JP2009302345A - Solar-cell manufacturing method and solar-cell module manufacturing method - Google Patents

Solar-cell manufacturing method and solar-cell module manufacturing method Download PDF

Info

Publication number
JP2009302345A
JP2009302345A JP2008156011A JP2008156011A JP2009302345A JP 2009302345 A JP2009302345 A JP 2009302345A JP 2008156011 A JP2008156011 A JP 2008156011A JP 2008156011 A JP2008156011 A JP 2008156011A JP 2009302345 A JP2009302345 A JP 2009302345A
Authority
JP
Japan
Prior art keywords
manufacturing
electrode
solar
silicon substrate
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008156011A
Other languages
Japanese (ja)
Other versions
JP4954147B2 (en
Inventor
Michiaki Takenaka
通暁 武中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008156011A priority Critical patent/JP4954147B2/en
Publication of JP2009302345A publication Critical patent/JP2009302345A/en
Application granted granted Critical
Publication of JP4954147B2 publication Critical patent/JP4954147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a solar-cell manufacturing method for stably manufacturing a solar cell high in photoelectric conversion efficiency by reducing contact resistance by suppressing variations between individual solar cells while ensuring proper electrode strength (adhesive strength between an electrode and a substrate), and a solar-cell module manufacturing method using the same. <P>SOLUTION: The solar-cell manufacturing method is a method for manufacturing a solar cell in which electrodes are provided on one-face side of a silicon substrate. The method includes a first step for forming the electrodes, made of a material including silver on the one-face side of the silicon substrate, a second step for depositing a reducing agent on the electrodes in order to reduce silver, and a third step for immersing the silicon substrate into a solution including an acid while the reducing agent is being deposited on the electrodes. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池セルの製造方法および太陽電池モジュールの製造方法に関し、特に、単結晶シリコン基板または多結晶シリコン基板を用いた太陽電池セルの製造方法および太陽電池モジュールの製造方法に関するものである。   The present invention relates to a method for manufacturing a solar cell and a method for manufacturing a solar cell module, and more particularly to a method for manufacturing a solar cell using a single crystal silicon substrate or a polycrystalline silicon substrate and a method for manufacturing a solar cell module. .

結晶系太陽電池セルは、少なくとも、太陽光の光エネルギーを電気エネルギーに変換するPN接合が形成された基板と、この基板で変換された電気エネルギーを外部へ出力する集電電極とを有する。また、集電電極の電極材料としては、導電性ペーストが広く用いられている。この集電電極と基板との間の接触抵抗は、光電変換効率が比例する曲線因子(フィルファクター:F.F)を低下させ、光電変換効率低下の要因となる。   The crystalline solar battery cell has at least a substrate on which a PN junction that converts light energy of sunlight into electric energy is formed, and a collecting electrode that outputs the electric energy converted by the substrate to the outside. In addition, conductive paste is widely used as an electrode material for the current collecting electrode. The contact resistance between the current collecting electrode and the substrate lowers the fill factor (FF) in which the photoelectric conversion efficiency is proportional, and causes a decrease in the photoelectric conversion efficiency.

この問題を解決するために、一般に弗酸(以下、HFと称する)などの酸への酸浸漬処理により接触抵抗を低減させている。しかし、この酸浸漬による接触抵抗低減方法には、接触抵抗の低減幅のばらつきが大きく、また、酸浸漬処理の条件によっては電極が剥離しやすくなるという問題点がある。そこで、かかる課題を解決する従来技術として、電極内部への酸の浸透を促すために、水等の親水性溶媒で基板を濡らして、接触抵抗の低減効率を改善した上で、酸浸漬時間を短くし、電極と基板との密着力(以下、電極強度と称する)を確保する方法がある(たとえば、特許文献1参照)。   In order to solve this problem, contact resistance is generally reduced by an acid immersion treatment in an acid such as hydrofluoric acid (hereinafter referred to as HF). However, this method for reducing contact resistance by acid immersion has a problem that the variation in the reduction range of the contact resistance is large, and the electrode is easily peeled depending on the conditions of the acid immersion treatment. Therefore, as a conventional technique for solving such a problem, in order to promote the penetration of the acid into the electrode, the substrate is wetted with a hydrophilic solvent such as water to improve the contact resistance reduction efficiency, and the acid immersion time is increased. There is a method of shortening and ensuring the adhesion force between the electrode and the substrate (hereinafter referred to as electrode strength) (see, for example, Patent Document 1).

特開2006−324519号公報JP 2006-324519 A

しかしながら、上記特許文献1で示された方法では、親水性触媒の電極内部への浸透状況、あるいは酸液槽への親水性溶媒の持ち込みによる酸濃度の低下により、接触抵抗値のばらつきが十分に小さくならないという問題があった。   However, in the method shown in Patent Document 1, the contact resistance value varies sufficiently due to the state of penetration of the hydrophilic catalyst into the electrode or the decrease in acid concentration due to the introduction of the hydrophilic solvent into the acid bath. There was a problem of not getting smaller.

本発明は、上記に鑑みてなされたものであって、適正な電極強度(電極と基板との密着力)を確保するとともに、太陽電池セル個体間のばらつきを抑制して接触抵抗を低減し、高い光電変換効率の太陽電池セルを安定的に製造できる太陽電池セルの製造方法、およびこの太陽電池セルの製造方法を用いた太陽電池モジュールの製造方法を得ることを目的とする。   The present invention has been made in view of the above, and while ensuring an appropriate electrode strength (adhesion force between the electrode and the substrate), suppressing variation between individual solar cells, reducing contact resistance, It aims at obtaining the manufacturing method of the photovoltaic cell which can manufacture the photovoltaic cell of high photoelectric conversion efficiency stably, and the manufacturing method of a solar cell module using this manufacturing method of a photovoltaic cell.

上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池セルの製造方法は、シリコン基板の一面側に電極を有する太陽電池セルの製造方法であって、前記シリコン基板の一面側に銀を含む材料からなる前記電極を形成する第1工程と、前記電極に対して銀を還元させる還元剤を付着させる第2工程と、前記還元剤が付着した状態で酸を含む溶液に前記シリコン基板を浸漬させる第3工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a method for manufacturing a solar cell according to the present invention is a method for manufacturing a solar cell having an electrode on one surface side of a silicon substrate, A first step of forming the electrode made of a material containing silver on the side, a second step of attaching a reducing agent for reducing silver to the electrode, and a solution containing an acid with the reducing agent attached And a third step of immersing the silicon substrate.

