JP2000332279A - Manufacture of solar battery - Google Patents

Manufacture of solar battery

Info

Publication number
JP2000332279A
JP2000332279A JP11143387A JP14338799A JP2000332279A JP 2000332279 A JP2000332279 A JP 2000332279A JP 11143387 A JP11143387 A JP 11143387A JP 14338799 A JP14338799 A JP 14338799A JP 2000332279 A JP2000332279 A JP 2000332279A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
polycrystalline silicon
electrodes
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11143387A
Other languages
Japanese (ja)
Inventor
Yosuke Inomata
洋介 猪股
Kenji Fukui
健次 福井
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11143387A priority Critical patent/JP2000332279A/en
Publication of JP2000332279A publication Critical patent/JP2000332279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode structure exhibiting sufficient adhesive strength, even when the front side electrode of the solar battery has a small width. SOLUTION: In a method of manufacturing a solar battery, wherein electrodes 1e and 1f are adhered to both main surfaces by diffusing, on one main surface of one conductivity type polycrystalline silicon substrate 1, a reverse conductivity type impurity 1b, parts of such one or both main surfaces of the substrate 1 for adhesion to the electrodes 1e and 1f are provided with a multitude of fine projections la formed by reactive ion etching, to have the electrodes 1e adhered and formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池の製造方法
に関し、特に多結晶シリコン基板を用いた太陽電池の製
造方法に関する。
The present invention relates to a method for manufacturing a solar cell, and more particularly to a method for manufacturing a solar cell using a polycrystalline silicon substrate.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近年
エネルギー消費が増大する中で、そのエネルギー源の確
保が重要視されている。現状ではエネルギーの大部分は
火力発電および原子力発電に依存している状況となって
いる。しかしながら、火力発電においては二酸化炭素に
よる地球温暖化の問題があり、大きな問題となってい
る。また、原子力発電においては事故時の放射能汚染の
可能性や放射性廃棄物の処理方法の問題などが指摘され
ており、長期的な視点では地球環境の問題をはらんでい
る。そのような中、太陽エネルギーを直接電気エネルギ
ーに変換する太陽電池がその無公害性の点から近年クロ
ーズアップされてきており、大量生産の技術や低コスト
化および高効率化の技術の重要性が高まっている。
2. Description of the Related Art In recent years, as energy consumption has increased, securing an energy source has been regarded as important. At present, most of the energy depends on thermal power and nuclear power. However, thermal power generation has a problem of global warming due to carbon dioxide, which is a major problem. In nuclear power generation, the possibility of radioactive contamination at the time of an accident and the problem of radioactive waste disposal methods have been pointed out, and from a long-term perspective, there are global environmental issues. Under such circumstances, solar cells that directly convert solar energy into electric energy have been highlighted in recent years because of their non-polluting nature, and the importance of mass production technology and cost reduction and high efficiency technology is increasing. Is growing.

【0003】太陽電池のうち主要なものは使用材料の種
類によって結晶系、アモルファス系、化合物系などに分
類される。このうち、現在市場で流通しているのはほと
んどが結晶系シリコン太陽電池である。この結晶系シリ
コン太陽電池はさらに単結晶型、多結晶型に分類され
る。単結晶型シリコン太陽電池は基板の品質が良いた
め、高効率化が容易であるという長所を有する反面、基
板の製造コストが大きいという短所を有する。それに対
し、多結晶型シリコン太陽電池は基板の品質が劣るため
に高効率化が難しいという短所はあるものの、低コスト
で製造できるというメリットがある。また、最近では多
結晶シリコン基板の品質の向上やセル化技術の進歩によ
り、研究レベルでは18%程度の変換効率が達成されて
いる。
[0003] Main solar cells are classified into crystalline, amorphous, and compound solar cells according to the type of materials used. Among them, most of them currently available in the market are crystalline silicon solar cells. This crystalline silicon solar cell is further classified into a single crystal type and a polycrystalline type. The single crystal silicon solar cell has the advantage that the efficiency of the substrate is easy because of the good quality of the substrate, but has the disadvantage that the manufacturing cost of the substrate is large. On the other hand, the polycrystalline silicon solar cell has a disadvantage that it is difficult to increase the efficiency due to the poor quality of the substrate, but has an advantage that it can be manufactured at low cost. In recent years, a conversion efficiency of about 18% has been achieved at the research level due to the improvement in quality of polycrystalline silicon substrates and advances in cell technology.

