JPH0446468B2 - - Google Patents

Info

Publication number
JPH0446468B2
JPH0446468B2 JP60297463A JP29746385A JPH0446468B2 JP H0446468 B2 JPH0446468 B2 JP H0446468B2 JP 60297463 A JP60297463 A JP 60297463A JP 29746385 A JP29746385 A JP 29746385A JP H0446468 B2 JPH0446468 B2 JP H0446468B2
Authority
JP
Japan
Prior art keywords
electrode
solar cell
electrical contact
silver paste
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60297463A
Other languages
Japanese (ja)
Other versions
JPS62156881A (en
Inventor
Masato Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60297463A priority Critical patent/JPS62156881A/en
Publication of JPS62156881A publication Critical patent/JPS62156881A/en
Publication of JPH0446468B2 publication Critical patent/JPH0446468B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、太陽電池素子に関する。[Detailed description of the invention] Industrial applications The present invention relates to a solar cell element.

背景技術 従来から太陽電池素子の光電変換効率を高める
ために、できるだけ表面電極とシリコン基板との
接触面積を低減し、かつ直列抵抗が大きくならな
いような電極構造が改良されている。その一例と
して、第5図に示されるように、主電極1とグリ
ツド電極2とから成る表面電極パターンを、シリ
コン基板3の反射防止膜4の上にスクリーン印刷
によつて形成し、700℃程度で熱処理することに
よつて電極形成用銀ペーストが反射防止膜4を貫
通し、シリコン基板3の良好な電気的コンタクト
を得るようにしていた。
BACKGROUND ART Conventionally, in order to increase the photoelectric conversion efficiency of solar cell elements, electrode structures have been improved in which the contact area between the surface electrode and the silicon substrate is reduced as much as possible and the series resistance is not increased. As an example, as shown in FIG. 5, a surface electrode pattern consisting of a main electrode 1 and a grid electrode 2 is formed on an antireflection film 4 of a silicon substrate 3 by screen printing, and the surface electrode pattern is heated to about 700°C. By performing the heat treatment, the electrode-forming silver paste penetrated through the antireflection film 4 and good electrical contact with the silicon substrate 3 was obtained.

発明が解決しようとする問題点 このような先行技術では、表面電極パターンの
受光面積に対して占める割合が10%程度と高く、
そのため主電極1およびグリツド電極2での表面
再結合速度が大きく、太陽電池の電気特性、特に
開放電圧を下げる傾向にあつた。また受光面積に
対する電極面積を5%程度減らすことにより、表
面再結合速度を低減させ、開放電圧を上げること
は可能であるが、この場合、直列抵抗が大きくな
つてしまうため、太陽電池の曲線因子が小さくな
り、取り出せる電力が小さくなつてしまう問題点
がある。
Problems to be Solved by the Invention In such prior art, the ratio of the surface electrode pattern to the light-receiving area is as high as about 10%;
Therefore, the surface recombination rate at the main electrode 1 and the grid electrode 2 was high, which tended to lower the electrical properties of the solar cell, especially the open circuit voltage. It is also possible to reduce the surface recombination rate and increase the open-circuit voltage by reducing the electrode area relative to the light-receiving area by about 5%, but in this case, the series resistance increases, so the fill factor of the solar cell decreases. There is a problem that the amount of power that can be extracted becomes smaller.

本発明の目的は、上述の技術的課題を解決し、
光電変換効率を高めるようにした太陽電池素子を
提供することである。
The purpose of the present invention is to solve the above-mentioned technical problems,
An object of the present invention is to provide a solar cell element with increased photoelectric conversion efficiency.

