続する。
【0020】図2および図3を参照すると、各コイル1
1および12のギャップ15aおよび16aの一方は適
当な受信回路(図示せず)に接続するための出力信号を
取り出すために使用される。余分な銅パターン53およ
び54が各ループ13および14から延出するととも
に、ループ13および14への外部部品60−65の接
続を容易にするように銅パッド55および56が設けら
れている。回路基板50の反対側に形成されているルー
プ14の場合には、メッキされた貫通孔57を使用して
パターン延出部54をループ14に接続し、第2のパッ
ド58は他のメッキされた貫通孔59によってループ1
4に接続され、これにより外部部品60−65が回路基
板の同じ側に全て実装可能になっている。更に詳しく
は、外部部品は同軸ケーブルコネクタ60および61、
個別の直列負荷インダクタ62および63、およびピン
ダイオード64および65である。同軸ケーブルコネク
タ60および61の一方の接続はパターン延出部53お
よび54に半田付けされ、他方の接続はパッド55およ
び56に半田付けされている。直列負荷インダクタ62
および63はそれぞれパッド55および56からパター
ン延出部53および54のギャップ15aおよび16a
の反対側上の導電ループ13および14上の点に接続さ
れている。直列負荷用インダクタ62および63はギャ
ップ15aおよび16aの両端から得られるコイル出力
をそれぞれのケーブルコネクタ60および61に接続す
るために使用されると同時に、各コイル11および12
のインピーダンスを受信機ケーブル(図示せず)からみ
たインピーダンスに整合させている。ピンダイオード6
4および65はそれぞれパターン延出部53および54
からパッド55および56に接続され、伝送磁界が外部
伝送コイル(図示せず)によって供給される場合にコイ
ル出力をクランプするために使用される。外部直流電流
の供給によってスイッチオンすると、ピンダイオード6
4および65はコンデンサ15aおよび16aおよびコ
イル62および63とともにコイル11および12によ
る本質的でない磁界の発生を制限するようにコイル11
および12のインピーダンスを増大し、また伝送磁界の
負荷および歪みを防止する。
【0021】本発明の他の重要な教示は、独立に動作す
るコイル11および12の上述した能力が、たとえコイ
ル対が湾曲したとしても、すなわち平らな面以外におい
ても保存されるということである。コイル11および1
2間の相互負荷を充分に防止する上述した効果は、コイ
ル11および12が平らな面から外れて湾曲しても発揮
されるものである。柔軟なコイルは、例えば患者の手足
にNMR検査を実施する場合に、これらのコイルが対象
の領域に順応して同じ形になるという利点がある。従っ
て、プリント回路基板50は柔軟なプリント回路基板材
料であるか、またはコイル11および12を支持する他
の柔軟な基板であることが予想される。
【0022】図4を参照すると、本発明の第2の好適実
施例は特にコイル11および12が湾曲し得るようにし
ているものである。この場合、コイル11および12は
2つの別々の支持構造、すなわち基板70および71に
分割されている。好適形態においては、基板70および
71は各々堅固なガラスファイバ−エポキシの両面プリ
ント回路基板材料からなる部材である。好ましい基板7
0および71は堅固なものであるけれども、柔軟な基板
を使用することもできることは本技術分野に専門知識を
有する者にとって明らかなことであろう。
【0023】プリント回路基板70および71の各々に
は各導電ループ13および14の一部が形成され、回路
基板70および71は図4において点線73で示す軸に
対して互いに間隔をあけて設けられている。1組の柔軟
な金属の燐青銅のジャンパ細片75−78を使用し、プ
リント回路基板70および71の間の分離部を横切って
分離した導電ループ部分を接続している。この結果、回
路基板70および71は、個々には堅固であるが、実際
には蝶番として作用する柔軟なジャンパ細片75−78
によって互いに湾曲し得るようになっている。
【0024】ジャンパ75−78は好ましくは全て回路
基板70および71の同じ側に取り付けられ、プリント
回路基板に形成されたメッキされた貫通孔を通ったリベ
ット80を使用して取り付けられている。ジャンパ76
および77はプリント回路基板70および71の上側の
ループ13に対する内側の周囲導体の2つを形成してい
