JPH0693517B2 - Amorphous semiconductor solar cell - Google Patents

Amorphous semiconductor solar cell

Info

Publication number
JPH0693517B2
JPH0693517B2 JP63174797A JP17479788A JPH0693517B2 JP H0693517 B2 JPH0693517 B2 JP H0693517B2 JP 63174797 A JP63174797 A JP 63174797A JP 17479788 A JP17479788 A JP 17479788A JP H0693517 B2 JPH0693517 B2 JP H0693517B2
Authority
JP
Japan
Prior art keywords
layer
metal substrate
amorphous semiconductor
solar cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63174797A
Other languages
Japanese (ja)
Other versions
JPH0225079A (en
Inventor
一郎 金井
俊雄 三宿
聡 高桑
英世 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63174797A priority Critical patent/JPH0693517B2/en
Publication of JPH0225079A publication Critical patent/JPH0225079A/en
Publication of JPH0693517B2 publication Critical patent/JPH0693517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、非晶質半導体層を有する非晶質半導体太陽電
池に関し、特に、金属薄板を用いた非晶質半導体太陽電
池に関する。
TECHNICAL FIELD The present invention relates to an amorphous semiconductor solar cell having an amorphous semiconductor layer, and more particularly to an amorphous semiconductor solar cell using a thin metal plate.

[従来の技術] いわゆる非晶質半導体太陽電池は、これまで、主にガラ
ス基板を用いて作られていたが、最近では、ガラス基板
にはない性質、例えば可撓性を得るために、金属基板を
用いた非晶質半導体太陽電池が提案されている。この様
な金属基板を用いた非晶質半導体太陽電池の一般的な構
成を、その製造方法に従って説明すると、次の通りであ
る。
[Prior Art] So-called amorphous semiconductor solar cells have hitherto been mainly made by using glass substrates, but recently, in order to obtain properties that glass substrates do not have, such as flexibility, Amorphous semiconductor solar cells using substrates have been proposed. The general structure of an amorphous semiconductor solar cell using such a metal substrate will be described below according to its manufacturing method.

すなわち、先ず可撓性を有するステンレス等の金属基板
の表面に、例えばポリイミド等の耐熱性樹脂または有機
シリケート等を主成分とする有機コーティング剤を硬化
させたり、スパッタリング等の成膜手段で絶縁被覆層を
設ける。この絶縁被覆層の上にステンレス等の金属を真
空蒸着して背面電極を形成し、さらに、この上に非晶質
シリコン層をP型層、I型層、N型層の順で形成する。
その後、この非晶質シリコン層の上に酸化インジウム錫
等の透明電極層、保護膜層を形成する。
That is, first, on the surface of a flexible metal substrate such as stainless steel, an organic coating agent containing a heat-resistant resin such as polyimide or an organic silicate as a main component is cured, or an insulating coating is formed by a film forming means such as sputtering. Provide layers. A metal such as stainless steel is vacuum-deposited on the insulating coating layer to form a back electrode, and an amorphous silicon layer is further formed thereon in the order of a P-type layer, an I-type layer, and an N-type layer.
After that, a transparent electrode layer of indium tin oxide or the like and a protective film layer are formed on the amorphous silicon layer.

この工程において、上記非晶質半導体太陽電池の出力を
取り出すために、上記背面電極及び上記透明電極を形成
する時に、これら電極を金属基板の端部に引き出して二
つの出力電極を設ける。そして、これらの二つの出力電
極の一方を、上記金属基板に接続する。この様に、金属
基板に一方の電極を接続する理由は、例えば、二つの出
力電極を近接して設けるためである。例えば、背面電極
を金属基板に接続し、この金属基板を介して、透明電極
側の出力電極に近接して設けられた出力電極に背面電極
を導通させる。
In this step, in order to extract the output of the amorphous semiconductor solar cell, when the back electrode and the transparent electrode are formed, these electrodes are pulled out to the end of the metal substrate to provide two output electrodes. Then, one of these two output electrodes is connected to the metal substrate. The reason for connecting one electrode to the metal substrate in this manner is, for example, to provide two output electrodes in close proximity to each other. For example, the back electrode is connected to a metal substrate, and the back electrode is electrically connected to the output electrode provided in the vicinity of the output electrode on the transparent electrode side through the metal substrate.

