JP2002198547A - Method for manufacturing solar cell - Google Patents

Method for manufacturing solar cell

Info

Publication number
JP2002198547A
JP2002198547A JP2000396712A JP2000396712A JP2002198547A JP 2002198547 A JP2002198547 A JP 2002198547A JP 2000396712 A JP2000396712 A JP 2000396712A JP 2000396712 A JP2000396712 A JP 2000396712A JP 2002198547 A JP2002198547 A JP 2002198547A
Authority
JP
Japan
Prior art keywords
solar cell
parts
electrode material
manufacturing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000396712A
Other languages
Japanese (ja)
Inventor
Shuichi Fujii
修一 藤井
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000396712A priority Critical patent/JP2002198547A/en
Publication of JP2002198547A publication Critical patent/JP2002198547A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method for manufacturing a solar cell which can obtain a satisfactory ohmic contact with a semiconductor substrate and which can take out an output satisfactorily. SOLUTION: In the method for manufacturing the solar cell, different conductive regions are formed on one main face side and the other main face side of the semiconductor substrate, and electrode materials which contains silver, an organic vehicle and a glass frit are fired on both main face sides of the semiconductor substrate so as to form electrodes. The electrode material on the other main face side contains Zn or one kind or a plurality of kinds from among its compounds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池の製造方法
に関し、特に半導体基板の両主面側に電極材料を焼き付
けて電極を形成する太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solar cell, and more particularly to a method of manufacturing a solar cell in which electrodes are formed by baking electrode materials on both main surfaces of a semiconductor substrate.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】従来の太
陽電池の製造方法を図1に示す。図1中、1は一導電型
(例えばP型)を示す半導体基板、1aは半導体基板1
の表面部分にリン(P)が高濃度に拡散されて他の導電
型を呈する領域、2は一主面側の反射防止膜、3は半導
体接合部である。
2. Description of the Related Art FIG. 1 shows a conventional method for manufacturing a solar cell. In FIG. 1, reference numeral 1 denotes a semiconductor substrate showing one conductivity type (for example, P type);
Is a region in which phosphorus (P) is diffused at a high concentration in the surface portion and exhibits another conductivity type, 2 is an antireflection film on one principal surface side, and 3 is a semiconductor junction.

【0003】この反射防止膜2は電極に相当する部分が
エッチングされ、もしくはエッチングされずにその上か
ら電極が形成される。4は半導体基板の裏面からの出力
を取り出すための銀電極、5は半導体基板の表面から出
力を取り出すための表面電極のバスバー電極である。図
示されていないが、反射防止膜2の表面に沿ってバスバ
ー電極と垂直にフィンガー電極が設けられている。この
裏面電極材料は銀、有機ビヒクル、およびガラスフリッ
トを含むものからなり、600〜800℃で1〜30分
程度焼成することにより焼き付けられる。
In the antireflection film 2, a portion corresponding to the electrode is etched or an electrode is formed on the portion without being etched. 4 is a silver electrode for extracting output from the back surface of the semiconductor substrate, and 5 is a bus bar electrode of a front electrode for extracting output from the front surface of the semiconductor substrate. Although not shown, finger electrodes are provided along the surface of the antireflection film 2 and perpendicular to the bus bar electrodes. The back electrode material is made of a material containing silver, an organic vehicle, and a glass frit, and is baked by firing at 600 to 800 ° C. for about 1 to 30 minutes.

【0004】この電極焼成の際、ガラスフリットの作用
にばらつきが生じると充分なオーミック接触を得られな
いという問題が生じ、このオーミック接触が不十分にな
ると出力の取り出しに際して損失が生じるという問題が
起こる。
[0004] In the firing of the electrode, if the action of the glass frit varies, a problem arises that a sufficient ohmic contact cannot be obtained. If the ohmic contact becomes insufficient, a problem arises in that a loss occurs when the output is taken out. .