る。回路基板70および71上のループ13を形成する
銅パターンはジャンパ76および77の下側で各基板7
0および71の縁部までずっと続いており、これにより
パターンとジャンパ76および77の間に良好な電気的
接触を保証している。
【0025】ジャンパ75および78を使用し、コイル
12に対する他の導電ループ14を完成する。しかしな
がら、ループ14に対する銅パターンは基板70および
71の反対側上にある。ループ14に対するパターンと
ジャンパ75および78の間の電気的接触を補助するた
めに、銅パッド(図4には図示されていない)が、回路
基板70および71上のジャンパ75および78によっ
て覆われている領域の下側の回路基板70および71の
上に形成されている。下側に設けられているパッドは回
路基板70および71の反対側上のパターンとリベット
80用のメッキされた貫通孔を介して電気的に接続され
ている。両者間の電気的接触を改良するために、ジャン
パ75−78をそれぞれのパターンに半田付けしてもよ
い。
【0026】柔軟性の利点に加えて、図4の実施例の分
割された回路基板70および71は、点線82で示す開
口部がコイル対10の内部に設けられるという利点があ
る。コイル対10は保護ハウジング内に収容してもよ
い。この保護ハウジング自身は蝶番で動くようになって
いてもよいし、または柔軟であってもよく、またこの保
護ハウジングは開口部82に一致する開口部を有してい
てもよい。開口部82はコイル対10の幾何学的中心に
あるので、コイル対10の主視野内の領域を直接見るこ
とを可能にしている。これは、患者または他のサンプル
上の対象とする正確な領域にコイル対10を位置決めす
るのに非常に有益である。
【0027】更に図4を参照すると、ジャンパ75−7
8は中空でない金属細片であるので、そこにギャップを
設けることはできない。代わりに、ジャンパ75−78
を横切って形成されたかもしれないギャップは容量値を
適当に調整することによってループ13および14の他
の部分に配置しなおしてもよい。全ての他の点におい
て、図4の実施例は上述した図2および図3の実施例と
動作において同じである。
【0028】本発明の範囲内において上述した実施例に
対する多くの変更があることは本技術分野に専門知識を
有する者にとって明らかなことであろう。例えば、固定
または可変のインダクタまたは容量の形のトリミング用
の部品をコイル対のコイルの一方または両方の適当な点
に加え、正確な共振周波数に同調するようにしてもよ
い。更に、コイル対のコイルはそれらの適用領域に対し
て互いに接近して設けられ、個々のコイルが実質的に同
一平面上にあるものと考えられてもよいということが観
察されるべきである。実際、個々のコイルが互いに交差
する点をジャンパのみが横切って個々のコイルを実際に
同一平面上に設けることも本発明により可能である。他
の可能な変更は、導電ループを多数回巻回することによ
って各突出部に対応する領域を形成することであるが、
この方法は上述した単一巻の突出部に対して多くの損失
を発生するとともに、一般に性能が低下する。最後に、
突出部自身は上述した矩形の突出部に加えて種々の形状
に形成してもよいし、任意の数の突出部を使用してもよ
いことは明らかである。例えば、5または6個の突出部
コイルが実際的であるが、あまりにも多くのまたは余り
にも少ない数の突出部の場合には完全に相殺することが
困難である。更に、個々のコイル間の突出部が互い違い
に配置されて、所望の相殺を達成するのに充分な領域を
囲んでいれば、突出部の形は多辺形または丸い形であっ
てもよい。
【図面の簡単な説明】
【図1】本発明による二重周波数コイル対の概念モデル
を示す簡略斜視図である。
【図2】図1のモデルによる二重周波数コイル対の第1
の実施例の上面図である。
【図3】図2の線3−3に沿って取った断面図である。
【図4】図1のモデルによる二重周波数コイル対の第2
の実施例の上面図である。
【符号の説明】
10 二重周波数コイル対 11、12 第1および第2のコイル 13、14 導電ループ 13a,14a 外側周囲導体 13b、14b 内側周囲導体 13e、14e 突出部 15、16 ギャップ 17 インダクタンス素子 18 コンデンサ
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01R 33/62 9118−2J G01N 24/12 Z 8203−2G G01R 33/22 N