この発明によれば、太陽電池セルの電極強度(電極と基板との密着力)を確保しつつ、略均一な幅で接触抵抗を十分に低減させて、高い光電変換効率の太陽電池セルを安定的に製造することができる、という効果を奏する。   According to the present invention, while ensuring the electrode strength of the solar cell (adhesion between the electrode and the substrate), the contact resistance is sufficiently reduced with a substantially uniform width, and the solar cell with high photoelectric conversion efficiency is stabilized. The effect that it can manufacture automatically is produced.

以下に、本発明にかかる太陽電池セルの製造方法および太陽電池モジュールの製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。   EMBODIMENT OF THE INVENTION Below, embodiment of the manufacturing method of the photovoltaic cell concerning this invention and the manufacturing method of a solar cell module is described in detail based on drawing. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.

実施の形態.
図1−1〜図1−3は、本発明の実施の形態にかかる太陽電池セル1の構成を説明するための図であり、図1−1は受光面側から見た太陽電池セル1の上面図、図1−2は受光面と反対側から見た太陽電池セル1の下面図であり、図1−3は図1−2の線分A−Aにおける断面模式図である。また、本発明の実施の形態にかかる太陽電池モジュール(図示せず)は、複数の太陽電池セル1が電気的に直接接続された構成を有する。
Embodiment.
FIGS. 1-1 to 1-3 are diagrams for explaining the configuration of the solar battery cell 1 according to the embodiment of the present invention. FIG. 1-1 shows the solar battery cell 1 viewed from the light receiving surface side. 1-2 is a bottom view of the solar battery cell 1 viewed from the side opposite to the light receiving surface, and FIG. 1-3 is a schematic sectional view taken along line AA in FIG. Moreover, the solar cell module (not shown) concerning embodiment of this invention has the structure by which the several photovoltaic cell 1 was electrically connected directly.

本実施の形態にかかる太陽電池セル1においては、P型多結晶シリコンからなる半導体基板2の受光面側にリン拡散によって不純物拡散層3が形成されているとともにシリコン窒化膜よりなる反射防止膜4が形成されている。半導体基板2としてはP型の単結晶もしくは多結晶のシリコン基板を用いている。なお、基板はこれに限定されるものではなく、n型のシリコン基板を用いてもよい。また、太陽電池セル1の半導体基板2の受光面側の表面には、テクスチャー構造として微小凹凸が形成されている。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。   In solar cell 1 according to the present embodiment, impurity diffusion layer 3 is formed by phosphorous diffusion on the light receiving surface side of semiconductor substrate 2 made of P-type polycrystalline silicon, and antireflection film 4 made of a silicon nitride film. Is formed. As the semiconductor substrate 2, a P-type single crystal or polycrystalline silicon substrate is used. Note that the substrate is not limited to this, and an n-type silicon substrate may be used. In addition, fine unevenness is formed as a texture structure on the light receiving surface side surface of the semiconductor substrate 2 of the solar battery cell 1. The micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light.

また、半導体基板2の受光面側には、長尺細長のグリッド電極5が複数並べて設けられ、このグリッド電極5と導通するバス電極6が該グリッド電極5と略直交するように設けられており、それぞれ底面部において不純物拡散層3に電気的に接続している。グリッド電極5およびバス電極6は銀材料により構成されている。一方、半導体基板2の裏面(受光面と反対側の面)には、全体にわたってアルミニウム材料からなる裏面電極7が設けられ、またバス電極6と略同一方向に銀材料からなる裏面集電電極8が設けられている。   A plurality of elongated grid electrodes 5 are provided side by side on the light receiving surface side of the semiconductor substrate 2, and bus electrodes 6 that are electrically connected to the grid electrodes 5 are provided so as to be substantially orthogonal to the grid electrodes 5. These are electrically connected to the impurity diffusion layer 3 at the bottom portions. The grid electrode 5 and the bus electrode 6 are made of a silver material. On the other hand, a back electrode 7 made of an aluminum material is provided on the entire back surface (surface opposite to the light receiving surface) of the semiconductor substrate 2, and a back current collecting electrode 8 made of a silver material in substantially the same direction as the bus electrode 6. Is provided.

上述した本実施の形態にかかる太陽電池セル1においては、電極強度(電極と基板との密着力)を確保しつつ、電極と基板との間の接触抵抗が十分に低減され、また太陽電池セル1個体毎の接触抵抗のばらつきが低減され、太陽電池セル1個体毎の出力電圧のばらつきが低減された安定した高い光電変換効率を有する太陽電池セルが実現されている。また、本発明の実施の形態にかかる太陽電池モジュールにおいては、電極と基板との間の接触抵抗に起因した太陽電池セル1個体毎の出力電圧のばらつきが低減され、高い光電変換効率を有する太陽電池セルが実現されている。   In the solar cell 1 according to the above-described embodiment, the contact resistance between the electrode and the substrate is sufficiently reduced while ensuring the electrode strength (adhesion between the electrode and the substrate), and the solar cell. A variation in contact resistance for each individual cell is reduced, and a solar cell having a stable and high photoelectric conversion efficiency in which variation in output voltage for each individual solar cell is reduced is realized. Further, in the solar cell module according to the embodiment of the present invention, the variation in output voltage for each individual solar cell due to the contact resistance between the electrode and the substrate is reduced, and the solar cell having high photoelectric conversion efficiency. A battery cell is realized.