問題点を解決するための手段 本発明の太陽電池素子は、PN接合を有する基
板の受光面側に形成された反射防止膜と、 焼成により前記反射防止膜を貫通して前記基板
と良好なる電気的コンタクトを得ることのできる
金属ペースト材料を焼成して形成されるグリツド
電極と、焼成で前記反射防止膜を貫通せず、基板
と良好なる電気的コンタクトを得ることのできな
い金属ペースト材料を焼成して形成される前記グ
リツド電極を電気的に連結する主電極とからなる
表面電極と、 を有してなることを特徴とする。
Means for Solving the Problems The solar cell element of the present invention includes an anti-reflection film formed on the light-receiving surface side of a substrate having a PN junction, and an anti-reflection film that penetrates the anti-reflection film and connects to the substrate by firing. Grid electrodes are formed by firing a metal paste material that can obtain electrical contact, and grid electrodes are formed by firing a metal paste material that does not penetrate the anti-reflection film and cannot obtain good electrical contact with the substrate. and a main electrode electrically connecting the grid electrode formed by the grid electrode.

作 用 本発明によれば、基板と良好な電気的コンタク
トを得ている電極部分が小さくできるため、電極
部での表面再結合速度が従来のものよりも小さく
なり、これによつて開放電圧を大きくすることが
できる。また基板と電気コンタクトを得ていない
電極は、曲線因子を低下させない効果をもち、し
たがつて太陽電池素子の変換効率を大幅に改善す
ることができる。
Effects According to the present invention, since the electrode portion that has good electrical contact with the substrate can be made smaller, the surface recombination rate at the electrode portion is lower than that of the conventional method, thereby reducing the open circuit voltage. It can be made larger. Furthermore, the electrodes that are not in electrical contact with the substrate have the effect of not reducing the fill factor, and therefore can significantly improve the conversion efficiency of the solar cell element.

実施例 第1図を参照して、本発明に従う太陽電池素子
10の製造工程を説明する。まず第1図1で示さ
れるP型シリコン基板11の表面をフツ硝酸で処
理し、表面ダメージ層を除去する。次に、POCl3
の気相拡散により、P型シリコン基板11の全表
面に、第1図2で示されるようにN+層12を形
成する。次に、N+層12の表面をフツ酸で洗浄
した後、CVD(Chemical Vapour Deposition)
法によつて、第1図3で示されるように受光面側
にTiO2から成る反射防止膜13を形成する。次
に、反射防止膜13上に、第1図4で示されるよ
うにレジストインク層14を印刷し、次に、第1
図5で示されるようにフツ硝酸でケミカルエツチ
ングして接合分離を行ない、溶剤にてレジストイ
ンク層14を剥離する。
EXAMPLE With reference to FIG. 1, the manufacturing process of a solar cell element 10 according to the present invention will be described. First, the surface of the P-type silicon substrate 11 shown in FIG. 1 is treated with hydrofluoric nitric acid to remove the surface damage layer. Then POCl3
By vapor phase diffusion, an N + layer 12 is formed on the entire surface of the P-type silicon substrate 11, as shown in FIG. Next, after cleaning the surface of the N + layer 12 with hydrofluoric acid, CVD (Chemical Vapor Deposition)
As shown in FIG. 3, an antireflection film 13 made of TiO 2 is formed on the light-receiving surface side by a method. Next, a resist ink layer 14 is printed on the antireflection film 13 as shown in FIG.
As shown in FIG. 5, bonding and separation is performed by chemical etching with hydrofluoric nitric acid, and the resist ink layer 14 is peeled off with a solvent.

次に、第1図6で示さるようにP型シリコン基
板11の受光面とは反対側の背面に、Alを数%
混入させた銀ペースト層15を印刷によつて形成
し、乾燥させる。この銀ペースト層15は、太陽
電池素子10の背面電極となる。
Next, as shown in FIG.
The mixed silver paste layer 15 is formed by printing and dried. This silver paste layer 15 becomes the back electrode of the solar cell element 10.