上記の様に、絶縁被覆層の上に形成された電極を上記金
属基板に接続する方法としては、例えば、金属基板の上
に絶縁被覆層を形成する際のパターニング、或は形成し
た後のエッチング等の手段により、絶縁被覆層を一部欠
落させておき、上記背面電極及び透明電極の一方を形成
する工程でこの欠落部分に出力電極を形成して金属基板
に接続する手段がとられる。
As described above, as a method of connecting the electrode formed on the insulating coating layer to the metal substrate, for example, patterning when forming the insulating coating layer on the metal substrate, or etching after forming the insulating coating layer is performed. The insulating coating layer is partially removed by such means as described above, and in the step of forming one of the back electrode and the transparent electrode, an output electrode is formed in this missing portion and connected to the metal substrate.

[発明が解決しようとする課題] しかしながら、上記の従来技術による非晶質半導体太陽
電池は、上記出力電極と金属基板とを接続するために透
明電極等の薄膜を使用しているため、その部分の接続抵
抗が高く、電力損失分が大きい。そのため、太陽電池か
ら高出力を得ることは出来ない。
[Problems to be Solved by the Invention] However, since the above-mentioned conventional amorphous semiconductor solar cell uses a thin film such as a transparent electrode for connecting the output electrode and the metal substrate, that portion Connection resistance is high and power loss is large. Therefore, high output cannot be obtained from the solar cell.

また、接続手段として薄膜を使用していることから、上
記絶縁被覆層を除去した時に生じる段差やエッジ部分の
突起等によって、出力電極と上記金属基板との間の薄膜
が傷付けられて断線することもある。
Further, since the thin film is used as the connecting means, the thin film between the output electrode and the metal substrate may be damaged and disconnected due to a step or a protrusion on the edge portion generated when the insulating coating layer is removed. There is also.

そこで、本発明の目的は、上記の従来技術における問題
点に鑑み、一方の出力電極を金属基板に接続した構造の
非晶質半導体太陽電池において、上記金属基板との接続
部分の抵抗が十分に低いために大出力が得られ、しかも
接続部分の薄膜が断線することのない非晶質半導体太陽
電池を提供することにある。
Therefore, in view of the above problems in the prior art, the object of the present invention is to provide an amorphous semiconductor solar cell having a structure in which one output electrode is connected to a metal substrate, and the resistance of the connection portion with the metal substrate is sufficient. It is an object of the present invention to provide an amorphous semiconductor solar cell in which a large output can be obtained because of its low power and the thin film in the connecting portion is not broken.

[課題を解決するための手段] すなわち、上記の本発明の目的は、金属基板の上に絶縁
被覆層、背面電極層、非晶質半導体層、透明電極層、保
護膜層を順次形成した発電区域を単一又は複数形成する
と共に、上記背面電極層及び透明電極層の各々に電気的
に導通する薄膜によって出力電極を形成し、かつ、上記
出力電極のいずれか一方を、上記絶縁被覆層の一部欠落
した部分で上記金属基板に接続した非晶質半導体太陽電
池において、上記金属基板と接続した出力電極とを接続
するように、上記絶縁被覆層の一部欠落した部分の上
に、導電性ペーストを塗布し、硬化させた導電膜層を形
成することを特徴とする非晶質半導体太陽電池によって
達成される。
[Means for Solving the Problems] That is, the above-mentioned object of the present invention is to generate electricity by sequentially forming an insulating coating layer, a back electrode layer, an amorphous semiconductor layer, a transparent electrode layer, and a protective film layer on a metal substrate. A single or a plurality of areas are formed, and an output electrode is formed by a thin film that electrically conducts to each of the back electrode layer and the transparent electrode layer, and one of the output electrodes is connected to the insulating coating layer. In an amorphous semiconductor solar cell connected to the metal substrate at a partly missing part, a conductive film is formed on the partly missing part of the insulating coating layer so as to connect the output electrode connected to the metal substrate. Of an amorphous semiconductor solar cell, which is characterized in that a conductive paste is applied and cured to form a conductive film layer.