シリコン太陽電池セルの集電電極材料には、通常、銀ペーストが用いられ、例えば、鉛ボロンガラスが添加されている。このガラスはフリット状のもので、例えば、鉛(Pb)5〜30wt%、ボロン(B)5〜10wt%、シリコン(Si)5〜15wt%、酸素(O)30〜60wt%の組成から成り、さらに、亜鉛(Zn)やカドミウム(Cd)なども数wt%程度混合される場合もある。このような鉛ボロンガラスは、数百℃(例えば、800℃)の加熱で溶解し、その際にシリコンを侵食する性質を有している。また一般に、結晶系シリコン太陽電池セルの製造方法においては、このガラスフリットの特性を利用して、シリコン基板と銀ペーストとの電気的接触を得る方法が用いられている。   A silver paste is usually used as a collecting electrode material for silicon solar cells, and for example, lead boron glass is added. This glass is frit-like, and is composed of, for example, lead (Pb) 5-30 wt%, boron (B) 5-10 wt%, silicon (Si) 5-15 wt%, and oxygen (O) 30-60 wt%. Furthermore, zinc (Zn), cadmium (Cd), etc. may be mixed by several wt%. Such lead boron glass has a property of being melted by heating at several hundred degrees C. (for example, 800.degree. C.) and eroding silicon at that time. In general, in a method for manufacturing a crystalline silicon solar battery cell, a method of obtaining electrical contact between a silicon substrate and a silver paste by using the characteristics of the glass frit is used.

以下、多結晶シリコン太陽電池セルである本実施の形態にかかる太陽電池セル1の製造方法について図面に沿って説明する。図2は、本発明の実施の形態にかかる太陽電池セルの製造方法の基本的な工程を説明するためのフローチャートである。   Hereinafter, the manufacturing method of the photovoltaic cell 1 concerning this Embodiment which is a polycrystalline silicon photovoltaic cell is demonstrated along drawing. FIG. 2 is a flowchart for explaining the basic steps of the method for manufacturing a solar battery cell according to the embodiment of the present invention.

まず、半導体基板2として例えばP型多結晶シリコン基板を用意し、該P型多結晶シリコン基板をフッ化水素や純水で洗浄する。その後、このP型多結晶シリコン基板に対して、該P型多結晶シリコン基板の表面に微小凹凸を形成して表面にテクスチャー構造を形成する(ステップS10)。テクスチャー形成としては、例えばP型多結晶シリコン基板を、水酸化ナトリウム水溶液等のアルカリ水溶液によるエッチングを行う。   First, for example, a P-type polycrystalline silicon substrate is prepared as the semiconductor substrate 2, and the P-type polycrystalline silicon substrate is washed with hydrogen fluoride or pure water. Thereafter, with respect to the P-type polycrystalline silicon substrate, fine irregularities are formed on the surface of the P-type polycrystalline silicon substrate to form a texture structure on the surface (step S10). As texture formation, for example, a P-type polycrystalline silicon substrate is etched with an alkaline aqueous solution such as a sodium hydroxide aqueous solution.

つぎに、表面にテクスチャー構造を形成したP型多結晶シリコン基板に対して、熱拡散によりオキシ塩化リン(POCl)を拡散させる(ステップS20)。この拡散工程では、P型多結晶シリコン基板を例えばオキシ塩化リン(POCl)ガス中で気相拡散法により高温で熱拡散させてP型多結晶シリコン基板の表面層にn型層を形成することでPN接合を形成する。 Next, phosphorus oxychloride (POCl 3 ) is diffused by thermal diffusion on the P-type polycrystalline silicon substrate having a textured structure formed on the surface (step S20). In this diffusion step, the P-type polycrystalline silicon substrate is thermally diffused at a high temperature in a phosphorus oxychloride (POCl 3 ) gas, for example, by a vapor phase diffusion method to form an n-type layer on the surface layer of the P-type polycrystalline silicon substrate. Thus, a PN junction is formed.

拡散工程後、光電変換効率改善のために、P型多結晶シリコン基板の受光面側の一面に反射防止膜4を形成する(ステップS30)。反射防止膜4の形成には、例えばプラズマCVD法を使用し、シランとアンモニアの混合ガスを用いて反射防止膜4として窒化シリコン膜を形成する。   After the diffusion step, the antireflection film 4 is formed on one surface of the P-type polycrystalline silicon substrate on the light receiving surface side in order to improve the photoelectric conversion efficiency (step S30). For the formation of the antireflection film 4, for example, a plasma CVD method is used, and a silicon nitride film is formed as the antireflection film 4 using a mixed gas of silane and ammonia.

ついで、スクリーン印刷により電極を形成する。まず、P型多結晶シリコン基板の裏面側に、裏面電極7の形状にスクリーン印刷によってアルミニウムペーストを塗布し、裏面集電電極8の形状に銀ペーストを塗布し、乾燥させる(ステップS40)。つぎに、P型多結晶シリコン基板の受光面にスクリーン印刷によってグリッド電極5とバス電極6との形状に銀ペーストを塗布した後、銀ペーストを乾燥させる(ステップS50)。その後、ペーストを焼成することで(ステップS60)、グリッド電極5、バス電極6、裏面電極7、裏面集電電極8が得られる。   Next, electrodes are formed by screen printing. First, an aluminum paste is applied to the shape of the back electrode 7 by screen printing on the back side of the P-type polycrystalline silicon substrate, and a silver paste is applied to the shape of the back current collecting electrode 8 and dried (step S40). Next, after applying a silver paste in the shape of the grid electrode 5 and the bus electrode 6 by screen printing on the light receiving surface of the P-type polycrystalline silicon substrate, the silver paste is dried (step S50). Thereafter, the paste is fired (step S60), whereby the grid electrode 5, the bus electrode 6, the back electrode 7, and the back collecting electrode 8 are obtained.

ここで、集電電極(グリッド電極5、バス電極6)の材料である銀ペーストには、鉛ボロンガラスが添加されている。このガラスはフリット状のもので、例えば、鉛(Pb)5〜30wt%、ボロン(B)5〜10wt%、シリコン(Si)5〜15wt%、酸素(O)30〜60wt%の組成から成るものである。また、さらに亜鉛(Zn)やカドミウム(Cd)なども数wt%程度混合されてもよい。このようなガラスフリットを用いて、酸浸漬処理をすることで接触抵抗を低下させることができる。   Here, lead boron glass is added to the silver paste which is the material of the current collecting electrodes (grid electrode 5, bus electrode 6). This glass has a frit shape and is composed of, for example, lead (Pb) 5-30 wt%, boron (B) 5-10 wt%, silicon (Si) 5-15 wt%, and oxygen (O) 30-60 wt%. Is. Furthermore, zinc (Zn), cadmium (Cd), etc. may be mixed in about several wt%. Using such a glass frit, the contact resistance can be lowered by acid dipping treatment.