【0004】一方、量産レベルの多結晶シリコン太陽電
池は従来より低コストであったために市場に流通してき
たが、近年環境問題が取りざたされる中で需要が増して
きており、低コストで且つより高い変換効率が求められ
るようになった。
On the other hand, mass-produced polycrystalline silicon solar cells have been distributed to the market because of their lower cost than before. High conversion efficiency has been required.

【0005】多結晶シリコン太陽電池の高効率化の一つ
の要素技術として、受光面積の増加がある。これにより
太陽光を多く取り込めるために、出力電流の向上が期待
できる。そのためには、受光面側の電極の占有面積を縮
小する必要があり、微細な電極を形成する技術が求めら
れる。微細な電極を形成する方法としてはフォトリソグ
ラフィーを用いる方法が広く知られているが、この方法
は太陽電池に用いるには非常に高コストであり、現実的
には困難である。従来より、量産レベルの太陽電池で
は、主成分が銀粉から構成される導電ペーストをスクリ
ーン印刷して焼成することで形成してきた。電極を細く
することは電気抵抗を増加させることになり、電流値の
減少につながる。これを避けるためには、小面積で且つ
高さの高い電極、つまりアスペクト比の大きい電極が必
要である。従来、電極の幅は200μm程度であった
が、高効率化のためには、さらに微細化を図る必要があ
り、それに伴って基板との接触面積が減少するため、電
極の接合強度が低下するという問題がある。
[0005] One elemental technology for increasing the efficiency of polycrystalline silicon solar cells is to increase the light receiving area. As a result, since a large amount of sunlight can be taken in, an improvement in output current can be expected. For this purpose, it is necessary to reduce the area occupied by the electrodes on the light receiving surface side, and a technique for forming fine electrodes is required. As a method of forming fine electrodes, a method using photolithography is widely known, but this method is very expensive to use for a solar cell and is difficult in practice. Conventionally, mass-produced solar cells have been formed by screen-printing and firing a conductive paste whose main component is silver powder. Making the electrodes thinner increases the electrical resistance and leads to a decrease in the current value. In order to avoid this, an electrode having a small area and a high height, that is, an electrode having a large aspect ratio is required. Conventionally, the width of the electrode was about 200 μm. However, in order to achieve higher efficiency, it is necessary to further reduce the size, and the contact area with the substrate is accordingly reduced, so that the bonding strength of the electrode is reduced. There is a problem.

【0006】電極の接合強度を向上させる手段として
は、接触面積の増加が考えられる。また、電極の引っ張
り強度は、その被着基板の単位当たり表面積のみなら
ず、密着の角度によっても変化する。例えば、電極は垂
直方向に引っ張るよりも、斜め方向に引っ張る方が剥が
れにくい。これは電極と被着基板が密着している部分の
角度が引っ張り方向と平行に近い方が剥がれにくいこと
を意味している。
As a means for improving the bonding strength of the electrodes, an increase in the contact area can be considered. Further, the tensile strength of the electrode changes not only according to the surface area per unit of the substrate to be adhered but also according to the angle of close contact. For example, the electrodes are less likely to peel off when pulled obliquely than when pulled vertically. This means that it is difficult to peel off when the angle of the portion where the electrode and the substrate are in close contact is closer to the direction parallel to the pulling direction.