【0005】本発明はこのような従来の問題点に鑑みて
なされたものであり、半導体基板と良好なオーミック接
触を得ることができて良好に出力を取り出すことができ
る太陽電池の製造方法を得ることを目的とする。
The present invention has been made in view of such conventional problems, and provides a method of manufacturing a solar cell capable of obtaining good ohmic contact with a semiconductor substrate and obtaining good output. The purpose is to:

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る太陽電池の製造方法では、半導体基
板の一主面側と他の主面側に異なる導電領域を設け、こ
の半導体基板の両主面側に銀、有機ビヒクル、およびガ
ラスフリットを含む電極材料を焼き付けて電極を形成す
る太陽電池の製造方法において、前記他の主面側の電極
材料にZnまたはその化合物のうちの一種または複数種
を含有することを特徴とする。
In order to achieve the above object, in the method for manufacturing a solar cell according to the present invention, different conductive regions are provided on one main surface side and another main surface side of a semiconductor substrate. In a method for manufacturing a solar cell in which an electrode material containing silver, an organic vehicle, and glass frit is formed on both main surfaces of a semiconductor substrate by baking an electrode material, the other main surface electrode material includes Zn or a compound thereof. Characterized by containing one or more of the following.

【0007】上記太陽電池の製造方法では、前記半導体
基板が多結晶シリコン基板であることが望ましい。
In the method for manufacturing a solar cell, it is preferable that the semiconductor substrate is a polycrystalline silicon substrate.

【0008】上記太陽電池の製造方法では、前記他の主
面側の電極材料に前記Znを前記銀100重量部に対し
て0.1〜5.0重量部含有することが望ましい。
In the method for manufacturing a solar cell, the electrode material on the other main surface preferably contains 0.1 to 5.0 parts by weight of Zn based on 100 parts by weight of silver.

【0009】上記太陽電池の製造方法では、前記他の主
面側の電極材料にZnOを前記銀100重量部に対して
0.1〜5.0重量部含有することが望ましい。
In the above solar cell manufacturing method, it is preferable that the electrode material on the other main surface side contains ZnO in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the silver.

【0010】上記太陽電池の製造方法では、前記他の主
面側の電極材料にZnSを前記銀100重量部に対して
0.1〜5.0重量部含有することが望ましい。
In the above method for manufacturing a solar cell, it is preferable that the electrode material on the other main surface side contains ZnS in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the silver.

【0011】上記太陽電池の製造方法では、前記他の主
面側の電極材料にZnPを前記銀100重量部に対して
0.1〜5.0重量部含有することが望ましい。
In the above method for manufacturing a solar cell, the electrode material on the other main surface side preferably contains ZnP in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the silver.

【0012】[0012]

【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。本発明の太陽電池の製造方法でも製造
工程は図1に示す従来の製造工程と同じである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. The manufacturing process of the solar cell manufacturing method of the present invention is the same as the conventional manufacturing process shown in FIG.

【0013】まず、半導体基板1を用意する(図1
(a)参照)。この半導体基板lは、単結晶又は多結晶
シリコンなどから成る。このシリコン基板lは、ボロン
(B)などの一導電型半導体不純物を1×1016〜10
18atoms/cm3程度含有し、比抵抗1.5Ωcm
程度の基板である。単結晶シリコンの場合は引き上げ法
などによって形成され、多結晶シリコンの場合は鋳造法
などによって形成される。多結晶シリコンは、大量生産
が可能で製造コスト面で単結晶シリコンよりも有利であ
る。引き上げ法や鋳造法によって形成されたインゴット
を300μm程度の厚みにスライスして、10cm×1
0cmまたは15cm×15cm程度の大きさに切断し
てシリコン基板とする。
First, a semiconductor substrate 1 is prepared (FIG. 1).
(A)). This semiconductor substrate 1 is made of single crystal or polycrystalline silicon or the like. This silicon substrate 1 is doped with one conductivity type semiconductor impurity such as boron (B) from 1 × 10 16 to 10 × 10 16.
Contains about 18 atoms / cm 3 , specific resistance 1.5Ωcm
About the substrate. In the case of single crystal silicon, it is formed by a pulling method or the like, and in the case of polycrystalline silicon, it is formed by a casting method or the like. Polycrystalline silicon can be mass-produced and is more advantageous than monocrystalline silicon in terms of manufacturing cost. An ingot formed by a pulling method or a casting method is sliced into a thickness of about 300 μm, and 10 cm × 1
The silicon substrate is cut into a size of about 0 cm or about 15 cm × 15 cm.

【0014】次に、基板の切断面を清浄化するために表
面をフッ酸やフッ硝酸などでごく微量エッチングする。
Next, in order to clean the cut surface of the substrate, a very small amount of the surface is etched with hydrofluoric acid, hydrofluoric acid or the like.