つぎに、集電電極のP型多結晶シリコン基板の面内方向におけるグリッド電極5の表面と、バス電極6の外周縁部における表面とに、後述する酸浸漬処理において銀のデンドライト成長を促進させるために、銀に対する還元剤11であるシリカを含むガラスペーストを付着させる(ステップS70)。ここでは、P型多結晶シリコン基板の面内方向におけるグリッド電極5の全面と、バス電極6の端部、すなわちP型多結晶シリコン基板の面内方向におけるバス電極6の外周縁部と、に後述する酸浸漬処理において銀のデンドライト成長を促進させるために、銀に対する還元剤11であるシリカを含むガラスペーストを付着させる(ステップS70)。ガラスペーストは、スクリーン印刷法、写真製版法、インクジェット印刷法などの手法を用いることにより、P型多結晶シリコン基板の面内方向におけるグリッド電極5の全面と、P型多結晶シリコン基板の面内方向におけるバス電極6の外周縁部とに選択的に付着させることができる。図3に、還元剤11をグリッド電極5の全面とバス電極6の端部に付着させた状態の平面図を示す。   Next, the surface of the grid electrode 5 in the in-plane direction of the P-type polycrystalline silicon substrate of the current collecting electrode and the surface of the outer peripheral edge of the bus electrode 6 are promoted to grow silver dendrite in an acid dipping process described later. Therefore, the glass paste containing the silica which is the reducing agent 11 with respect to silver is made to adhere (step S70). Here, the entire surface of the grid electrode 5 in the in-plane direction of the P-type polycrystalline silicon substrate and the end portion of the bus electrode 6, that is, the outer peripheral edge portion of the bus electrode 6 in the in-plane direction of the P-type polycrystalline silicon substrate. In order to promote silver dendrite growth in an acid dipping process described later, a glass paste containing silica as a reducing agent 11 for silver is attached (step S70). The glass paste is obtained by using a screen printing method, a photoengraving method, an ink jet printing method, or the like so that the entire surface of the grid electrode 5 in the in-plane direction of the P-type polycrystalline silicon substrate and the in-plane of the P-type polycrystalline silicon substrate are used. It can be selectively attached to the outer peripheral edge of the bus electrode 6 in the direction. FIG. 3 is a plan view showing a state in which the reducing agent 11 is attached to the entire surface of the grid electrode 5 and the end portion of the bus electrode 6.

太陽電池セルの製造において、一般に行われる、弗酸(HF)浸漬による接触抵抗の低減は、集電電極のガラス層(SiO)とHFとの反応により生成した電子が、集電電極のガラス層に溶け込んでいた銀を還元することや、表面の酸化銀を還元することにより、銀をデンドライト成長させてシリコン基板と集電電極の間に、新たな電流経路を作ることで実現していると考えられる。 In the manufacture of solar cells, the contact resistance is generally reduced by immersion in hydrofluoric acid (HF). Electrons generated by the reaction between the glass layer (SiO 2 ) of the collector electrode and HF are converted into the glass of the collector electrode. This is achieved by reducing the silver dissolved in the layer and reducing the surface silver oxide to make a new current path between the silicon substrate and the collector electrode by growing silver dendrites. it is conceivable that.

しかしながら、デンドライト成長を促進させるために、HF濃度を高濃度化、あるいは、HF浸漬時間を長時間化すると、集電電極とシリコン基板とを機械的に結合させているガラス層の溶解が過剰に進み、電極強度が低下するという問題がある。また、上記の特許文献1のように、太陽電池セルに親水性水溶液を付着させて、乾燥前に酸浸漬を行うと、水溶液の酸液槽への持ち込みにより酸濃度が変化し、接触抵抗の低減幅のばらつきを十分に抑制することができないという問題がある。   However, if the HF concentration is increased or the HF immersion time is increased in order to promote dendrite growth, the glass layer that mechanically bonds the collector electrode and the silicon substrate is excessively dissolved. There is a problem that the electrode strength is reduced. Further, as in Patent Document 1 described above, when a hydrophilic aqueous solution is attached to a solar battery cell and acid immersion is performed before drying, the acid concentration changes due to the aqueous solution being brought into the acid bath, and the contact resistance is reduced. There is a problem that variation in the reduction width cannot be sufficiently suppressed.

そこで、本実施の形態においては、集電電極のグリッド電極5の全面とバス電極6の端部に、酸浸漬処理において銀のデンドライト成長を促進させるために、銀に対する還元剤であるシリカを含むガラスペーストを付着させる。このように還元剤を付着させることにより、後工程である酸浸漬時において電子を集電電極付近で大量に生成することができる。これにより、より効率良く銀を還元してデンドライト成長させて集電電極とシリコン基板との間に新たな電流経路を形成して、接触抵抗を大幅に低下させることができる。   Therefore, in the present embodiment, the entire surface of the grid electrode 5 of the collecting electrode and the end of the bus electrode 6 contain silica as a reducing agent for silver in order to promote silver dendrite growth in the acid immersion treatment. Adhere glass paste. By attaching the reducing agent in this way, a large amount of electrons can be generated in the vicinity of the collecting electrode during the acid soaking that is a subsequent step. As a result, silver can be reduced more efficiently and dendrite grown to form a new current path between the current collecting electrode and the silicon substrate, and the contact resistance can be greatly reduced.

また、還元剤を付着させることにより電子を集電電極付近で過剰に生成することができる。これにより、銀のデンドライト成長を目的として多くの電子を得る目的で酸(HF)濃度を高濃度化、あるいは、酸(HF)浸漬時間を長時間化する必要が無いため、これらに起因して集電電極とシリコン基板とを機械的に結合させているガラス層の溶解が過剰に溶解することが無く、電極強度が低下することが無い。したがって、酸(HF)浸漬に起因した集電電極の剥離による不良品の発生が防止され、無駄な原材料を削減可能であり、歩留まりが向上する。また、酸(HF)浸漬処理時における酸濃度の変化がないため、酸(HF)浸漬処理時における酸濃度の変化に起因した接触抵抗の低減幅のばらつきが発生しない。   Further, by attaching a reducing agent, electrons can be generated excessively in the vicinity of the collecting electrode. As a result, it is not necessary to increase the concentration of acid (HF) or increase the immersion time of acid (HF) for the purpose of obtaining many electrons for the purpose of silver dendrite growth. There is no excessive dissolution of the glass layer that mechanically bonds the collector electrode and the silicon substrate, and the electrode strength does not decrease. Accordingly, generation of defective products due to peeling of the collecting electrode due to acid (HF) immersion is prevented, wasteful raw materials can be reduced, and yield is improved. Further, since there is no change in the acid concentration during the acid (HF) immersion treatment, there is no variation in the contact resistance reduction width due to the change in the acid concentration during the acid (HF) immersion treatment.