【0007】単結晶基板の場合、入射光の反射低減のた
めに、アルカリ水溶液などでテクスチャ構造を形成する
ことが一般的に行われが、この構造をそのまま用いれ
ば、被着基板の表面積の増加によって電極との接触面積
も増加して、電極の接合強度が向上する。
In the case of a single crystal substrate, a texture structure is generally formed with an aqueous alkali solution or the like in order to reduce the reflection of incident light. However, if this structure is used as it is, the surface area of the substrate to be adhered is increased. As a result, the contact area with the electrode also increases, and the bonding strength of the electrode improves.

【0008】単結晶シリコンの場合、通常は(100)
方向の基板が用いられる。これをアルカリ水溶液でエッ
チングすると、(111)面が露出し、突起頂点の角度
が70.5°のピラミッドが形成される。このピラミッ
ドのアスペクト比を(ピラミッドの高さ÷底辺)で定義
すると、0.71となる。しかし、この凹凸では電極の
接合強度を十分得ることができないことがあった。
In the case of single crystal silicon, it is usually (100)
Oriented substrates are used. When this is etched with an alkaline aqueous solution, the (111) plane is exposed, and a pyramid having a projection apex angle of 70.5 ° is formed. If the aspect ratio of this pyramid is defined by (the height of the pyramid / the bottom), it is 0.71. However, this unevenness may not be able to obtain sufficient electrode bonding strength.

【0009】したがって、さらにアスペクト比の大きい
電極下地構造が求められていた。つまり、単位当たり表
面積が大きくて接触面積の大きい、かつ接触角度が太陽
電池表面に対して垂直により近い電極の下地構造が求め
られていた。
Therefore, there has been a demand for an electrode underlayer structure having a larger aspect ratio. That is, there has been a demand for a base structure of an electrode having a large surface area per unit, a large contact area, and a contact angle closer to the vertical to the solar cell surface.

【0010】しかしながら、上述のアルカリ水溶液によ
るウエットエッチングでは、エッチングされる基板の結
晶の面方位を利用して凹凸(ピラミッド)を形成するた
め、この凹凸形状の制御ができない。
However, in the above-described wet etching using an alkaline aqueous solution, since irregularities (pyramids) are formed using the plane orientation of the crystal of the substrate to be etched, the irregularities cannot be controlled.

【0011】また、多結晶基板の場合、その多様な面方
位によって単結晶におけるようなテクスチャ構造はほと
んど形成できない。
In the case of a polycrystalline substrate, a texture structure as in a single crystal can hardly be formed due to its various plane orientations.

【0012】本発明はこのような従来の問題に鑑みてな
されたものであり、太陽電池の表面電極の幅を小さくし
た場合でも十分な接合強度を有する電極の形成方法を提
供することを目的とする。
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a method for forming an electrode having a sufficient bonding strength even when the width of a surface electrode of a solar cell is reduced. I do.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る太陽電池の製造方法では、一導電型多
結晶シリコン基板の一主面側に他の導電型不純物を拡散
させて両主面側に電極を被着形成する太陽電池の製造方
法において、前記多結晶シリコン基板の一主面側もしく
は両主面側の前記電極の被着部にリアクティブイオンエ
ッチング法で微細な突起を多数形成して前記電極を被着
形成する。
In order to achieve the above object, a method for manufacturing a solar cell according to the present invention comprises diffusing impurities of another conductivity type into one principal surface of a polycrystalline silicon substrate of one conductivity type. In a method for manufacturing a solar cell in which electrodes are formed on both principal surfaces, fine projections are formed on one principal surface or on both principal surfaces of the polycrystalline silicon substrate by reactive ion etching. Are formed, and the electrodes are formed by deposition.

【0014】上記太陽電池の製造方法では、前記微細な
突起の幅と高さが2μm以下であることが望ましい。
In the method for manufacturing a solar cell, it is desirable that the width and height of the fine projections be 2 μm or less.