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 第1の共振周波数に同調される第1のコ
    イルであって、内部領域および該内部領域から外側に延
    出している第1の複数の突出部からなる第1の領域を囲
    んでいる第1の周囲を画定する第1の導電ループを有す
    る第1のコイルと、前記第1の共振周波数と異なる第2
    の共振周波数に同調されている第2のコイルであって、
    第2の内部領域および該第2の内部領域から外側に延出
    している第2の複数の突出部からなる第2の領域を囲ん
    でいる第2の周囲を画定する第2の導電ループを有する
    第2のコイルとを有し、前記第1および第2の内部領域
    が該第1および第2の内部領域に対する磁束結合に関し
    て実質的に一致するように前記第1および第2のコイル
    は互いに隣接かつ非常に接近して配置され、前記第1お
    よび第2の複数の突出部に対応するそれぞれの領域が磁
    束結合に関して実質的に一致しないように前記第1の複
    数の突出部は前記第2の複数の突出部と互い違いになっ
    ている二重周波数NMRコイル対。
  2. 【請求項2】 前記第1および第2の導電ループは柔軟
    である請求項1記載の二重周波数コイル対。
  3. 【請求項3】 第1の基板により前記第1および第2の
    導電ループの第1の部分を支持し、第2の基板により前
    記第1および第2の導電ループの第2の部分を支持し、
    前記第1の導電ループの第1および第2の部分は第1の
    組の柔軟な金属導体によって接続され、前記第2の導電
    ループの第1および第2の部分は第2の組の柔軟な金属
    導体によって接続され、これにより前記第1および第2
    の基板は互いに湾曲し得るようになっている請求項2記
    載の二重周波数コイル対。
  4. 【請求項4】 前記第1および第2の基板の間に中空の
    中心部を有し、二重周波数コイル対の主視野を観察可能
    にしている請求項3記載の二重周波数コイル対。
JP3225340A 1990-08-17 1991-08-12 二重周波数nmrコイル対 Expired - Lifetime JPH069548B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/570,263 US5168230A (en) 1990-08-17 1990-08-17 Dual frequency nmr surface coil pair with interleaved lobe areas
US570,263 1990-08-17