また、還元剤を付着させることにより、銀のデンドライト成長が十分に促進されるため、太陽電池セル1個体毎の接触抵抗値のばらつきも抑制することができる。このような還元剤11は、例えばグルコースを含む材料でも良い。これらの材料は、取り扱いが容易であり、スクリーン印刷法、写真製版法、インクジェット印刷法などの手法により集電電極へ付着させやすいという特徴がある。   Moreover, since the dendrite growth of silver is sufficiently promoted by attaching the reducing agent, it is possible to suppress variation in the contact resistance value for each individual solar battery cell. Such a reducing agent 11 may be a material containing glucose, for example. These materials are easy to handle and are characterized by being easily attached to the current collecting electrode by techniques such as screen printing, photolithography, and ink jet printing.

また、還元剤を太陽電池セル全面に付着させてしまうと、後述するHF浸漬後もバス電極6上に還元剤が残留する。この場合、太陽電池モジュールの製造時に複数の太陽電池セル1を結線して半田付けを行う工程において、配線材料と集電電極界面に絶縁物が存在することにより接触抵抗が大きくなり、太陽電池モジュールの電気特性が低下する。そこで、図3に示すように、バス電極6に対してはP型多結晶シリコン基板の面内方向における外周縁部にのみ選択的に還元剤を付着させる必要がある。なお、グリッド電極5の側壁およびバス電極6の側壁に還元剤が付着してもよい。本実施の形態では、選択的に還元剤を付着できるスクリーン印刷法により還元剤を付着させる。これにより、バス電極6上に残留した還元剤に起因した太陽電池モジュールの電気特性の低下を防止することができる。なお、還元剤の付着方法としては、写真製版法やインクジェット印刷法でも良い。   If the reducing agent is attached to the entire surface of the solar battery cell, the reducing agent remains on the bus electrode 6 even after HF immersion described later. In this case, in the step of connecting and soldering a plurality of solar cells 1 at the time of manufacturing the solar cell module, the contact resistance increases due to the presence of an insulator at the interface between the wiring material and the collector electrode, and the solar cell module The electrical characteristics of Therefore, as shown in FIG. 3, it is necessary to selectively attach the reducing agent to the bus electrode 6 only at the outer peripheral edge portion in the in-plane direction of the P-type polycrystalline silicon substrate. A reducing agent may adhere to the side walls of the grid electrode 5 and the bus electrode 6. In this embodiment, the reducing agent is attached by a screen printing method that can selectively attach the reducing agent. Thereby, the fall of the electrical property of the solar cell module resulting from the reducing agent remaining on the bus electrode 6 can be prevented. As a method for attaching the reducing agent, a photolithography method or an ink jet printing method may be used.

その後、銀のデンドライト成長が十分に促進するために酸浸漬処理としてHFへの浸漬処理を行い(ステップS80)、乾燥させることで太陽電池セル1が完成する。なお、上記においては、本実施の形態にかかる太陽電池セルの製造方法を受光面側の集電電極に適用した場合について説明したが、裏面集電電極8について適用しても良い。また、上記の工程において、裏面側電極(裏面電極7、裏面集電電極8)と受光面側集電電極(グリッド電極5、バス電極6)との印刷・乾燥の順番を変えても何ら問題は無い。   Then, in order to fully accelerate the dendrite growth of silver, an immersion treatment in HF is performed as an acid immersion treatment (step S80), and the solar battery cell 1 is completed by drying. In addition, in the above, although the case where the manufacturing method of the photovoltaic cell concerning this Embodiment was applied to the current collection electrode on the light-receiving surface side was demonstrated, you may apply to the back surface current collection electrode 8. FIG. In the above process, there is no problem even if the order of printing / drying between the back side electrode (back side electrode 7, back side current collecting electrode 8) and the light receiving side side current collecting electrode (grid electrode 5, bus electrode 6) is changed. There is no.

また、上記のようにして作製された本実施の形態にかかる複数の太陽電池セル1を電気的に結線し、モジュール化することで太陽電池モジュールを作製することができる。   Moreover, a solar cell module can be produced by electrically connecting a plurality of solar cells 1 according to the present embodiment produced as described above into a module.

図4は、接触抵抗低減のためにHF浸漬のみを実施する従来の太陽電池セルの製造方法と、上述した本実施の形態にかかる太陽電池セルの製造方法とにおける、HF浸漬時間と接触抵抗低下率との相関関係を示す特性図である。HF浸漬には、水:HF=100:1で調製したHF水溶液を使用している。図4から分かるように、従来の太陽電池セルの製造方法におけるHF浸漬処理では、接触抵抗を6割程度低下させるためには、30秒のHF浸漬時間が必要であるが、本実施の形態にかかる太陽電池セルの製造方法の場合は、5秒で接触抵抗を7割低下させることが可能である。したがって、本実施の形態にかかる太陽電池セルの製造方法では、短時間のHF浸漬処理で接触抵抗値を大幅に低下させることができる。   FIG. 4 shows a decrease in HF immersion time and contact resistance in a conventional method for manufacturing a solar cell in which only HF immersion is performed to reduce contact resistance, and in the method for manufacturing a solar cell according to the above-described embodiment. It is a characteristic view which shows the correlation with a rate. For HF immersion, an HF aqueous solution prepared with water: HF = 100: 1 is used. As can be seen from FIG. 4, the HF immersion treatment in the conventional method for manufacturing a solar cell requires 30 seconds of HF immersion time to reduce the contact resistance by about 60%. In the case of such a method for manufacturing a solar battery cell, the contact resistance can be reduced by 70% in 5 seconds. Therefore, in the method for manufacturing a solar battery cell according to the present embodiment, the contact resistance value can be greatly reduced by a short HF immersion treatment.