【0015】また、上記太陽電池の製造方法では、前記
微細な突起のアスペクト比が0.75〜2以下であるこ
とが望ましい。
In the method for manufacturing a solar cell, it is preferable that the aspect ratio of the fine projection is 0.75 to 2 or less.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づき詳細に説明する。図1は本発明に係る太陽電
池の製造方法で製造される太陽電池セルの構造を示す断
面図である。図1において1は多結晶シリコン基板、1
aは微細な突起、1bは受光面側不純物拡散層、1cは
裏面側不純物拡散層(BSF)、1dは表面反射防止
膜、1eは表面電極、1fは裏面電極である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing the structure of a solar cell manufactured by the method for manufacturing a solar cell according to the present invention. In FIG. 1, reference numeral 1 denotes a polycrystalline silicon substrate;
a is a fine protrusion, 1b is a light-receiving surface side impurity diffusion layer, 1c is a back surface side impurity diffusion layer (BSF), 1d is a surface antireflection film, 1e is a front surface electrode, and 1f is a back surface electrode.

【0017】前記多結晶シリコン基板1はp型またはn
型のいずれでも良い。この多結晶シリコン基板1は鋳造
法などによって形成される。多結晶シリコンは、大量生
産が可能で製造コスト面で単結晶シリコンよりもきわめ
て有利である。鋳造法などによって形成されたインゴッ
トを300μm程度の厚みにスライスして、10cm×
10cmもしくは15cm×15cm程度の大きさに切
断してシリコン基板となる。
The polycrystalline silicon substrate 1 is of p-type or n-type.
Any of the types may be used. This polycrystalline silicon substrate 1 is formed by a casting method or the like. Polycrystalline silicon can be mass-produced and is extremely advantageous over single crystal silicon in terms of manufacturing cost. An ingot formed by casting or the like is sliced to a thickness of about 300 μm,
It is cut into a size of about 10 cm or 15 cm × 15 cm to form a silicon substrate.

【0018】多結晶シリコン基板1の一主面側の少なく
とも電極1eの下部には、微細な突起1aを形成する。
この微細な突起1aは円錐形もしくはそれが連なったよ
うな形状を呈し、リアクティブイオンエッチング(RI
E)法によるガス濃度もしくはエッチング時間を制御す
ることにより、その大きさを変化させることができる。
この微細な突起1aの幅と高さはそれぞれ2μm以下に
形成される。この微細な突起1aをシリコン基板1の必
要部分全面にわたって均一且つ正確に制御性を持たせて
形成するためには、1μm以下が好適である。この微細
な突起1aのアスペクト比(突起1aの幅/高さ)は、
2以下であることが望ましい。このアスペクト比が2以
上の場合、製造過程で微細な突起1aが破損し、太陽電
池セルを形成した場合にリーク電流が大きくなって良好
な出力特性が得られない。また、このアスペクト比が
0.75未満の場合、従来品と同等の接合強度しか得ら
れない。
Fine projections 1a are formed at least on one principal surface side of the polycrystalline silicon substrate 1 below the electrodes 1e.
The fine projections 1a have a conical shape or a continuous shape, and are formed by reactive ion etching (RI).
The size can be changed by controlling the gas concentration or the etching time by the method E).
Each of the fine projections 1a is formed to have a width and a height of 2 μm or less. In order to form the fine projections 1a uniformly and accurately with controllability over the entire required portion of the silicon substrate 1, the thickness is preferably 1 μm or less. The aspect ratio (width / height of the projection 1a) of the fine projection 1a is
It is desirably 2 or less. If the aspect ratio is 2 or more, the fine projections 1a are damaged during the manufacturing process, and when a solar cell is formed, the leakage current becomes large and good output characteristics cannot be obtained. When the aspect ratio is less than 0.75, only the same bonding strength as that of the conventional product can be obtained.

【0019】リアクティブイオンエッチング法では、例
えば三フッ化メタン(CHF3 )を12.00sccm
程度、塩素(Cl2 )を72sccm程度、酸素
(O2 )を9sccm程度、および六フッ化硫黄(SF
2 )を65sccm程度流しながら、反応圧力50mT
orr程度、プラズマをかけるRFパワー500W程度
で、10秒〜15分間行う。
In the reactive ion etching method, for example, methane trifluoride (CHF 3 ) is added at 12.00 sccm.
About 72 sccm of chlorine (Cl 2 ), about 9 sccm of oxygen (O 2 ), and sulfur hexafluoride (SF).
2 ) While flowing about 65 sccm, the reaction pressure was 50 mT
This is performed for about 10 seconds to 15 minutes at about orr and RF power of about 500 W for applying plasma.

【0020】多結晶シリコン基板1の表面側には、逆導
電型半導体不純物が拡散された層1bが形成されてい
る。この逆導電型半導体不純物が拡散された層1bは、
多結晶シリコン基板1内に半導体接合部を形成するため
に設けるものであり、例えばn型の不純物を拡散させる
場合、POCl3 を用いた気相拡散法、P2 5 を用い
た塗布拡散法、およびP+ イオンを直接拡散させるイオ
ン打ち込み法などによって形成される。この逆導電型半
導体不純物を含有する層1は0.3〜0.5μm程度の
深さに形成される。
On the surface side of the polycrystalline silicon substrate 1, a layer 1b in which a semiconductor impurity of the opposite conductivity type is diffused is formed. The layer 1b in which the opposite conductivity type semiconductor impurity is diffused is
This is provided to form a semiconductor junction in the polycrystalline silicon substrate 1. For example, when an n-type impurity is diffused, a gas phase diffusion method using POCl 3 or a coating diffusion method using P 2 O 5 , And an ion implantation method for directly diffusing P + ions. The layer 1 containing the opposite conductivity type semiconductor impurity is formed at a depth of about 0.3 to 0.5 μm.

【0021】この多結晶シリコン基板1の一主面側に
は、反射防止膜1dが形成されている。この反射防止膜
1dは、多結晶シリコン基板1の表面で光が反射するの
を防止して、多結晶シリコン基板1内に光を有効に取り
込むために設ける。この反射防止膜は、多結晶シリコン
基板1との屈折率差などを考慮して、屈折率が2程度の
材料で構成され、厚み500〜2000Å程度の窒化シ
リコン膜や酸化シリコン(SiO2 )膜などで構成され
る。
On one main surface side of the polycrystalline silicon substrate 1, an antireflection film 1d is formed. This antireflection film 1d is provided to prevent light from being reflected on the surface of the polycrystalline silicon substrate 1 and to effectively take light into the polycrystalline silicon substrate 1. This antireflection film is made of a material having a refractive index of about 2 in consideration of a refractive index difference from the polycrystalline silicon substrate 1 and the like, and has a silicon nitride film or a silicon oxide (SiO 2 ) film having a thickness of about 500 to 2000 °. Etc.

【0022】多結晶シリコン基板1の他の主面側には、
一導電型半導体不純物が高濃度に拡散された層1cを形
成することが望ましい。この一導電型半導体不純物が高
濃度に拡散された層1cは、多結晶シリコン基板1の裏
面近くでキャリアの再結合による効率の低下を防ぐため
に、多結晶シリコン基板1の裏面側に内部電界を形成す
るものである。つまり、シリコン基板1の裏面近くで発
生したキャリアがこの電界によって加速される結果、電
力が有効に取り出されることとなり、特に長波長の光感
度が増大すると共に、高温における太陽電池特性の低下
を軽減できる。このように一導電型半導体不純物が高濃
度に拡散された層1cが形成された多結晶シリコン基板
1の裏面側のシート抵抗は、15Ω/□程度になる。
On the other main surface side of the polycrystalline silicon substrate 1,
It is desirable to form a layer 1c in which one-conductivity-type semiconductor impurity is diffused at a high concentration. The layer 1c in which the one-conductivity-type semiconductor impurity is diffused at a high concentration forms an internal electric field on the back surface side of the polycrystalline silicon substrate 1 in order to prevent a decrease in efficiency due to carrier recombination near the back surface of the polycrystalline silicon substrate 1. To form. In other words, carriers generated near the back surface of the silicon substrate 1 are accelerated by this electric field, so that power is effectively extracted, and in particular, photosensitivity at long wavelengths increases and deterioration of solar cell characteristics at high temperatures is reduced. it can. As described above, the sheet resistance on the back surface side of the polycrystalline silicon substrate 1 on which the layer 1c in which the one conductivity type semiconductor impurity is diffused at a high concentration is formed is about 15Ω / □.