【0015】次に、シリコン基板lを拡散炉中に配置し
て、オキシ塩化リン(POCl3)などの中で加熱する
ことによって、ウェハー1の表面部分にリン原子を拡散
させてシート抵抗が30〜300Ω/□の他の導電型を
呈する領域1aを形成し、半導体接合部3を形成する
(図1(b)参照)。
Next, the silicon substrate 1 is placed in a diffusion furnace and heated in phosphorus oxychloride (POCl 3 ) to diffuse phosphorus atoms into the surface portion of the wafer 1 and to increase the sheet resistance to 30%. A region 1a exhibiting another conductivity type of ~ 300Ω / □ is formed, and a semiconductor junction 3 is formed (see FIG. 1B).

【0016】次に、シリコン基板1の一主面側の他の導
電型を呈する領域1aのみを残して他の部分を除去した
後、純水で洗浄する(図1(c))。このシリコン基板
1の一主面側以外の他の導電型を呈する領域1aの除去
は、シリコン基板1の一主面側にレジスト膜を塗布し、
フッ酸と硝酸の混合液を用いてエッチング除去した後、
レジスト膜を除去することにより行なう。
Next, the silicon substrate 1 is washed with pure water after removing other portions except for the region 1a exhibiting another conductivity type on one main surface side of the silicon substrate 1 (FIG. 1 (c)). The removal of the region 1a exhibiting another conductivity type other than the one main surface side of the silicon substrate 1 is performed by applying a resist film to the one main surface side of the silicon substrate 1,
After etching and removing using a mixed solution of hydrofluoric acid and nitric acid,
This is performed by removing the resist film.

【0017】次に、シリコン基板1の一主面側に反射防
止膜2を形成する(図1(d))。この反射防止膜2は
例えば窒化シリコン膜などから成り、例えばシラン(S
iH 4)とアンモニア(NH3)との混合ガスをグロー放
電分解でプラズマ化させて堆積させるプラズマCVD法
などで形成される。この反射防止膜2は、シリコン基板
1との屈折率差などを考慮して、屈折率が1.8〜2.
3程度になるように形成され、厚み500〜1000Å
程度の厚みに形成される。この窒化シリコン膜は、形成
の際に、パッシベーション効果があり、反射防止の機能
と併せて、太陽電池の電気特性を向上させる効果があ
る。
Next, antireflection is applied to one main surface side of the silicon substrate 1.
The stop film 2 is formed (FIG. 1D). This anti-reflection film 2
For example, it is made of a silicon nitride film or the like.
iH Four) And ammonia (NHThreeGlow discharge gas mixture
Plasma CVD method in which plasma is deposited by electrolysis and deposited
And so on. This antireflection film 2 is made of a silicon substrate
The refractive index is 1.8 to 2.
Formed so as to have a thickness of about 3 and a thickness of 500 to 1000 mm
It is formed to a thickness of the order. This silicon nitride film is formed
Has a passivation effect and anti-reflection function
In addition, it has the effect of improving the electrical characteristics of the solar cell.
You.

【0018】次に、出力取りだし用の裏面銀電極材料4
を塗布して乾燥する(図1(e))。次に、表面電極材料
5および表面フィンガー電極材料6を塗布して乾燥する
(図1(f))。裏面電極材料4と表面電極材料5および
6は、銀と有機ビヒクルとガラスフリットを銀100重
量部に対して有機ビヒクルを10〜30重量部、ガラス
フリットを0.1〜5重量部を添加してぺ一スト状にし
たものをスクリーン印刷法で印刷する。
Next, the back surface silver electrode material 4 for taking out the output
And dried (FIG. 1 (e)). Next, the surface electrode material 5 and the surface finger electrode material 6 are applied and dried (FIG. 1F). The back electrode material 4 and the front electrode materials 5 and 6 are obtained by adding 10 to 30 parts by weight of an organic vehicle and 0.1 to 5 parts by weight of a glass frit to 100 parts by weight of silver, an organic vehicle and a glass frit. The screen is printed by screen printing.

【0019】この際、裏面電極材料はZnまたはZn化
合物を含有するものである。この裏面電極材料のZnま
たはZn化合物は電極のオーミック接触を改善する。Z
n化合物にはZnO、ZnS、ZnPの他にZnF2
ZnCl2、ZnBr2、ZnI2、ZnAs2、ZnS
b、ZnSe等がある。
At this time, the back electrode material contains Zn or a Zn compound. This back electrode material Zn or Zn compound improves ohmic contact of the electrode. Z
The n-compound includes ZnO, ZnS, ZnP, ZnF 2 ,
ZnCl 2 , ZnBr 2 , ZnI 2 , ZnAs 2 , ZnS
b, ZnSe and the like.