また、図5は、接触抵抗低減のためにHF浸漬のみを実施する従来の太陽電池セルの製造方法と、上述した本実施の形態にかかる太陽電池セルの製造方法とにおける、HF浸漬時間と電極強度低下率との相関関係を示す特性図である。HF浸漬には、水:HF=100:1で調製したHF水溶液を使用している。図5から分かるように、従来の太陽電池セルの製造方法におけるHF浸漬処理では30秒のHF浸漬処理を行うと電極強度が6割程度低下するのに対して、本実施の形態にかかる太陽電池セルの製造方法の場合は30秒のHF浸漬処理を行っても、電極強度の低下を2割程度に抑制することが可能である。したがって、本実施の形態にかかる太陽電池セルの製造方法では、HF浸漬処理における電極強度の低下を低く抑制することができる。   Further, FIG. 5 shows HF immersion time and electrodes in a conventional solar cell manufacturing method in which only HF immersion is performed for reducing contact resistance and the above-described solar cell manufacturing method according to the present embodiment. It is a characteristic view which shows correlation with an intensity | strength decreasing rate. For HF immersion, an HF aqueous solution prepared with water: HF = 100: 1 is used. As can be seen from FIG. 5, in the HF immersion treatment in the conventional solar cell manufacturing method, the electrode strength decreases by about 60% when the HF immersion treatment for 30 seconds is performed, whereas the solar cell according to the present embodiment In the case of the cell manufacturing method, even if the HF immersion treatment for 30 seconds is performed, it is possible to suppress the decrease in electrode strength to about 20%. Therefore, in the manufacturing method of the photovoltaic cell concerning this Embodiment, the fall of the electrode intensity | strength in HF immersion treatment can be suppressed low.

これらのことより、本実施の形態にかかる太陽電池セルの製造方法を適用することにより、HF浸漬処理による接触抵抗の大幅な低減を図るとともに、高い電極強度を保つことが可能になる。   For these reasons, by applying the method for manufacturing a solar battery cell according to the present embodiment, it is possible to significantly reduce the contact resistance by HF immersion treatment and to maintain high electrode strength.

また、図6は、接触抵抗低減のためにHF浸漬のみを実施する従来の太陽電池セルの製造方法と、上述した本実施の形態にかかる太陽電池セルの製造方法とにより、それぞれ10個の太陽電池セル(セル番号1〜10)を作製した場合の、HF浸漬による接触抵抗のばらつきを示す特性図である。HF浸漬には、水:HF=100:1で調製したHF水溶液を使用している。図6から、従来の太陽電池セルの製造方法により作製した太陽電池セルでは、HF浸漬処理後も接触抵抗値が高く、そのばらつきも大きいのに対して、本実施の形態にかかる太陽電池セルの製造方法で作製した太陽電池セルではHF浸漬処理により接触抵抗を大幅に低下させられるため、そのばらつきを小さくすることが可能である。   Further, FIG. 6 shows that each of 10 solar cells by a conventional solar cell manufacturing method that performs only HF immersion for reducing contact resistance and the above-described solar cell manufacturing method according to the present embodiment. It is a characteristic view which shows the dispersion | variation in the contact resistance by HF immersion at the time of producing a battery cell (cell number 1-10). For HF immersion, an HF aqueous solution prepared with water: HF = 100: 1 is used. From FIG. 6, in the solar cell produced by the conventional method for manufacturing a solar cell, the contact resistance value is high even after the HF immersion treatment, and the variation thereof is large. In the solar battery cell produced by the manufacturing method, the contact resistance can be greatly reduced by the HF immersion treatment, so that the variation can be reduced.

上述したように、本実施の形態にかかる太陽電池セルの製造方法によれば、P型多結晶シリコン基板の面内方向におけるグリッド電極5の全面と、P型多結晶シリコン基板の面内方向におけるバス電極6の外周縁部に、酸浸漬処理において銀のデンドライト成長を促進させるために、銀に対する還元剤であるシリカを含むガラスペーストを付着させる。これにより、酸浸漬時において電子を集電電極付近で大量に生成することができ、より効率良く銀を還元してデンドライト成長させ、集電電極とシリコン基板との間に新たな電流経路を形成して、接触抵抗を大幅に低下させることができる。   As described above, according to the method for manufacturing a solar cell according to the present embodiment, the entire surface of grid electrode 5 in the in-plane direction of the P-type polycrystalline silicon substrate and the in-plane direction of the P-type polycrystalline silicon substrate. In order to promote silver dendrite growth in the acid immersion treatment, a glass paste containing silica as a reducing agent for silver is attached to the outer peripheral edge of the bus electrode 6. As a result, a large amount of electrons can be generated in the vicinity of the collector electrode during acid immersion, and silver is reduced more efficiently and dendrites are grown, and a new current path is formed between the collector electrode and the silicon substrate. Thus, the contact resistance can be greatly reduced.

また、本実施の形態にかかる太陽電池セルの製造方法によれば、酸浸漬処理において還元剤により大量の電子を発生させることができるため、銀のデンドライト成長を目的として多くの電子を得るために酸(HF)濃度を高濃度化、あるいは、酸(HF)浸漬時間を長時間化する必要が無い。このため、酸(HF)濃度を高濃度化、あるいは、酸(HF)浸漬時間を長時間化に起因して、集電電極とシリコン基板とを機械的に結合させているガラス層の溶解が過剰に溶解することが無く、電極強度が低下することが無く、適正な電極強度が確保された太陽電池セルを歩留まり良く作製することができる。   In addition, according to the method for manufacturing a solar battery cell according to the present embodiment, a large amount of electrons can be generated by the reducing agent in the acid immersion treatment, so that many electrons can be obtained for the purpose of silver dendrite growth. There is no need to increase the acid (HF) concentration or increase the acid (HF) immersion time. For this reason, the dissolution of the glass layer that mechanically bonds the collector electrode and the silicon substrate is caused by increasing the acid (HF) concentration or increasing the acid (HF) immersion time. A solar battery cell that is not excessively dissolved, does not decrease in electrode strength, and has an appropriate electrode strength can be manufactured with high yield.