Publications (2)

Publication Number Publication Date
JPH04297231A JPH04297231A (ja) 1992-10-21
JPH069548B2 true JPH069548B2 (ja) 1994-02-09

Family

ID=24278918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225340A Expired - Lifetime JPH069548B2 (ja) 1990-08-17 1991-08-12 二重周波数nmrコイル対

Country Status (6)

Country Link
US (1) US5168230A (ja)
EP (1) EP0471575B1 (ja)
JP (1) JPH069548B2 (ja)
CA (1) CA2042214A1 (ja)
DE (1) DE69118274T2 (ja)
IL (1) IL99155A (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335622B1 (en) * 1992-08-25 2002-01-01 Superconductor Technologies, Inc. Superconducting control elements for RF antennas
US5483163A (en) * 1993-08-12 1996-01-09 The United States Of America As Represented By The Department Of Health And Human Services MRI coil using inductively coupled individually tuned elements arranged as free-pivoting components
US20010045832A1 (en) * 1997-11-26 2001-11-29 Kenneth W. Belt Peripheral vascular array
DE19914989C2 (de) * 1999-04-01 2002-04-18 Siemens Ag Magnetresonanz-Antenne
US6493572B1 (en) 1999-09-30 2002-12-10 Toshiba America Mri, Inc. Inherently de-coupled sandwiched solenoidal array coil
US7531957B2 (en) * 2003-09-10 2009-05-12 Fujifilm Corporation Display apparatus and manufacturing method therefor
CN101023369A (zh) * 2004-09-16 2007-08-22 皇家飞利浦电子股份有限公司 具有紧凑感应组件的磁共振接收线圈
US7427861B2 (en) * 2005-04-11 2008-09-23 Insight Neuroimaging Systems, Llc Dual-tuned microstrip resonator volume coil
US7945308B2 (en) * 2005-12-27 2011-05-17 General Electric Company Systems, methods and apparatus for an endo-rectal receive-only probe
US20090278537A1 (en) * 2006-06-30 2009-11-12 Koninklijke Philips Electronics N. V. Radio-frequency surface coils comprising on-board digital receiver circuit
WO2008078239A1 (en) * 2006-12-21 2008-07-03 Koninklijke Philips Electronics N.V. Multi-element coil array for mr systems
US20100315087A1 (en) * 2008-02-12 2010-12-16 The Board Of Trustees Of University Of Illinois Apparatus and method of magnetic resonance imaging
US8035384B2 (en) * 2008-10-23 2011-10-11 General Electric Company Hybrid birdcage-TEM radio frequency (RF) coil for multinuclear MRI/MRS
DE102009005644B4 (de) * 2009-01-22 2012-03-08 Siemens Aktiengesellschaft Platine für ein Magnetresonanzgerät und Verfahren
US8193811B2 (en) * 2009-05-29 2012-06-05 General Electric Company Dual-frequency coil array for a magnetic resonance imaging (MRI) system
CN103181027B (zh) * 2010-09-01 2014-11-26 国立大学法人爱媛大学 天线
EP2618171A1 (en) 2012-01-17 2013-07-24 Koninklijke Philips Electronics N.V. Multi-resonant T/R antenna for MR image generation
WO2014039647A1 (en) * 2012-09-06 2014-03-13 Mectron Engineering Company, Inc. Plasma treatment system
DE102014209488A1 (de) * 2014-05-20 2015-11-26 Siemens Aktiengesellschaft Verfahren zur Vermessung des Atemvorgangs eines Patienten während einer Magnetresonanzuntersuchung, Messanordnung und Magnetresonanzeinrichtung
US9977099B2 (en) 2014-12-30 2018-05-22 General Electric Company Systems and methods for integrated pick-up loops in body coil conductors
EP3544500B1 (en) * 2016-11-23 2023-09-06 General Electric Company Radio frequency coil array for a magnetic resonance imaging system
DE102018201476A1 (de) * 2018-01-31 2019-08-01 Siemens Healthcare Gmbh Lokalspule für Magnetresonanztomograph
EP3761051A1 (de) * 2019-07-04 2021-01-06 Siemens Healthcare GmbH Lokalspule mit segmentierter antennenvorrichtung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2190816A (en) * 1937-10-20 1940-02-20 Hazeltine Corp Antenna
US2521550A (en) * 1946-02-28 1950-09-05 Bell Telephone Labor Inc Radio antenna system
US3231891A (en) * 1961-12-26 1966-01-25 Canoga Electronics Corp Multi-polarized loop antenna array electromagnetically coupled to spaced transmission line
US4620155A (en) * 1984-08-16 1986-10-28 General Electric Company Nuclear magnetic resonance imaging antenna subsystem having a plurality of non-orthogonal surface coils
US4594566A (en) * 1984-08-30 1986-06-10 Advanced Nmr Systems, Inc. High frequency rf coil for NMR device
FR2584872B1 (fr) * 1985-07-09 1987-11-20 Europ Agence Spatiale Antenne plate a large bande a polarisation circulaire, utilisations d'une telle antenne, applications, et procede de fabrication
US5045792A (en) * 1985-08-14 1991-09-03 Picker International, Inc. Split and non-circular magnetic resonance probes with optimum field uniformity
US4695801A (en) * 1986-02-10 1987-09-22 The Regents Of The University Of California Matched guadrature coils for MRI with minimized intercoil coupling
NL8603005A (nl) * 1986-11-27 1988-06-16 Philips Nv Magnetisch resonantie apparaat met flexibele quadratuur spoelenstelsel.
US4943775A (en) * 1986-11-27 1990-07-24 U.S. Philips Corporation Magnetic resonance apparatus with uncoupled rf coils
FR2615040B1 (fr) * 1987-05-07 1990-02-16 Thomson Cgr Antenne de reception a decouplage passif notamment pour appareil d'imagerie par resonnance magnetique nucleaire
US4799016A (en) * 1987-07-31 1989-01-17 General Electric Company Dual frequency NMR surface coil
IL85786A (en) * 1988-03-18 1991-06-10 Elscint Ltd Hybrid surface coil
GB8814187D0 (en) * 1988-06-15 1988-07-20 Mansfield P Improvements in/relating to surface electrical coil structures
EP0361190A1 (de) * 1988-09-23 1990-04-04 Siemens Aktiengesellschaft Oberflächenspulenanordnung für Untersuchungen mit Hilfe der kernnmagnetischen Resonanz
US4973908A (en) * 1989-06-23 1990-11-27 General Electric Company NMR probe with multiple isolated coplanar surface coils
US4996481A (en) * 1989-08-07 1991-02-26 Washington University Magnetic resonance RF probe with electromagnetically isolated transmitter and receiver coils
US5041790A (en) * 1990-01-16 1991-08-20 Toshiba America Mri, Inc. Dual-tuned RF coil for MRI spectroscopy