【0020】前記ZnまたはZn化合物は、銀100重
量部に対して0.1〜5.0重量部を含有することが望
ましい。銀に対する含有量が0.1重量部より少ない場
合はオーミック接触改善の効果が得られない。また、銀
に対する含有量が5.0重量部を越えた場合には電極の
線抵抗が増大し、曲線因子の低下を生じる。
It is desirable that the Zn or Zn compound contains 0.1 to 5.0 parts by weight based on 100 parts by weight of silver. If the content relative to silver is less than 0.1 parts by weight, the effect of improving ohmic contact cannot be obtained. On the other hand, when the content relative to silver exceeds 5.0 parts by weight, the line resistance of the electrode increases, and the fill factor decreases.

【0021】これら電極材料4、表面電極材料5、6は
乾燥後に同時に600〜800℃で1〜30分程度焼成
することにより焼き付けられる。その後、裏面電極材料
4、表面電極材料5、6は必要に応じて半田等により被
覆される。
The electrode material 4 and the surface electrode materials 5 and 6 are baked by simultaneously baking them at 600 to 800 ° C. for about 1 to 30 minutes after drying. Thereafter, the back electrode material 4 and the front electrode materials 5 and 6 are coated with solder or the like as necessary.

【0022】[0022]

【実施例】抵抗1.5Ωcmの半導体基板内の一主面側
に、Pを1×1017atoms/cm3拡散させて厚み
850Åの窒化シリコン膜が形成された15cm角の太
陽電池素子に裏面電極材料としてZnやZn化合物のい
ずれも含まない銀ペーストと、Znを銀100重量部に
対して0.05〜5.5重量部を含有するペーストを7
00℃で焼き付けて、太陽電池の電気特性と電極部の強
度を測定した。
EXAMPLE A 15 cm square solar cell element in which P is diffused by 1 × 10 17 atoms / cm 3 on one principal surface side in a semiconductor substrate having a resistance of 1.5 Ωcm to form a silicon nitride film having a thickness of 850 ° is formed on a back surface. A silver paste containing neither Zn nor a Zn compound as an electrode material and a paste containing 0.05 to 5.5 parts by weight of Zn with respect to 100 parts by weight of silver were used.
After baking at 00 ° C., the electric characteristics of the solar cell and the strength of the electrode portion were measured.

【0023】同様に銀100重量部に対してZnO、Z
nS、ZnPのそれぞれを0.05重量部から5.5重
量部を含有するペーストを700℃で焼き付けて、太陽
電池素子の電気特性(電流密度、開放電圧、曲線因子、
変換効率)と電極部の引張り強度を測定した。強度の測
定は銅箔を半田により電極部に取り付け、これを垂直方
向に引き上げた際に銅箔が剥がれるか、またはセルが破
壊されるまでの重量をみた。その結果を表1に示す。
Similarly, with respect to 100 parts by weight of silver, ZnO, Z
A paste containing 0.05 to 5.5 parts by weight of each of nS and ZnP is baked at 700 ° C. to obtain electrical characteristics (current density, open circuit voltage, fill factor,
(Conversion efficiency) and the tensile strength of the electrode part were measured. The strength was measured by attaching a copper foil to the electrode portion by soldering and checking the weight until the copper foil was peeled off or the cell was destroyed when the copper foil was pulled up in the vertical direction. Table 1 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示すように、含有なしの引張り強度
は1.26kg、電気特性は14.04%であった。Z
nを0.1〜5.0重量部含有したときの引張り強度は
0.73〜1.23kg、電気特性は14.23〜1
4.50%であった。また、Znを0.05重量部含有
したときの引張り強度は1.12kg、電気特性は1
4.08%であり、充分な効果が得られていない。さら
に、5.5重量部の含有では線抵抗が増大し、曲線因子
が低下してしまうことを確認した。
As shown in Table 1, the tensile strength without the inclusion was 1.26 kg, and the electrical properties were 14.04%. Z
The tensile strength when containing 0.1 to 5.0 parts by weight of n is 0.73 to 1.23 kg, and the electrical properties are 14.23 to 1
It was 4.50%. Further, when containing 0.05 parts by weight of Zn, the tensile strength is 1.12 kg, and the electrical characteristics are 1%.
4.08%, and a sufficient effect was not obtained. Further, it was confirmed that when the content was 5.5 parts by weight, the wire resistance increased and the fill factor decreased.

【0026】ZnO、ZnS、ZnPについても前記Z
nの場合と同様な傾向となることを確認した。
As for ZnO, ZnS and ZnP, the above Z
It was confirmed that the same tendency as in the case of n was obtained.

【0027】[0027]

【発明の効果】以上のように、本発明に係る太陽電池の
製造方法によれば、半導体基板の両主面側に銀、有機ビ
ヒクル、およびガラスフリットを含む電極材料を焼き付
けて電極を形成する太陽電池の製造方法において、上記
他の主面側の電極材料にZnまたはその化合物のうちの
一種または複数種を含有することから、オーミックコン
タクト性がよく、良好な変換効率を持つ太陽電池が得ら
れる。
As described above, according to the method of manufacturing a solar cell according to the present invention, electrodes are formed by baking an electrode material containing silver, an organic vehicle, and a glass frit on both main surfaces of a semiconductor substrate. In the method for manufacturing a solar cell, since the other main surface side electrode material contains one or more of Zn and its compound, a solar cell having good ohmic contact properties and good conversion efficiency is obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池の製造方法を説明するた
めの図であり(a)〜(f)は工程毎の断面図である。
FIGS. 1A to 1F are views for explaining a method for manufacturing a solar cell according to the present invention, and FIGS.

【符号の説明】[Explanation of symbols]

1………半導体基板、1a………リン原子が拡散され他
の導電型を呈する領域、2………反射防止膜、3………
半導体接合部、4………裏面電極材料銀、5・……表面
バスバー電極、6………表面フィンガー電極
1 ... Semiconductor substrate, 1a ... A region where phosphorus atoms are diffused and exhibit another conductivity type, 2 ... Anti-reflection film, 3 ...
Semiconductor bonding part, 4 ... silver electrode material on the back surface, 5 ... bus bar electrode on the surface, 6 ... finger electrode on the front surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面側と他の主面側に異
なる導電領域を設け、この半導体基板の両主面側に銀、
有機ビヒクル、およびガラスフリットを含む電極材料を
焼き付けて電極を形成する太陽電池の製造方法におい
て、前記他の主面側の電極材料にZnまたはその化合物
のうちの一種または複数種を含有することを特徴とする
太陽電池の製造方法。
1. A semiconductor device according to claim 1, wherein one of the main surfaces of the semiconductor substrate and another of the other main surfaces have different conductive regions.
An organic vehicle, and a method for manufacturing a solar cell in which an electrode material containing glass frit is baked to form an electrode, wherein the other main surface-side electrode material contains one or more of Zn or a compound thereof. A method for manufacturing a solar cell.
【請求項2】 前記半導体基板が多結晶シリコン基板で
あることを特徴とする請求項1に記載の太陽電池の製造
方法。
2. The method according to claim 1, wherein the semiconductor substrate is a polycrystalline silicon substrate.
【請求項3】 前記他の主面側の電極材料に前記Znを
前記銀100重量部に対して0.1〜5.0重量部含有
することを特徴とする請求項1または請求項2に記載の
太陽電池の製造方法。
3. The electrode material according to claim 1, wherein the other main surface side electrode material contains the Zn in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the silver. A method for manufacturing the solar cell according to the above.
【請求項4】 前記他の主面側の電極材料にZnOを前
記銀100重量部に対して0.1〜5.0重量部含有す
ることを特徴とする請求項1または請求項2に記載の太
陽電池の製造方法。
4. The method according to claim 1, wherein the other main surface side electrode material contains ZnO in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the silver. Solar cell manufacturing method.
【請求項5】 前記他の主面側の電極材料にZnSを前
記銀100重量部に対して0.1〜5.0重量部含有す
ることを特徴とする請求項1または請求項2に記載の太
陽電池の製造方法。
5. The method according to claim 1, wherein the electrode material on the other main surface side contains ZnS in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the silver. Solar cell manufacturing method.
【請求項6】 前記他の主面側の電極材料にZnPを前
記銀100重量部に対して0.1〜5.0重量部含有す
ることを特徴とする請求項1または請求項2に記載の太
陽電池の製造方法。
6. The electrode material on the other main surface side, wherein ZnP is contained in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the silver. Solar cell manufacturing method.
JP2000396712A 2000-12-27 2000-12-27 Method for manufacturing solar cell Pending JP2002198547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396712A JP2002198547A (en) 2000-12-27 2000-12-27 Method for manufacturing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396712A JP2002198547A (en) 2000-12-27 2000-12-27 Method for manufacturing solar cell

Publications (1)

Publication Number Publication Date
JP2002198547A true JP2002198547A (en) 2002-07-12

Family

ID=18861955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396712A Pending JP2002198547A (en) 2000-12-27 2000-12-27 Method for manufacturing solar cell

Country Status (1)

Country Link
JP (1) JP2002198547A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135416A (en) * 2005-11-11 2008-06-12 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
JP2008135565A (en) * 2006-11-28 2008-06-12 Kyocera Corp Solar battery element and solar battery module using the same
WO2008078375A1 (en) * 2006-12-25 2008-07-03 Namics Corporation Conductive paste for forming of electrode of crystalline silicon substrate
WO2008078374A1 (en) * 2006-12-25 2008-07-03 Namics Corporation Conductive paste for solar cell
WO2012147378A1 (en) * 2011-04-25 2012-11-01 横浜ゴム株式会社 Method for forming solar cell collecting electrode, set of conductive compositions for forming solar cell collecting electrode, and solar cell
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
US10158032B2 (en) 2012-10-12 2018-12-18 Heraeus Deutschland GmbH & Co. KG Solar cells produced from high Ohmic wafers and halogen containing paste

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135416A (en) * 2005-11-11 2008-06-12 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9620668B2 (en) 2006-06-30 2017-04-11 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9312404B2 (en) 2006-06-30 2016-04-12 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
JP2008135565A (en) * 2006-11-28 2008-06-12 Kyocera Corp Solar battery element and solar battery module using the same
JPWO2008078374A1 (en) * 2006-12-25 2010-04-15 ナミックス株式会社 Conductive paste for solar cell
JP5203970B2 (en) * 2006-12-25 2013-06-05 ナミックス株式会社 Conductive paste for electrode formation on crystalline silicon substrate
US20120231571A1 (en) * 2006-12-25 2012-09-13 Namics Corporation Method for producing a solar cell
WO2008078374A1 (en) * 2006-12-25 2008-07-03 Namics Corporation Conductive paste for solar cell
WO2008078375A1 (en) * 2006-12-25 2008-07-03 Namics Corporation Conductive paste for forming of electrode of crystalline silicon substrate
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US10020409B2 (en) 2007-04-19 2018-07-10 Mitsubishi Materials Corporation Method for producing a conductive reflective film
JP2012230950A (en) * 2011-04-25 2012-11-22 Yokohama Rubber Co Ltd:The Method for forming solar cell collector electrode, solar cell, and solar cell module
WO2012147378A1 (en) * 2011-04-25 2012-11-01 横浜ゴム株式会社 Method for forming solar cell collecting electrode, set of conductive compositions for forming solar cell collecting electrode, and solar cell
US10158032B2 (en) 2012-10-12 2018-12-18 Heraeus Deutschland GmbH & Co. KG Solar cells produced from high Ohmic wafers and halogen containing paste

Similar Documents

Publication Publication Date Title
WO2014192083A1 (en) Solar battery cell, method for producing same, and solar battery module
JP2007059380A (en) Thick aluminum film composition, electrode, semiconductor device and method of manufacturing them
JP2001504996A (en) Solar cell having slight shading and method for manufacturing the same
JP4373774B2 (en) Method for manufacturing solar cell element
EP3101696B1 (en) Solar cell and solar cell manufacturing method
JP6495649B2 (en) Solar cell element and solar cell module
KR20160034957A (en) Electroconductive paste and method for producing crystalline silicon solar battery
JP2001068699A (en) Solar cell
JP2001118425A (en) Conductive paste
JP2003197932A (en) Solar battery element and method for manufacturing the same
JP3377931B2 (en) Solar cell element
JP4331827B2 (en) Method for manufacturing solar cell element
JP2002198547A (en) Method for manufacturing solar cell
JP4953562B2 (en) Solar cell module
JPS62156881A (en) Solar battery device
JP2001127317A (en) Method of manufacturing solar cell
JP3732947B2 (en) Method for manufacturing solar cell element
JP2003273379A (en) Solar cell element
JP2004146521A (en) Paste for silver electrode and solar battery cell using it
JP2002198546A (en) Formation method for solar cell element
JP2002353478A (en) Solar battery cell and solar battery module using the same
JP4203247B2 (en) Method for forming solar cell element
JPH11135812A (en) Formation method for solar cell element
JP2007266649A (en) Method of manufacturing solar cell element
JP2003273378A (en) Solar cell element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070719