次に、第1図7で示されるようにP型シリコン
基板11の受光面側に、印刷によつてグリツド電
極となる銀ペースト層16をパターン形成し、乾
燥させる。この銀ペースト層16のパターンは、
第2図で示されるようにストライプ形状である。
銀ペースト層16としては、反射防止膜13を貫
通して、シリコン基板11と良好な電気的コンタ
クトを得るような材料、たとえばリンまたはリン
系化合物を銀ペーストに対し、0.05〜0.3w/oで
ドープした、いわゆるフアイアースルー用銀ペー
ストが好適である。
Next, as shown in FIG. 1, a pattern of a silver paste layer 16 that will become a grid electrode is formed on the light-receiving surface side of the P-type silicon substrate 11 by printing, and the pattern is dried. The pattern of this silver paste layer 16 is
As shown in FIG. 2, it has a striped shape.
For the silver paste layer 16, a material that penetrates the antireflection film 13 and provides good electrical contact with the silicon substrate 11, such as phosphorus or a phosphorus compound, is added to the silver paste at a rate of 0.05 to 0.3 w/o. Doped, so-called fire-through silver pastes are preferred.

次に、銀ペースト層16と同様、第1図8で示
されるように、印刷によつて主電極となる銀ペー
スト層17をパターン形成し、乾燥させる。この
銀ペースト層17のパターンは、第3図で示され
るように第1の銀ペースト層16と直交する二本
のラインである。銀ペースト層17としては、反
射防止膜13を貫通せず、シリコン基板11との
電気的コンタクト性が悪い材料、たとえば銀パウ
ダーとガラスフリツト、樹脂、溶剤などを単に混
ぜただけの銀ペーストが用いられる。
Next, similarly to the silver paste layer 16, as shown in FIG. 1, a pattern of the silver paste layer 17 which will become the main electrode is formed by printing and dried. The pattern of this silver paste layer 17 is two lines perpendicular to the first silver paste layer 16, as shown in FIG. As the silver paste layer 17, a material that does not penetrate the antireflection film 13 and has poor electrical contact with the silicon substrate 11, such as a silver paste simply mixed with silver powder, glass frit, resin, solvent, etc., is used. .

その後、700℃で焼成することにより、第1図
9で示されるように表面電極および背面電極が形
成され、デイツプ半田付けによつて半田を表面電
極上および背面電極上に被覆する。こうして第4
図で示される表面電極パターンを有する太陽電池
素子を得ることができる。
Thereafter, by baking at 700° C., a front electrode and a back electrode are formed as shown in FIG. 1, and solder is coated on the front electrode and the back electrode by dip soldering. Thus the fourth
A solar cell element having the surface electrode pattern shown in the figure can be obtained.

このように、太陽電池素子10の表面電極形成
用の銀ペーストとして、反射防止膜13を貫通
し、かつシリコン基板11と良好なる電均的コン
タクトを得ることのできるペーストと、シリコン
基板11と良好な電気的コンタクトを得ることが
できないペーストとを併用することにより、表面
電極とシリコン基板11との接触面積を低減さ
せ、電極部での表面再結合速度を低くさせること
ができる。これによつて開放電圧を大きくするこ
とができる。またシリコン基板11と電気的コン
タクトを得ていない主電極である銀ペースト層1
7は、曲線因子を低下させない効果をもち、した
がつて本件太陽電池素子10の変換効率を大幅に
改善することができる。
In this way, as the silver paste for forming the surface electrode of the solar cell element 10, a paste that can penetrate the antireflection film 13 and obtain good electrical contact with the silicon substrate 11, and a silver paste that has good electrical contact with the silicon substrate 11 can be used. By using the paste in combination with a paste that cannot obtain a good electrical contact, the contact area between the surface electrode and the silicon substrate 11 can be reduced, and the surface recombination rate at the electrode portion can be lowered. This allows the open circuit voltage to be increased. Also, the silver paste layer 1 which is the main electrode which is not in electrical contact with the silicon substrate 11
7 has the effect of not reducing the fill factor, and therefore can significantly improve the conversion efficiency of the solar cell element 10 of the present invention.

本発明の他の実施例として、グリツド電極を被
線状にすることにより、接触面積をさらに低減さ
せ、出力を向上させることも可能である。この場
合、主電極のパターン形状を第5図示のようにす
ればよい。
In another embodiment of the present invention, the grid electrode may be wire-covered to further reduce the contact area and improve the output. In this case, the pattern shape of the main electrode may be made as shown in FIG.

前記実施例では、いわゆるコンベンシヨナル型
の太陽電池素子について説明したが、その他たと
えばBSF型の太陽電池素子や、電極表面がテク
スチヤー処理されている太陽電池素子などについ
ても同様のプロセスで作製できることはいうまで
もない。
In the above example, a so-called conventional type solar cell element was explained, but it is also possible to fabricate other types of solar cell elements, such as a BSF type solar cell element or a solar cell element whose electrode surface is textured, using the same process. Not even.

効 果 以上のように本考案によれば、基板と良好な電
気的コンタクトを得ている電極部分が小さくでき
るため、電極部での表面再結合速度が従来のもの
よりも小さくなり、これによつて開放電圧を大き
くすることができる。また基板と電気的コンタク
トを得ていない電極は、曲線因子を低下させない
効果をもち、したがつて太陽電池素子の変換効率
を大幅に改善することができる。
Effects As described above, according to the present invention, the electrode portion that has good electrical contact with the substrate can be made smaller, so the surface recombination rate at the electrode portion is lower than that of the conventional method. Therefore, the open circuit voltage can be increased. Furthermore, the electrodes that are not in electrical contact with the substrate have the effect of not reducing the fill factor, and therefore can significantly improve the conversion efficiency of the solar cell element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従う太陽電池素子10の製造
工程を説明するための図、第2図はグリツド電極
となる銀ペースト層16のパターンを示す図、第
3図は主電極となる銀ペースト層17のパターン
を示す図、第4図は表面電極パターンを示す図、
第5図は先行技術を説明するための図である。 10…太陽電池、11…シリコン基板、13…
反射防止膜、15,16,17…銀ペースト層。
FIG. 1 is a diagram for explaining the manufacturing process of a solar cell element 10 according to the present invention, FIG. 2 is a diagram showing a pattern of a silver paste layer 16 that becomes a grid electrode, and FIG. 3 is a diagram of a silver paste layer that becomes a main electrode. FIG. 4 is a diagram showing a surface electrode pattern,
FIG. 5 is a diagram for explaining the prior art. 10...Solar cell, 11...Silicon substrate, 13...
Antireflection film, 15, 16, 17...silver paste layer.

Claims (1)

【特許請求の範囲】 1 PN接合を有する基板の受光面側に形成され
た反射防止膜と、 焼成により前記反射防止膜を貫通して前記基板
と良好なる電気的コンタクトを得ることのできる
金属ペースト材料を焼成して形成されるグリツド
電極と、焼成で前記反射防止膜を貫通せず、基板
と良好なる電気的コンタクトを得ることのできな
い金属ペースト材料を焼成して形成される前記グ
リツド電極を電気的に連結する主電極とからなる
表面電極と、 を有してなることを特徴とする太陽電池素子。
[Scope of Claims] 1. An antireflection film formed on the light-receiving surface side of a substrate having a PN junction, and a metal paste that can penetrate the antireflection film and obtain good electrical contact with the substrate by firing. The grid electrode is formed by firing a material, and the grid electrode is formed by firing a metal paste material that does not penetrate the anti-reflection film and cannot obtain good electrical contact with the substrate upon firing. 1. A solar cell element comprising: a surface electrode comprising a main electrode which is electrically connected to the main electrode;
JP60297463A 1985-12-28 1985-12-28 Solar battery device Granted JPS62156881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60297463A JPS62156881A (en) 1985-12-28 1985-12-28 Solar battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60297463A JPS62156881A (en) 1985-12-28 1985-12-28 Solar battery device

Publications (2)

Publication Number Publication Date
JPS62156881A JPS62156881A (en) 1987-07-11
JPH0446468B2 true JPH0446468B2 (en) 1992-07-30

Family

ID=17846817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60297463A Granted JPS62156881A (en) 1985-12-28 1985-12-28 Solar battery device

Country Status (1)

Country Link
JP (1) JPS62156881A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706113B2 (en) * 1988-11-25 1998-01-28 工業技術院長 Photoelectric conversion element
DE69224965T2 (en) * 1991-06-11 1998-10-29 Ase Americas Inc IMPROVED SOLAR CELL AND METHOD FOR THEIR PRODUCTION
EP0729189A1 (en) * 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof
JP4121928B2 (en) 2003-10-08 2008-07-23 シャープ株式会社 Manufacturing method of solar cell
JP2008205137A (en) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Solar cell and solar cell module
EP2302689A4 (en) * 2008-07-03 2012-01-18 Mitsubishi Electric Corp Photovoltaic system and manufacturing method thereof
WO2010123980A1 (en) * 2009-04-22 2010-10-28 Tetrasun, Inc. Localized metal contacts by localized laser assisted conversion of functional films in solar cells
JP5788794B2 (en) * 2009-07-09 2015-10-07 株式会社シンク・ラボラトリー Manufacturing method of solar cell
JP5375414B2 (en) * 2009-07-31 2013-12-25 信越化学工業株式会社 Solar cell and manufacturing method thereof
CN102479883A (en) * 2009-11-27 2012-05-30 无锡尚德太阳能电力有限公司 Method for forming positive electrode of solar cell
WO2011095968A2 (en) * 2010-02-03 2011-08-11 Xjet Ltd. Fabrication of contacts for semiconductor substrates
KR20120100698A (en) * 2011-03-02 2012-09-12 한국전자통신연구원 Conducting composition, silicon solar cell comprising the conducting composition, and its preparation for the same
US20120222738A1 (en) * 2011-03-02 2012-09-06 Electronics And Telecommunications Research Institute Conductive composition, silicon solar cell including the same, and manufacturing method thereof
JP2013149815A (en) * 2012-01-20 2013-08-01 Shin Etsu Chem Co Ltd Solar battery and method of manufacturing the same
JP5908763B2 (en) * 2012-03-19 2016-04-26 京セラ株式会社 Photoelectric conversion element and method for producing photoelectric conversion element

Also Published As

Publication number Publication date
JPS62156881A (en) 1987-07-11

Similar Documents

Publication Publication Date Title
JP3050064B2 (en) CONDUCTIVE PASTE, SOLAR CELL WITH GRID ELECTRODE FORMED FROM THE CONDUCTIVE PASTE AND METHOD FOR MANUFACTURING SAME
JP2744847B2 (en) Improved solar cell and method for manufacturing the same
KR101322072B1 (en) Process of forming a grid electrode on the front-side of a silicon wafer
EP2184787A1 (en) Rear surface bonding type solar cell, rear surface bonding type solar cell having wiring board, solar cell string and soar cell module
WO2016051628A1 (en) Solar cell and method for manufacturing same
KR101322142B1 (en) Process of forming a grid electrode on the front-side of a silicon wafer
JPH0446468B2 (en)
JP4373774B2 (en) Method for manufacturing solar cell element
US9691918B2 (en) Solar battery cell and manufacturing method for the solar battery cell
US9171975B2 (en) Solar cell element and process for production thereof
KR101322149B1 (en) Process of forming a grid electrode on the front-side of a silicon wafer
WO2011024587A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
WO2013031751A1 (en) Conductive paste, electrode for semiconductor devices, semiconductor device, and method for manufacturing semiconductor device
JP2014036069A (en) Solar cell module and manufacturing method thereof
CN207852689U (en) A kind of interdigital back contact solar cell piece
JP2008053435A (en) Solar cell module and manufacturing method thereof
JPS63119274A (en) Solar cell element
JP2014146553A (en) Conductive paste for electrode of solar battery and method of producing the same
JP2016189439A (en) Solar cell element and manufacturing method of the same
US11984522B2 (en) High-efficiency backside contact solar cell and method for manufacturing thereof
JP2011187906A (en) Solar cell element and method of manufacturing the same
JPS5979580A (en) Manufacture of solar battery
JP4471532B2 (en) Method for manufacturing solar cell element
JPS5885574A (en) Solar battery and manufacture thereof
JPH11214723A (en) Manufacture of solar battery element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term