Also Published As

Publication number Publication date
JPH04297231A (ja) 1992-10-21
EP0471575A1 (en) 1992-02-19
DE69118274D1 (de) 1996-05-02
EP0471575B1 (en) 1996-03-27
DE69118274T2 (de) 1996-11-21
IL99155A (en) 1993-07-08
CA2042214A1 (en) 1992-02-18
US5168230A (en) 1992-12-01
IL99155A0 (en) 1992-07-15

Similar Documents

Publication Publication Date Title
JPH069548B2 (ja) 二重周波数nmrコイル対
US8742759B2 (en) High-frequency coil and magnetic resonance imaging device
US6437567B1 (en) Radio frequency coil for open magnetic resonance imaging system
US7345481B2 (en) Hybrid TEM/birdcage coil for MRI
JP5357010B2 (ja) コイルシステム及び磁気共鳴システム
US5371466A (en) MRI RF ground breaker assembly
US5680047A (en) Multipl-tuned radio frequency coil for simultaneous magnetic resonance imaging and spectroscopy
US20150355297A1 (en) System and method for decoupling magentic resonance imaging radio frequency coils with a modular magnetic wall
JPS61111448A (ja) 少なくとも1つの表面コイルを持つnmr分光法用プロ−ブ
US6198962B1 (en) Quadrature detection coil for interventional MRI
JP2005270674A (ja) マイクロストリップ伝送線路コイルを使用する、磁気共鳴画像化および分光法のための方法および装置
CN104422912B (zh) 用于接收磁共振信号的天线设备
EP0469670B1 (en) Transmission line transformer
CN104698411B (zh) 用于开放式磁共振成像系统的多通道射频线圈
US20120286921A1 (en) Rf coil assembly for magnetic resonance apparatus
JPH03106337A (ja) 核磁気共鳴断層撮影装置
JPH08112268A (ja) 女性乳房の磁気共鳴検査用の乳房撮影アンテナ装置
US9520636B2 (en) Linear resonator of a high-frequency antenna for a nuclear magnetic resonance imaging apparatus
JPH05269104A (ja) ローカルアンテナ
JPWO2010050279A1 (ja) アンテナ装置及び磁気共鳴検査装置
JPH05285120A (ja) 核スピン共鳴装置のための円偏波形局部アンテナ
JPH0647016A (ja) 磁気共鳴装置で使用される直角コイル装置
US5663645A (en) Spatially orthogonal rectangular coil pair suitable for vertical magnetic field MRI system
Yeh et al. A flexible and modular receiver coil array for magnetic resonance imaging
WO2003025608A2 (en) Device for suppressing electromagnetic coupling phenomena

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19940823