【0023】多結晶シリコン基板1の一主面側には、表
面電極1eが形成されている。この表面電極1eは例え
ば、主にAg紛、バインダー、フリットなどからなるA
gペーストをスクリーン印刷して600〜800℃で1
〜30分間焼成し、その上に半田層を10〜40μm程
度の厚みに形成する。この表面電極1eは、例えば幅2
00μm程度に、またピッチ3mm程度に形成される多
数のフィンガー電極と、この多数のフィンガー電極を相
互に接続する2本のバスバー電極とで構成される。この
バスバー電極は幅2mm程度で厚み10μm程度に形成
される。
On one main surface of the polycrystalline silicon substrate 1, a surface electrode 1e is formed. The surface electrode 1e is made of, for example, A mainly composed of Ag powder, binder, frit, or the like.
g paste at 600-800 ° C by screen printing.
After baking for about 30 minutes, a solder layer is formed thereon to a thickness of about 10 to 40 μm. The surface electrode 1e has, for example, a width 2
It is composed of a large number of finger electrodes formed with a thickness of about 00 μm and a pitch of about 3 mm, and two bus bar electrodes interconnecting the large number of finger electrodes. This bus bar electrode is formed to have a width of about 2 mm and a thickness of about 10 μm.

【0024】上述のようにして形成した太陽電池の電極
に、図2に示すように、半田で被覆した銅箔を2mm×
2mm程度の面積で付着させて垂直方向に引っ張る引っ
張り試験を行って電極が剥がれるときの強度である引っ
張り強度を測った。RIE処理で3種類のアスペクト比
を有する突起を形成した。比較のために、単結晶シリコ
ン基板1の表面側にアルカリ水溶液でテクスチャ構造を
形成した基板も用意した。その結果を表1に示す。
As shown in FIG. 2, a copper foil coated with solder was applied to the solar cell electrode formed as described above by 2 mm.times.
A tensile test was performed in which the electrode was attached in an area of about 2 mm and pulled in the vertical direction, and the tensile strength, which is the strength when the electrode was peeled off, was measured. Projections having three different aspect ratios were formed by RIE. For comparison, a substrate in which a texture structure was formed on the surface side of the single crystal silicon substrate 1 with an alkaline aqueous solution was also prepared. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から分かるように、RIEにより形成
した基板1の表面側の微細な突起を有する太陽電池でア
スペクト比が大きい場合に、電極の引っ張り強度が向上
していることが認められた。
As can be seen from Table 1, it was confirmed that the tensile strength of the electrode was improved when the aspect ratio was large in a solar cell having fine projections on the surface side of the substrate 1 formed by RIE.

【0027】[0027]

【発明の効果】以上のように、本発明に係る太陽電池の
製造方法によれば、多結晶シリコン基板の一主面側もし
くは両主面側の電極の被着部にリアクティブイオンエッ
チング法で微細な突起を多数形成して電極を被着形成す
ることから、下地の単位当たり表面積が増加し、また、
接触角度が基板面に対し垂直により近くなることから、
電極の基板との密着強度が増加し、太陽電池製造の歩留
まり向上に寄与すると共に、製品の信頼性が向上する。
As described above, according to the method for manufacturing a solar cell according to the present invention, the reactive ion etching method is applied to the portion of the polycrystalline silicon substrate to which the electrode is to be attached on one main surface or both main surfaces. Since a large number of fine projections are formed and the electrodes are formed, the surface area per unit of the base increases, and
Because the contact angle is closer to the perpendicular to the board surface,
The adhesion strength between the electrode and the substrate is increased, which contributes to the improvement in the yield of solar cell production and the reliability of the product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池セルの一般的な構造を示
す図である。
FIG. 1 is a diagram showing a general structure of a solar cell according to the present invention.

【図2】本発明に係る太陽電池セルの電極強度を測定す
る方法を示す図である。
FIG. 2 is a diagram showing a method for measuring the electrode strength of a solar battery cell according to the present invention.

【符号の説明】[Explanation of symbols]

1……基板、1a……表面凹凸構造、1b……不純物拡
散層、1c……裏面拡散層、1d……反射防止膜、1e
……表面電極、1f……裏面電極、2a……表面電極、
2b……半田被覆付きの銅箔
DESCRIPTION OF SYMBOLS 1 ... Substrate, 1a ... Surface uneven structure, 1b ... Impurity diffusion layer, 1c ... Backside diffusion layer, 1d ... Antireflection film, 1e
... front electrode, 1f ... back electrode, 2a ... front electrode,
2b: Copper foil with solder coating

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F004 AA16 DA00 DA04 DA16 DA26 DB02 EA34 5F051 AA03 CB22 DA03 FA14 FA19 GA04 GA14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F004 AA16 DA00 DA04 DA16 DA26 DB02 EA34 5F051 AA03 CB22 DA03 FA14 FA19 GA04 GA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一導電型多結晶シリコン基板の一主面側
に他の導電型不純物を拡散させて両主面側に電極を被着
形成する太陽電池の製造方法において、前記多結晶シリ
コン基板の一主面側もしくは両主面側の前記電極の被着
部にリアクティブイオンエッチング法で微細な突起を多
数形成して前記電極を被着形成することを特徴とする太
陽電池の製造方法。
1. A method for manufacturing a solar cell, comprising: diffusing impurities of another conductivity type on one main surface of a polycrystalline silicon substrate of one conductivity type to form electrodes on both main surfaces. A method for manufacturing a solar cell, comprising: forming a large number of fine projections by reactive ion etching on a portion where one of said main surfaces or both main surfaces is to be attached to said electrode;
【請求項2】 前記微細な突起の幅と高さが2μm以下
であることを特徴とする請求項1に記載の太陽電池の製
造方法。
2. The method for manufacturing a solar cell according to claim 1, wherein the width and height of the fine projections are 2 μm or less.
【請求項3】 前記微細な突起のアスペクト比が0.7
5〜2であることを特徴とする請求項1または請求項2
に記載の太陽電池の製造方法。
3. The fine projections have an aspect ratio of 0.7.
3. The method according to claim 1, wherein the number is from 5 to 2.
3. The method for manufacturing a solar cell according to 1.
JP11143387A 1999-05-24 1999-05-24 Manufacture of solar battery Pending JP2000332279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11143387A JP2000332279A (en) 1999-05-24 1999-05-24 Manufacture of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11143387A JP2000332279A (en) 1999-05-24 1999-05-24 Manufacture of solar battery

Publications (1)

Publication Number Publication Date
JP2000332279A true JP2000332279A (en) 2000-11-30

Family

ID=15337594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11143387A Pending JP2000332279A (en) 1999-05-24 1999-05-24 Manufacture of solar battery

Country Status (1)

Country Link
JP (1) JP2000332279A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108884A (en) * 2003-09-26 2005-04-21 Kyocera Corp Process for producing solar cell element
WO2005117138A1 (en) * 2004-05-28 2005-12-08 Sharp Kabushiki Kaisha Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
JP2005353836A (en) * 2004-06-10 2005-12-22 Kyocera Corp Solar cell element and solar cell module using the same
JP2006286822A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Photovoltaic element and its fabrication process
CN101976703A (en) * 2010-07-28 2011-02-16 常州天合光能有限公司 Process of antireflection coating battery capable of reducing surface recombination
US8148194B2 (en) 2001-10-24 2012-04-03 Kyocera Corporation Solar cell, manufacturing method thereof and electrode material
US8178778B2 (en) 2005-03-24 2012-05-15 Kyocera Corporation Photovoltaic conversion element and manufacturing method therefor, and photovoltaic conversion module using same
US8455754B2 (en) 2006-10-27 2013-06-04 Kyocera Corporation Solar cell element manufacturing method and solar cell element
US8975506B2 (en) 2004-03-29 2015-03-10 Kyocera Corporation Solar cell module and photovoltaic power generator using the same
JP2023113779A (en) * 2021-09-14 2023-08-16 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar cell and photovoltaic module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148194B2 (en) 2001-10-24 2012-04-03 Kyocera Corporation Solar cell, manufacturing method thereof and electrode material
JP2005108884A (en) * 2003-09-26 2005-04-21 Kyocera Corp Process for producing solar cell element
JP4623952B2 (en) * 2003-09-26 2011-02-02 京セラ株式会社 Method for manufacturing solar cell element
US8975506B2 (en) 2004-03-29 2015-03-10 Kyocera Corporation Solar cell module and photovoltaic power generator using the same
WO2005117138A1 (en) * 2004-05-28 2005-12-08 Sharp Kabushiki Kaisha Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
JPWO2005117138A1 (en) * 2004-05-28 2008-04-03 シャープ株式会社 Semiconductor substrate for solar cell, method for producing the same, and solar cell
JP2005353836A (en) * 2004-06-10 2005-12-22 Kyocera Corp Solar cell element and solar cell module using the same
US8178778B2 (en) 2005-03-24 2012-05-15 Kyocera Corporation Photovoltaic conversion element and manufacturing method therefor, and photovoltaic conversion module using same
JP2006286822A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Photovoltaic element and its fabrication process
US8455754B2 (en) 2006-10-27 2013-06-04 Kyocera Corporation Solar cell element manufacturing method and solar cell element
CN101976703A (en) * 2010-07-28 2011-02-16 常州天合光能有限公司 Process of antireflection coating battery capable of reducing surface recombination
JP2023113779A (en) * 2021-09-14 2023-08-16 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar cell and photovoltaic module
JP7368653B2 (en) 2021-09-14 2023-10-24 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar cells and photovoltaic modules

Similar Documents

Publication Publication Date Title
JP3672436B2 (en) Method for manufacturing solar battery cell
EP2387079A2 (en) Solar cell with metal grid
JPH0795602B2 (en) Solar cell and manufacturing method thereof
JP2010123859A (en) Solar battery element and production process of solar battery element
JP2010147324A (en) Solar cell element and method of manufacturing solar cell element
JP2000332279A (en) Manufacture of solar battery
JPWO2015118935A1 (en) Photoelectric conversion element and solar cell module including the same
CN111987184A (en) Laminated battery structure and preparation process thereof
JP3377931B2 (en) Solar cell element
JP5323827B2 (en) Photovoltaic device and manufacturing method thereof
JP4339990B2 (en) Surface roughening method of silicon substrate
JPH1140832A (en) Thin-film solar cell and manufacture therefor
JP2009302345A (en) Solar-cell manufacturing method and solar-cell module manufacturing method
JPH11214725A (en) Manufacture of photoelectric conversion device
US11575053B2 (en) Photovoltaic device and solar cell module including same
JP2003273382A (en) Solar cell element
CN115207169B (en) P-type IBC solar cell, preparation method thereof, cell assembly and photovoltaic system
JP2007142471A (en) Method for manufacturing solar cell
JP2015133341A (en) Back-junction solar cell and method of manufacturing the same
TW201039450A (en) Solar cell with backside passivation
JPH11307792A (en) Solar cell element
JP5452755B2 (en) Method for manufacturing photovoltaic device
JP2007266649A (en) Method of manufacturing solar cell element
JP2002164555A (en) Solar battery and forming method
CN111769175B (en) PERC single crystalline silicon solar cell and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026