また、本実施の形態にかかる太陽電池セルの製造方法によれば、酸(HF)浸漬処理時における酸濃度の変化がないため、酸(HF)浸漬処理時における酸濃度の変化に起因した太陽電池セル個体間の接触抵抗の低減幅のばらつきが発生しない。これにより、略均一な低減幅で接触抵抗を低減させて太陽電池セルを製造することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning this Embodiment, since there is no change of the acid concentration at the time of an acid (HF) immersion process, the solar resulting from the change of the acid concentration at the time of an acid (HF) immersion process There is no variation in the contact resistance reduction width between the individual battery cells. Thereby, a contact resistance can be reduced with a substantially uniform reduction width, and a photovoltaic cell can be manufactured.

したがって、本実施の形態にかかる太陽電池セルの製造方法によれば、太陽電池セルの電極強度を確保しつつ、略均一な幅で接触抵抗を十分に低減させて、高い光電変換効率の太陽電池セルを安定的に製造することができる。また、このような太陽電池セルの製造方法により作製した太陽電池セルを電気的に結線し、モジュール化することで、電極強度を確保しつつ、略均一な幅で接触抵抗を十分に低減させ、高い光電変換効率の太陽電池モジュールを安定的に製造することができる。   Therefore, according to the method for manufacturing a solar cell according to the present embodiment, the contact resistance is sufficiently reduced with a substantially uniform width while ensuring the electrode strength of the solar cell, so that the solar cell with high photoelectric conversion efficiency is obtained. The cell can be manufactured stably. In addition, by electrically connecting the solar cells produced by such a method for producing solar cells and modularizing it, the contact resistance is sufficiently reduced with a substantially uniform width while ensuring the electrode strength, A solar cell module having high photoelectric conversion efficiency can be stably produced.

以上のように、本発明にかかる太陽電池セルの製造方法は、接触抵抗を十分に下げるとともに太陽電池セルの電極強度を確保する場合に有用である。   As described above, the method for manufacturing a solar battery cell according to the present invention is useful for sufficiently reducing the contact resistance and ensuring the electrode strength of the solar battery cell.

本発明の実施の形態にかかる太陽電池セルの構成を説明するための図であり、受光面側から見た太陽電池セルの上面図である。It is a figure for demonstrating the structure of the photovoltaic cell concerning embodiment of this invention, and is a top view of the photovoltaic cell seen from the light-receiving surface side. 本発明の実施の形態にかかる太陽電池セルの構成を説明するための図であり、受光面と反対側から見た太陽電池セルの下面図である。It is a figure for demonstrating the structure of the photovoltaic cell concerning embodiment of this invention, and is a bottom view of the photovoltaic cell seen from the opposite side to the light-receiving surface. 本発明の実施の形態にかかる太陽電池セルの構成を説明するための図であり、図1−2の線分A−Aにおける断面模式図である。It is a figure for demonstrating the structure of the photovoltaic cell concerning embodiment of this invention, and is a cross-sectional schematic diagram in line segment AA of FIGS. 1-2. 本発明の実施の形態にかかる太陽電池セルの製造方法の基本的な工程を説明するためのフローチャートである。It is a flowchart for demonstrating the basic process of the manufacturing method of the photovoltaic cell concerning embodiment of this invention. 還元剤をグリッド電極の全面とバス電極の端部に付着させた状態の平面図である。It is a top view of the state which made the reducing agent adhere to the whole surface of a grid electrode, and the edge part of a bus electrode. 従来の太陽電池セルの製造方法と、実施の形態にかかる太陽電池セルの製造方法とにおける、HF浸漬時間と接触抵抗低下率との相関関係を示す特性図である。It is a characteristic view which shows the correlation with the HF immersion time and the contact resistance fall rate in the manufacturing method of the conventional photovoltaic cell, and the manufacturing method of the photovoltaic cell concerning embodiment. 従来の太陽電池セルの製造方法と、実施の形態にかかる太陽電池セルの製造方法とにおける、HF浸漬時間と電極強度低下率との相関関係を示す特性図である。It is a characteristic view which shows the correlation with the HF immersion time and the electrode intensity | strength decreasing rate in the manufacturing method of the conventional photovoltaic cell, and the manufacturing method of the photovoltaic cell concerning embodiment. 従来の太陽電池セルの製造方法と、実施の形態にかかる太陽電池セルの製造方法とにおける、HF浸漬による接触抵抗のばらつきを示す特性図である。It is a characteristic view which shows the dispersion | variation in the contact resistance by HF immersion in the manufacturing method of the conventional photovoltaic cell, and the manufacturing method of the photovoltaic cell concerning embodiment.

符号の説明Explanation of symbols

1 太陽電池セル
2 半導体基板
3 不純物拡散層
4 反射防止膜
5 グリッド電極
6 バス電極
7 裏面電極
8 裏面集電電極
11 還元剤
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Semiconductor substrate 3 Impurity diffusion layer 4 Antireflection film 5 Grid electrode 6 Bus electrode 7 Back surface electrode 8 Back surface collecting electrode 11 Reducing agent

Claims (8)