[作用] 上記本発明による非晶質半導体太陽電池では、金属基板
と接続した出力電極と接続するように、上記絶縁被覆層
の一部欠落した部分の上に、導電性ペーストを塗布し、
硬化させた導電膜層を形成しているが、この導電膜層は
厚膜であり、その抵抗が薄膜に比べて極めて低い。その
ため、出力電極と金属基板との接続部の接続抵抗も低く
なる。従って、電力損失分が小さく、大出力を取り出す
ことが出来る。
[Operation] In the amorphous semiconductor solar cell according to the present invention, a conductive paste is applied on a part of the insulating coating layer where a part is missing so as to connect to the output electrode connected to the metal substrate,
Although a cured conductive film layer is formed, this conductive film layer is a thick film and its resistance is extremely lower than that of a thin film. Therefore, the connection resistance of the connecting portion between the output electrode and the metal substrate also becomes low. Therefore, the power loss is small and a large output can be taken out.

さらに、上記厚膜導電膜層は、上記絶縁被覆層の欠落部
分の縁に生じる段差やエッジ部分の突起等によって傷付
けられて断線することが無い。
Further, the thick-film conductive film layer is not damaged by a step formed at the edge of the missing portion of the insulating coating layer, a protrusion at the edge portion, or the like and is not broken.

[実施例] 以下、本発明の実施例について、添付の図面を参照しな
がら説明する。
EXAMPLES Examples of the present invention will be described below with reference to the accompanying drawings.

第1図に示すように、例えばステンレスの薄板からなる
金属基板1の表面に絶縁被覆層2を形成し、その表面上
に所定の形状の背面電極層3を形成する。これら背面電
極層3の表面上に非晶質シリコン層4をP型層、I型
層、N型層の順で形成する。さらに、この非晶質シリコ
ン層4の上に酸化インジウム錫等の透明電極層5を形成
する。この時、上記透明電極層5は、隣接する発電区域
の背面電極層3に電気的に接続され、複数の発電区域が
直列に接続される。またこの時、上記透明電極層5の一
部は延長されて出力電極6となる導電膜が形成されると
共に、図中右上の部分に示す一方の出力端子部となる出
力電極7は、予め上記絶縁被覆層2の一部欠落した部分
を介して上記金属基板1の表面に電気的に接続されてい
る。
As shown in FIG. 1, an insulating coating layer 2 is formed on the surface of a metal substrate 1 made of, for example, a stainless thin plate, and a back electrode layer 3 having a predetermined shape is formed on the surface. An amorphous silicon layer 4 is formed on the surface of the back electrode layer 3 in the order of a P-type layer, an I-type layer, and an N-type layer. Further, a transparent electrode layer 5 of indium tin oxide or the like is formed on the amorphous silicon layer 4. At this time, the transparent electrode layer 5 is electrically connected to the back electrode layer 3 in the adjacent power generation area, and the plurality of power generation areas are connected in series. At this time, a part of the transparent electrode layer 5 is extended to form a conductive film to be the output electrode 6, and the output electrode 7 to be one of the output terminal portions shown in the upper right part of the drawing is previously formed as described above. It is electrically connected to the surface of the metal substrate 1 through a part of the insulating cover layer 2 which is missing.

これら透明電極層5を形成した後、上記出力電極6及び
7の部分を除いて、非晶質半導体太陽電池の表面全体に
透明な保護膜層8を形成し、非晶質半導体太陽電池が完
成する。
After forming these transparent electrode layers 5, a transparent protective film layer 8 is formed on the entire surface of the amorphous semiconductor solar cell except the output electrodes 6 and 7 to complete the amorphous semiconductor solar cell. To do.

なお、図中の左下部に示す符号9で示す部分は、上記背
面電極層3を絶縁被覆層2の欠落部分を通して金属基板
1の表面に接続する構造を示している。
In addition, a portion indicated by reference numeral 9 in the lower left part of the drawing shows a structure in which the back electrode layer 3 is connected to the surface of the metal substrate 1 through a missing portion of the insulating coating layer 2.

次に、上記本発明による非晶質半導体太陽電池の出力電
極7と金属基板1との間の接続構造の具体例について、
その製造方法と共に、以下に詳細に説明する。
Next, a specific example of the connection structure between the output electrode 7 of the amorphous semiconductor solar cell according to the present invention and the metal substrate 1 will be described.
The manufacturing method will be described in detail below.

(実施例1) 先ず、金属基板1となる金属板にはステンレス板を用
い、この表面に、例えば水12g、ブチルアルコール50g、
テトラエトキシシラン100g、塩化錫1gとを混合したエチ
ルシリケートを基剤とするコーティング剤を塗布し、こ
れを硬化させて絶縁被覆層2を形成した。次いで、上記
絶縁被覆層2の表面上に金属を真空蒸着し、背面電極層
3を形成する。これと同時に、第2図(a)に示すよう
に、一方の出力電極7も形成する。
(Example 1) First, a stainless steel plate is used as a metal plate to be the metal substrate 1, and on the surface thereof, for example, 12 g of water, 50 g of butyl alcohol,
A coating agent based on ethyl silicate, which was a mixture of 100 g of tetraethoxysilane and 1 g of tin chloride, was applied and cured to form an insulating coating layer 2. Then, a metal is vacuum-deposited on the surface of the insulating coating layer 2 to form the back electrode layer 3. At the same time, as shown in FIG. 2A, one output electrode 7 is also formed.

この工程に続いて、第2図(b)に示すように、この上
記金属基板1に接続するための電極部7の端部70の部分
の金属基板1の表面を露出するため、酸あるいはアルカ
リ溶液で出力電極7の端部70の絶縁被覆層2をエッチン
グした。
Following this step, as shown in FIG. 2B, an acid or alkali is used to expose the surface of the metal substrate 1 at the end 70 of the electrode portion 7 for connecting to the metal substrate 1. The insulating coating layer 2 on the end portion 70 of the output electrode 7 was etched with the solution.

次に、背面電極層3の表面上に、非晶質シリコン層4を
P型層、I型層、N型層の順で形成する。ここで、さら
に透明電極層5を形成すると同時に、第2図(c)に示
すように、上記絶縁被覆層2の一部をエッチングして金
属基板1の表面を露出させた部分と出力電極部7の端部
70の上にも透明導電膜5′を形成し、上記出力電極7と
上記金属基板1とを接続する。
Next, the amorphous silicon layer 4 is formed on the surface of the back electrode layer 3 in the order of a P-type layer, an I-type layer, and an N-type layer. Here, at the same time when the transparent electrode layer 5 is further formed, as shown in FIG. 2C, a part of the insulating coating layer 2 is etched to expose the surface of the metal substrate 1 and the output electrode part. End of 7
A transparent conductive film 5'is also formed on 70, and the output electrode 7 and the metal substrate 1 are connected to each other.

次に、第2図(d)に示すように、銅粉を主成分とする
導電性ペーストをスクリーン印刷等の手段で上記透明導
電膜5′の上に塗布し、これを硬化させて導電膜層72を
形成する。この時使用された導電性ペーストは、8〜10
μm程度の銅粒子に銀をコートしたものを主成分とし
て、これにフェノール系樹脂、メチルカルビトールを混
練したペースト状のものを用いた。
Next, as shown in FIG. 2 (d), a conductive paste containing copper powder as a main component is applied onto the transparent conductive film 5'by means such as screen printing, and this is cured to form a conductive film. Form layer 72. The conductive paste used at this time is 8-10
The main component was copper particles of about μm coated with silver, and the mixture was kneaded with a phenolic resin and methyl carbitol to form a paste.

最後に、上記出力電極6及び7の部分を除いて、非晶質
半導体太陽電池の表面全体に透明な樹脂を塗り、保護膜
層8を形成する。
Finally, except for the output electrodes 6 and 7, the entire surface of the amorphous semiconductor solar cell is coated with a transparent resin to form a protective film layer 8.

(実施例2) 金属基板1となる金属板にはステンレス板を用い、この
表面に、例えば水12g、ブチルアルコール50g、テトラエ
トキシシラン100g、塩化錫1gとを混合したエチルシリケ
ートを基剤とするコーティング剤を塗布し、これを硬化
させて絶縁被覆層2を形成した。
Example 2 A stainless steel plate is used as the metal plate to be the metal substrate 1, and the surface thereof is made of ethyl silicate obtained by mixing 12 g of water, 50 g of butyl alcohol, 100 g of tetraethoxysilane, and 1 g of tin chloride. A coating agent was applied and cured to form the insulating coating layer 2.

次に、第3図(a)に示すように、出力電極7を形成す
る個所の上記絶縁被覆層2をアルカリ溶液でエッチング
し、上記金属基板1の表面を一部露出させる。
Next, as shown in FIG. 3A, the insulating coating layer 2 where the output electrode 7 is formed is etched with an alkaline solution to partially expose the surface of the metal substrate 1.

次いで、上記絶縁被覆層2の表面上に金属を真空蒸着し
て背面電極層3を形成した後、その背面電極3の表面上
に非晶質シリコン層4をP型層、I型層、N型層の順で
形成し、さらにこの非晶質シリコン層4の上に透明電極
層5を形成する。そして、第3図(b)に示すように、
上記背面電極層3または上記透明電極層5を形成する時
に、上記絶縁被覆層2を除去して金属基板1の表面を露
出させた部分上に、上記背面電極3または透明電極5と
同じ金属層を形成し、これを出力電極7とする。
Then, a metal is vacuum-deposited on the surface of the insulating coating layer 2 to form a back electrode layer 3, and then an amorphous silicon layer 4 is formed on the surface of the back electrode 3 with a P-type layer, an I-type layer, and an N-type layer. The mold layers are formed in this order, and then the transparent electrode layer 5 is formed on the amorphous silicon layer 4. Then, as shown in FIG. 3 (b),
When the back electrode layer 3 or the transparent electrode layer 5 is formed, the same metal layer as the back electrode 3 or the transparent electrode 5 is formed on the portion where the surface of the metal substrate 1 is exposed by removing the insulating coating layer 2. Is formed, and this is used as the output electrode 7.

次に、第3図(c)に示すように、銅粉を主成分とする
導電性ペーストをスクリーン印刷等の方法により上記絶
縁被覆層2が一部欠落した部分の出力電極7とその周囲
に部分の上に塗布し、これを硬化させて導電膜層72を形
成する。
Next, as shown in FIG. 3 (c), a conductive paste containing copper powder as a main component is applied to a portion of the output electrode 7 where the insulating coating layer 2 is partially removed and its surroundings by a method such as screen printing. The conductive film layer 72 is formed by applying it on the portion and curing it.

最後に、上記出力電極6及び7の部分を除いて、非晶質
半導体太陽電池の表面全体に透明な樹脂を塗り、保護膜
層8を形成する。
Finally, except for the output electrodes 6 and 7, the entire surface of the amorphous semiconductor solar cell is coated with a transparent resin to form a protective film layer 8.

(実施例3) 金属基板1となる金属板にはステンレス板を用い、この
表面に、例えば水12g、ブチルアルコール50g、テトラエ
トキシシラン100g、塩化錫1gとを混合したエチルシリケ
ートを基剤とするコーティング剤を塗布し、これを硬化
させて絶縁被覆層2を形成した。
(Example 3) A stainless steel plate is used as the metal plate to be the metal substrate 1, and the surface thereof is, for example, ethyl silicate obtained by mixing 12 g of water, 50 g of butyl alcohol, 100 g of tetraethoxysilane, and 1 g of tin chloride. A coating agent was applied and cured to form the insulating coating layer 2.

次に、第4図(a)に示すように、出力電極7を形成す
る個所の上記絶縁被覆層2をアルカリ溶液でエッチング
し、上記金属基板1の表面を一部露出させる。
Next, as shown in FIG. 4A, the insulating coating layer 2 where the output electrode 7 is to be formed is etched with an alkaline solution to partially expose the surface of the metal substrate 1.

次いで、絶縁被覆層2の上に所定のパターンで背面電極
層3、P型層、I型層、N型層の順で形成される非晶質
シリコン層4、さらに、透明電極層5を順次形成する。
その後、第4図(b)に示すように、上記金属基板1の
表面を露出させた部分上に、銅粉を主成分とする導電性
ペーストをスクリーン印刷等の手段により塗布し、これ
を硬化させて導電膜層72を形成し、これを金属基板1に
接続された出力電極7とした。なお、図4には図示して
ないが、この出力電極7は、前記背面電極3或は透明電
極5の何れかに接続される。
Next, a back electrode layer 3, a P-type layer, an I-type layer, and an N-type layer, which are formed in this order on the insulating coating layer 2, in an order, an amorphous silicon layer 4, and a transparent electrode layer 5 are sequentially formed. Form.
After that, as shown in FIG. 4 (b), a conductive paste containing copper powder as a main component is applied onto the exposed surface of the metal substrate 1 by means of screen printing or the like, and is cured. Thus, a conductive film layer 72 was formed, which was used as the output electrode 7 connected to the metal substrate 1. Although not shown in FIG. 4, the output electrode 7 is connected to either the back electrode 3 or the transparent electrode 5.

最後に、上記出力電極6及び7の部分を除いて、非晶質
半導体太陽電池の表面全体に透明な樹脂を塗り、保護膜
層8を形成した。
Finally, except for the output electrodes 6 and 7, the entire surface of the amorphous semiconductor solar cell was coated with a transparent resin to form a protective film layer 8.

(比較例) 一方、上記三つの実施例による非晶質半導体太陽電池を
比較するため、上記引出し電極7の表面上に銅粉を主成
分とする導電性ペーストを塗布しなかったこと以外は上
記実施例1と同じ方法と条件で非晶質半導体太陽電池を
製造した。
(Comparative Example) On the other hand, in order to compare the amorphous semiconductor solar cells according to the above-mentioned three examples, except that the conductive paste containing copper powder as a main component was not applied on the surface of the extraction electrode 7 described above. An amorphous semiconductor solar cell was manufactured under the same method and conditions as in Example 1.

以上の様にして得られた上記実施例1、(施例2、実施
例3及び比較例について、それらの特性を調べるため、
それぞれ得られた太陽電池について、その出力電極と金
属基板との間の抵抗値(接続部の抵抗)を測定し、その
結果を表1に示した。
In order to investigate the characteristics of the above-described Example 1 (Example 2, Example 3 and Comparative Example) obtained as described above,
For each of the obtained solar cells, the resistance value (the resistance of the connection part) between the output electrode and the metal substrate was measured, and the results are shown in Table 1.

また、上記接続部の抵抗の電気的特性を試験するため、
それぞれの太陽電池について、その受光面に100mW/cm2
の太陽光を照射し、その時の短絡電流、開放電圧、最大
出力を測定し、その結果を以下の表2に示した。ここ
で、測定のために用いた端子の一方は、上記金属基板
に、もう一方は、上記金属基板に接続されていない出力
端子を用いた。
Also, to test the electrical characteristics of the resistance of the connection,
100 mW / cm 2 on the light receiving surface of each solar cell
Was irradiated with sunlight and the short-circuit current, open-circuit voltage and maximum output at that time were measured, and the results are shown in Table 2 below. Here, one of the terminals used for the measurement was used for the metal substrate, and the other was used for the output terminal not connected to the metal substrate.

なお、上記実施例では、太陽電池の出力電極と金属基板
との間の接続構造について説明したが、第1図に示した
出力電極6または背面電極層3を上記金属基板1に接続
する構造について本発明を適用することも可能である。
この場合も金属基板1と電極の接続抵抗を減少させるこ
とが可能であることは明らかである。
Although the connection structure between the output electrode of the solar cell and the metal substrate has been described in the above embodiment, the structure for connecting the output electrode 6 or the back electrode layer 3 shown in FIG. 1 to the metal substrate 1 will be described. The present invention can also be applied.
In this case as well, it is clear that the connection resistance between the metal substrate 1 and the electrode can be reduced.

[発明の効果] 以上の説明から明らかなように、本発明による非晶質半
導体太陽電池によれば、出力電極の金属基板との接続部
の接続抵抗を低く出来るため、この接続部での電力損失
分が小さくなり、大出力を得ることが可能となる。ま
た、導電性ペーストによる導電膜層は厚膜であるため、
上記金属基板上に形成された絶縁被覆層の一部欠落部分
の縁に生じる段差やエッジ部により、上記接続部の導電
膜層が断線することもなく、信頼性に優れた非晶質半導
体太陽電池を提供することが可能となる。
[Effects of the Invention] As is clear from the above description, according to the amorphous semiconductor solar cell of the present invention, the connection resistance of the connection portion of the output electrode with the metal substrate can be lowered, and therefore the power consumption at this connection portion can be reduced. The loss is reduced and a large output can be obtained. Further, since the conductive film layer made of the conductive paste is a thick film,
Amorphous semiconductor solar cells having excellent reliability without disconnection of the conductive film layer of the connection portion due to a step or an edge portion formed at the edge of a part of the insulating coating layer formed on the metal substrate. It becomes possible to provide a battery.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明による非晶質半導体太陽電池の構造を
示す斜視図であり、第2図(a)、(b)、(c)及び
(d)は、本発明の実施例1による上記太陽電池の出力
電極と金属基板との接続構造の製造工程を示す工程図で
あり、第3図(a)、(b)及び(c)は、本発明の実
施例2による上記太陽電池の出力電極と金属基板との接
続構造の製造工程を示す工程図であり、そして、第4図
(a)及び(b)は、本発明の実施例3による上記太陽
電池の出力電極と金属基板との接続構造の製造工程を示
す工程図である。 1…金属基板、2…絶縁被覆層、3…背面電極層、4…
非晶質シリコン層、5…透明電極層、6、7…出力電
極、8…保護膜層、70…電極部、72…導電膜層
FIG. 1 is a perspective view showing the structure of an amorphous semiconductor solar cell according to the present invention, and FIGS. 2 (a), (b), (c) and (d) are according to Example 1 of the present invention. [Fig. 3] Fig. 3 is a process diagram showing a manufacturing process of a connection structure between an output electrode of the solar cell and a metal substrate, wherein Figs. 3 (a), (b) and (c) show the solar cell according to Example 2 of the present invention. FIG. 4 is a process diagram showing a manufacturing process of a connection structure of an output electrode and a metal substrate, and FIGS. 4 (a) and 4 (b) show an output electrode and a metal substrate of the solar cell according to Example 3 of the present invention. FIG. 6 is a process chart showing a manufacturing process of the connection structure of FIG. 1 ... Metal substrate, 2 ... Insulation coating layer, 3 ... Back electrode layer, 4 ...
Amorphous silicon layer, 5 ... Transparent electrode layer, 6, 7 ... Output electrode, 8 ... Protective film layer, 70 ... Electrode part, 72 ... Conductive film layer

フロントページの続き (72)発明者 飯田 英世 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 (56)参考文献 特開 昭61−134081(JP,A) 実開 昭63−55451(JP,U)Front page continuation (72) Inventor Hideyo Iida 6-16-20 Ueno, Taito-ku, Tokyo Within Taiyo Denki Co., Ltd. (56) Reference JP-A-61-134081 (JP, A) (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属基板の上に絶縁被覆層、背面電極層、
非晶質半導体層、透明電極層、保護膜層を順次形成した
発電区域を単一又は複数形成すると共に、上記背面電極
層及び透明電極層の各々に電気的に導通する薄膜によっ
て出力電極を形成し、かつ、上記出力電極のいずれか一
方を、上記絶縁被覆層の一部欠落した部分で上記金属基
板に接続した非晶質半導体太陽電池において、上記金属
基板と接続した出力電極と接続するように、上記絶縁被
覆層の一部欠落した部分の上に、導電性ペーストを塗布
し、硬化させた導電膜層を形成することを特徴とする非
晶質半導体太陽電池。
1. A metal substrate on which an insulating coating layer, a back electrode layer,
A single or a plurality of power generation areas in which an amorphous semiconductor layer, a transparent electrode layer, and a protective film layer are sequentially formed are formed, and an output electrode is formed by a thin film electrically connected to each of the back electrode layer and the transparent electrode layer. And, in an amorphous semiconductor solar cell in which one of the output electrodes is connected to the metal substrate at a part where the insulating coating layer is partially removed, the output electrode connected to the metal substrate is connected. In addition, an amorphous semiconductor solar cell, characterized in that a conductive paste is applied and cured on a part of the insulating coating layer where a part is missing, to form a conductive film layer.
JP63174797A 1988-07-13 1988-07-13 Amorphous semiconductor solar cell Expired - Lifetime JPH0693517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174797A JPH0693517B2 (en) 1988-07-13 1988-07-13 Amorphous semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174797A JPH0693517B2 (en) 1988-07-13 1988-07-13 Amorphous semiconductor solar cell

Publications (2)

Publication Number Publication Date
JPH0225079A JPH0225079A (en) 1990-01-26
JPH0693517B2 true JPH0693517B2 (en) 1994-11-16

Family

ID=15984836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174797A Expired - Lifetime JPH0693517B2 (en) 1988-07-13 1988-07-13 Amorphous semiconductor solar cell

Country Status (1)

Country Link
JP (1) JPH0693517B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428249A (en) * 1992-07-15 1995-06-27 Canon Kabushiki Kaisha Photovoltaic device with improved collector electrode
US5494882A (en) * 1993-04-27 1996-02-27 Nippon Paper Industries Co., Ltd. Thermal recording material
JP3453741B2 (en) * 1993-07-08 2003-10-06 日本製紙株式会社 Thermal recording medium
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US8207012B2 (en) * 2008-04-28 2012-06-26 Solopower, Inc. Method and apparatus for achieving low resistance contact to a metal based thin film solar cell
EP2443666A4 (en) * 2009-06-15 2013-06-05 Tenksolar Inc Illumination agnostic solar panel
JP2011077301A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Solar cell module
JP2011077252A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Solar cell module
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
WO2012029651A1 (en) * 2010-08-31 2012-03-08 三洋電機株式会社 Photoelectric conversion device and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134081A (en) * 1984-12-05 1986-06-21 Matsushita Electric Ind Co Ltd Photovoltaic device
JPS6355451U (en) * 1986-09-27 1988-04-13

Also Published As

Publication number Publication date
JPH0225079A (en) 1990-01-26

Similar Documents

Publication Publication Date Title
JP2744847B2 (en) Improved solar cell and method for manufacturing the same
JP2742416B2 (en) P-type tellurium-containing (II)-(VI) stable ohmic contacts to thin semiconductor films
US4084985A (en) Method for producing solar energy panels by automation
JP2939075B2 (en) Solar cell module
EP2184787A1 (en) Rear surface bonding type solar cell, rear surface bonding type solar cell having wiring board, solar cell string and soar cell module
US10249775B2 (en) Solar cell and method for producing solar cell
WO2005109524A1 (en) Solar cell and manufacturing method thereof
JP2016072467A (en) Solar battery and manufacturing method thereof
US5385614A (en) Series interconnected photovoltaic cells and method for making same
WO2014069118A1 (en) Solar cell and solar cell module
JPS60240171A (en) Solar electric generator
JP3838911B2 (en) Method for manufacturing solar cell element
CN215988787U (en) Solar cell and photovoltaic module
JPH0693517B2 (en) Amorphous semiconductor solar cell
JP3377931B2 (en) Solar cell element
JPS646534B2 (en)
JPH0446468B2 (en)
CN109904268A (en) Back contacts solar module and its manufacturing method
JP2983746B2 (en) Solar cell manufacturing method
JP2999867B2 (en) Solar cell and method of manufacturing the same
JP2000332279A (en) Manufacture of solar battery
JP2002198547A (en) Method for manufacturing solar cell
JPH05291602A (en) Solar battery module
JP3732073B2 (en) Semiconductor electrode and manufacturing method thereof
JPH1051018A (en) Solar battery module