シリコン基板の一面側に電極を有する太陽電池セルの製造方法であって、
前記シリコン基板の一面側に銀を含む材料からなる前記電極を形成する第1工程と、
前記電極に対して銀を還元させる還元剤を付着させる第2工程と、
前記還元剤が付着した状態で酸を含む溶液に前記シリコン基板を浸漬させる第3工程と、
を含むことを特徴とする太陽電池セルの製造方法。
A method for producing a solar cell having an electrode on one side of a silicon substrate,
A first step of forming the electrode made of a material containing silver on one surface side of the silicon substrate;
A second step of attaching a reducing agent for reducing silver to the electrode;
A third step of immersing the silicon substrate in a solution containing an acid with the reducing agent attached;
The manufacturing method of the photovoltaic cell characterized by including.
前記第1工程では、前記シリコン基板の一面側に前記電極としてグリッド電極とバス電極とを形成し、
前記第2工程では、前記グリッド電極の表面と、前記バス電極の外周縁部における表面と、に選択的に前記還元剤を付着させること、
を特徴とする請求項1に記載の太陽電池セルの製造方法。
In the first step, a grid electrode and a bus electrode are formed as the electrodes on one surface side of the silicon substrate,
In the second step, the reducing agent is selectively attached to the surface of the grid electrode and the surface of the outer peripheral edge of the bus electrode;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
前記第3工程では、スクリーン印刷法、写真製版法、インクジェット印刷法のいずれかを用いて前記還元剤を前記電極に付着させること、
を特徴とする請求項1に記載の太陽電池セルの製造方法。
In the third step, the reducing agent is attached to the electrode using any one of a screen printing method, a photoengraving method, and an ink jet printing method;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
前記還元剤は、シリカまたはグルコースを含む材料からなること、
を特徴とする請求項1に記載の太陽電池セルの製造方法。
The reducing agent is made of a material containing silica or glucose;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
前記酸が沸酸であること、
を特徴とする請求項1に記載の太陽電池セルの製造方法。
The acid is a boiling acid;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
前記電極は、ガラスフリットを含む銀ペーストを用いて形成されること、
を特徴とする請求項1に記載の太陽電池セルの製造方法。
The electrode is formed using a silver paste containing glass frit;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
前記第1工程の前に、前記シリコン基板の一面側に反射防止膜を形成する工程を有すること、
を特徴とする請求項1に記載の太陽電池セルの製造方法。
Before the first step, having a step of forming an antireflection film on one side of the silicon substrate;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
請求項1乃至7のいずれか1つに記載の太陽電池セルの製造方法を含むことを特徴とする太陽電池モジュールの製造方法。   A method for manufacturing a solar cell module, comprising the method for manufacturing a solar cell according to any one of claims 1 to 7.
JP2008156011A 2008-06-13 2008-06-13 Method for manufacturing solar cell and method for manufacturing solar cell module Expired - Fee Related JP4954147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156011A JP4954147B2 (en) 2008-06-13 2008-06-13 Method for manufacturing solar cell and method for manufacturing solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156011A JP4954147B2 (en) 2008-06-13 2008-06-13 Method for manufacturing solar cell and method for manufacturing solar cell module

Publications (2)

Publication Number Publication Date
JP2009302345A true JP2009302345A (en) 2009-12-24
JP4954147B2 JP4954147B2 (en) 2012-06-13

Family

ID=41548932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156011A Expired - Fee Related JP4954147B2 (en) 2008-06-13 2008-06-13 Method for manufacturing solar cell and method for manufacturing solar cell module

Country Status (1)

Country Link
JP (1) JP4954147B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171441A (en) * 2010-02-17 2011-09-01 Mitsubishi Materials Corp Conductive composition, method of manufacturing solar cell employing the same, and solar cell
JP2011171442A (en) * 2010-02-17 2011-09-01 Mitsubishi Materials Corp Conductive composition, method of manufacturing solar cell employing the same, and solar cell
JP2011171439A (en) * 2010-02-17 2011-09-01 Mitsubishi Materials Corp Conductive composition, method for manufacturing solar cell employing the same, and solar cell
WO2014124567A1 (en) * 2013-02-18 2014-08-21 友达光电股份有限公司 Solar energy module
JP2015130405A (en) * 2014-01-07 2015-07-16 三菱電機株式会社 Photovoltaic device manufacturing method
CN111725334A (en) * 2020-06-30 2020-09-29 浙江晶科能源有限公司 Coating liquid for photovoltaic module, preparation method of coating liquid and photovoltaic module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213979A (en) * 1996-02-07 1997-08-15 Sharp Corp Solar cell and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213979A (en) * 1996-02-07 1997-08-15 Sharp Corp Solar cell and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171441A (en) * 2010-02-17 2011-09-01 Mitsubishi Materials Corp Conductive composition, method of manufacturing solar cell employing the same, and solar cell
JP2011171442A (en) * 2010-02-17 2011-09-01 Mitsubishi Materials Corp Conductive composition, method of manufacturing solar cell employing the same, and solar cell
JP2011171439A (en) * 2010-02-17 2011-09-01 Mitsubishi Materials Corp Conductive composition, method for manufacturing solar cell employing the same, and solar cell
WO2014124567A1 (en) * 2013-02-18 2014-08-21 友达光电股份有限公司 Solar energy module
JP2015130405A (en) * 2014-01-07 2015-07-16 三菱電機株式会社 Photovoltaic device manufacturing method
CN111725334A (en) * 2020-06-30 2020-09-29 浙江晶科能源有限公司 Coating liquid for photovoltaic module, preparation method of coating liquid and photovoltaic module

Also Published As

Publication number Publication date
JP4954147B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
US8569100B2 (en) Solar cell and manufacturing method thereof
US9887312B2 (en) Solar cell and solar-cell module
JP5197760B2 (en) Method for manufacturing solar battery cell
CN102484148B (en) Solar battery cell and method for manufacturing the solar battery cell
JP4954147B2 (en) Method for manufacturing solar cell and method for manufacturing solar cell module
JP5991945B2 (en) Solar cell and solar cell module
WO2011132707A1 (en) Solar cell elements and solar cell module using same
TWI390755B (en) Method of fabricating solar cells
JP5063049B2 (en) Method for manufacturing solar cell element
JP4953562B2 (en) Solar cell module
CN103314455A (en) Solar cell, method for producing same, and solar cell module
WO2013161145A1 (en) Backside bonded solar cell and method for manufacturing same
JP2003273382A (en) Solar cell element
JP5501549B2 (en) Photoelectric conversion element and photoelectric conversion module composed thereof
JP4391808B2 (en) Method for reclaiming silicon wafer for solar cell, method for forming solar cell, and method for producing silicon ingot for solar cell
JP2007266649A (en) Method of manufacturing solar cell element
JP6125042B2 (en) Method for manufacturing solar battery cell
KR101382047B1 (en) Method for fabricating selective emitter structure of solar cell
JP2011018748A (en) Method of manufacturing solar battery cell
JP2011243726A (en) Solar cell manufacturing method
JP5494511B2 (en) Manufacturing method of solar cell
JP2008211065A (en) Photoelectric conversion device and its manufacturing method
JP2014154619A (en) Method for manufacturing photoelectric conversion element
JP2014072342A (en) Photovoltaic device
JP2015130405A (en) Photovoltaic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees