JP5375414B2 - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP5375414B2
JP5375414B2 JP2009178854A JP2009178854A JP5375414B2 JP 5375414 B2 JP5375414 B2 JP 5375414B2 JP 2009178854 A JP2009178854 A JP 2009178854A JP 2009178854 A JP2009178854 A JP 2009178854A JP 5375414 B2 JP5375414 B2 JP 5375414B2
Authority
JP
Japan
Prior art keywords
electrode
diffusion layer
solar cell
silicon substrate
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009178854A
Other languages
Japanese (ja)
Other versions
JP2011035101A (en
Inventor
光人 高橋
武紀 渡部
直揮 石川
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009178854A priority Critical patent/JP5375414B2/en
Publication of JP2011035101A publication Critical patent/JP2011035101A/en
Application granted granted Critical
Publication of JP5375414B2 publication Critical patent/JP5375414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell of high performance capable of maintaining low contact resistance even with thinner electrodes. <P>SOLUTION: The solar cell includes a first conductive type silicon substrate 1, a diffusion layer 2 of the conductive type opposite to the first one which is formed on a light receiving surface side of the silicon substrate 1, a light receiving surface electrode 7 which is electrically connected to the diffusion layer 2, a diffusion layer 3 of the conductive type identical to the first one formed on the rear surface side of the first conductive type silicon substrate 1, and a rear surface electrode 7 which is electrically connected to the diffusion layer 3. A dielectric film 4 is so formed not to contact to the diffusion layer 2 of the conductive type opposite to the first one arranged directly under the light receiving surface side electrode. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、光エネルギーを直接電気エネルギーに変換する太陽電池及びその製造方法に関する。   The present invention relates to a solar cell that directly converts light energy into electric energy and a method for manufacturing the solar cell.

太陽電池は、光エネルギーを電力に変換する半導体素子であり、p−n接合型、pin型、ショットキー型などがあり、特にp−n接合型が広く用いられている。また、太陽電池をその基板材料を基に分類すると、シリコン結晶系太陽電池、アモルファス(非晶質)シリコン系太陽電池、化合物半導体系太陽電池の3種類に大きく分類される。シリコン結晶系太陽電池は、更に、単結晶系太陽電池と多結晶系太陽電池に分類される。太陽電池用シリコン結晶基板は比較的容易に製造できることから、その生産規模は現在最大となっており、今後も更に普及していくものと思われる(例えば、特許文献1:特開平8−073297号公報)。   A solar cell is a semiconductor element that converts light energy into electric power, and includes a pn junction type, a pin type, a Schottky type, and the pn junction type is widely used. Further, when solar cells are classified based on their substrate materials, they are broadly classified into three types: silicon crystal solar cells, amorphous (amorphous) silicon solar cells, and compound semiconductor solar cells. Silicon crystal solar cells are further classified into single crystal solar cells and polycrystalline solar cells. Since a silicon crystal substrate for a solar cell can be manufactured relatively easily, its production scale is currently the largest and is expected to become more widespread in the future (for example, Patent Document 1: JP-A-8-073297). Publication).

太陽電池の出力特性は、一般に、ソーラーシミュレーターを用いて出力電流電圧曲線を測定することにより評価される。この曲線上で出力電流Imaxと出力電圧Vmaxとの積、Imax×Vmaxが最大となる点を最大出力Pmaxとよび、該Pmaxを太陽電池に入射する総光エネルギー(S×I:Sは素子面積、Iは照射する光の強度)で除した値:
η={Pmax/(S×I)}×100(%)
が太陽電池の変換効率ηとして定義される。
The output characteristics of a solar cell are generally evaluated by measuring an output current voltage curve using a solar simulator. The product of the output current I max and the output voltage V max on this curve, the point at which I max × V max is maximum is called the maximum output P max , and this P max is the total light energy (S × (I: S is the element area, I is the intensity of the irradiated light))
η = {P max / (S × I)} × 100 (%)
Is defined as the conversion efficiency η of the solar cell.

変換効率ηを高めるには、短絡電流Isc(電流電圧曲線にてV=0の時の出力電流値)あるいはVoc(電流電圧曲線にてI=0の時の出力電圧値)を大きくすること、及び出力電流電圧曲線をなるべく角形に近い形状のものとすることが重要である。なお、出力電流電圧曲線の角形の度合いは一般に、
FF=Pmax/(Isc×Voc)
にて定義されるフィルファクタ(曲線因子)により評価でき、該FFの値が1に近いほど出力電流電圧曲線が理想的な角形に近づき、変換効率ηも高められることを意味する。
In order to increase the conversion efficiency η, the short-circuit current Isc (output current value when V = 0 in the current-voltage curve) or Voc (output voltage value when I = 0 in the current-voltage curve) is increased. It is important to make the output current voltage curve as close to a square as possible. The squareness of the output current voltage curve is generally
FF = P max / (Isc × Voc)
It means that the output current voltage curve approaches an ideal square and the conversion efficiency η increases as the value of the FF is closer to 1.

FFを決定づける主因の一つとして、各種の直列抵抗成分が挙げられる。この直列抵抗成分のうち、主成分の一つは金属電極と半導体基板表面との界面のコンタクト抵抗に起因するものである。特に、受光面電極は、通常、光の入射効率を高めるために、図2に示すように、受光面側の電極は、内部抵抗低減のため適当な間隔で形成された太いバスバー電極7と、そのバスバー電極7から所定の間隔で櫛形に分岐する細いフィンガー電極5とを有するものとして構成される。フィンガー電極が細くなると半導体界面のコンタクト面積が制限され、上記界面のコンタクト抵抗への相対的影響割合は大きくなる傾向にある。   One of the main factors that determine FF is various series resistance components. Among the series resistance components, one of the main components is due to the contact resistance at the interface between the metal electrode and the semiconductor substrate surface. In particular, the light receiving surface electrode usually has a thick bus bar electrode 7 formed at an appropriate interval for reducing internal resistance, as shown in FIG. A thin finger electrode 5 branched from the bus bar electrode 7 into a comb shape at a predetermined interval is configured. As the finger electrode becomes thinner, the contact area of the semiconductor interface is limited, and the relative influence ratio on the contact resistance of the interface tends to increase.

太陽電池が今後更に普及するためには、より高い変換効率が求められる。変換効率を高める手段として、例えば受光面電極の細線化によるシャドウイングロスの低減がある。そこで、現在主流となっているシリコン結晶系太陽電池では、受光面電極として銀(Ag)ペーストを誘電体膜上に直接スクリーン印刷した後、適当な焼成条件によって、Agペースト中のメタル成分を、誘電体膜を貫通(ファイヤースルー)させて、シリコン基板まで到達させて形成する方法が用いられている。しかし、受光面電極を細線化すると、上記のような受光面電極の形成方法のように、シリコン基板とフィンガー電極間に誘電体膜を介している場合、Agペースト中のメタル成分が減少することにより、ファイヤースルーが不十分となり、フィンガー電極とシリコン基板とのコンタクト性が悪化し、コンタクト抵抗が高くなる問題があった。   In order for solar cells to become more widespread in the future, higher conversion efficiency is required. As means for increasing the conversion efficiency, for example, there is a reduction in shadowing loss due to thinning of the light receiving surface electrode. Therefore, in the silicon crystal solar cells which are currently mainstream, after silver (Ag) paste is directly screen-printed on the dielectric film as the light-receiving surface electrode, the metal component in the Ag paste is obtained under appropriate firing conditions. A method is used in which a dielectric film is penetrated (fire through) to reach a silicon substrate. However, when the light receiving surface electrode is thinned, the metal component in the Ag paste decreases when a dielectric film is interposed between the silicon substrate and the finger electrode as in the method of forming the light receiving surface electrode as described above. Therefore, there is a problem that fire-through is insufficient, the contact property between the finger electrode and the silicon substrate is deteriorated, and the contact resistance is increased.

この問題に対し、例えば受光面電極直下となる誘電体膜上にエッチングペーストをスクリーン印刷し、印刷されたエッチングペーストを加熱してエッチングペーストの印刷箇所をエッチングすることにより、受光面電極形成前に電極形成位置にあたる誘電体膜を除去する方法がある(特許文献2:特表2003−531807号公報)。しかし、この手法においては、エッチングペーストの印刷量及び加熱温度などにより、エッチングペーストの印刷形状が変化し、精密なパターンでのエッチングは困難であるといった問題がある。また、フォトマスクを用いた方法により受光面電極直下誘電体膜を除去する方法もあるが、この場合、フォトマスクを使用することにより、工数の増大と高精度の装置が必要とされ、製造コストが高くなり、効率的な製造が難しくなるといった問題がある。   To solve this problem, for example, screen-printing an etching paste on the dielectric film directly under the light-receiving surface electrode, and heating the printed etching paste to etch the printed portion of the etching paste before forming the light-receiving surface electrode. There is a method of removing a dielectric film corresponding to an electrode formation position (Patent Document 2: Japanese Translation of PCT International Publication No. 2003-531807). However, this method has a problem that the printing shape of the etching paste changes depending on the printing amount of the etching paste, the heating temperature, and the like, and etching with a precise pattern is difficult. There is also a method of removing the dielectric film directly under the light-receiving surface electrode by a method using a photomask, but in this case, the use of a photomask requires an increase in man-hours and a highly accurate apparatus, resulting in a manufacturing cost. However, there is a problem that efficient manufacturing becomes difficult.

また、単に受光面電極を形成した後に誘電体膜を形成する方法では、バスバー電極上に誘電体膜が形成されてしまうため、モジュールに組み立てる際に半田との接合性に問題が生じている。   Further, in the method of forming the dielectric film after simply forming the light-receiving surface electrode, a dielectric film is formed on the bus bar electrode, which causes a problem in solderability when assembling the module.

特開平8−073297号公報JP-A-8-073297 特表2003−531807号公報Special table 2003-531807 gazette

本発明は、上記事情に鑑みてなされたもので、フィンガー電極の細線化に対してもコンタクト性能を下げずに、シリコン基板界面とのコンタクト抵抗を低減することによって、出力特性を向上させることができる太陽電池及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to improve the output characteristics by reducing the contact resistance with the silicon substrate interface without reducing the contact performance even for the thinning of the finger electrode. An object of the present invention is to provide a solar cell that can be manufactured and a method for manufacturing the solar cell.

本発明者らは、上記目的を達成するため鋭意検討した結果、少なくともフィンガー電極を形成した後に誘電体膜を形成し、その後バスバー電極を形成することで、従来のフォトエッチングやレーザー加工等の複雑な工程無しにフィンガー電極形成直下のみ誘電体膜が形成されない構造となり、結果、フィンガー電極の細線化に対してもシリコン基板とのコンタクト抵抗が増加しない優れた太陽電池の製造方法を見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that at least finger electrodes are formed and then a dielectric film is formed, and then a bus bar electrode is formed. The present invention has found a structure in which a dielectric film is not formed only directly under the finger electrode formation without any steps, and as a result, has found a method for manufacturing an excellent solar cell in which contact resistance with a silicon substrate does not increase even when the finger electrode is thinned. It came to make.

従って、本発明は、下記の太陽電池及びその製造方法を提供する。
請求項1:
第一導電型のシリコン基板と、前記シリコン基板の受光面側に形成された第一導電型と反対の導電型拡散層と、この拡散層に電気的に接続するフィンガー電極及びバスバー電極からなる受光面電極と、前記第一導電型のシリコン基板の裏面側に形成された第一導電型と同じ導電型の拡散層と、この拡散層に電気的に接続する裏面電極とを備える太陽電池であって、前記フィンガー電極が第一導電型と反対の導電型拡散層上に直接形成され、酸化シリコン膜、窒化シリコン膜、酸化チタン膜、酸化アルミニウム膜、酸化スズ膜、酸化亜鉛膜、フッ化マグネシウム膜又はこれらの膜の組合せからなる誘電体膜が前記フィンガー電極と該フィンガー電極を除く領域の前記第一導電型と反対の導電型拡散層を覆うように形成され、前記バスバー電極が前記誘電体膜上に形成され、かつ該誘電体膜をファイヤースルーして前記フィンガー電極と接続されてなることを特徴とする太陽電池。
請求項2:
前記シリコン基板の裏面側において、前記裏面電極が前記シリコン基板の裏面側の第一導電型と同じ導電型の拡散層上に直接形成され、前記誘電体膜が前記裏面電極と該裏面電極を除く領域の前記第一導電型と同じ導電型の拡散層を覆うように形成され、更に裏面バスバー電極が前記誘電体膜上に形成され、かつ該誘電体膜をファイヤースルーして前記裏面電極と接続されてなることを特徴とする請求項1記載の太陽電池。
請求項3:
前記誘電体膜が窒化シリコン膜からなることを特徴とする請求項1又は2記載の太陽電池。
請求項4:
第一導電型のシリコン基板と、前記シリコン基板の受光面側に形成された第一導電型と反対の導電型拡散層と、この拡散層に電気的に接続するフィンガー電極及びバスバー電極からなる受光面電極と、前記第一導電型のシリコン基板の裏面側に形成された第一導電型と同じ導電型の拡散層と、この拡散層に電気的に接続する裏面電極とを備える太陽電池の製造方法であって、前記シリコン基板の受光面側に第一導電型と反対の導電型拡散層を形成し、この拡散層に前記フィンガー電極を直接形成し、前記フィンガー電極と該フィンガー電極を除く領域の前記第一導電型と反対の導電型拡散層を覆って、酸化シリコン膜、窒化シリコン膜、酸化チタン膜、酸化アルミニウム膜、酸化スズ膜、酸化亜鉛膜、フッ化マグネシウム膜又はこれらの膜の組合せからなる誘電体膜を形成した後、この誘電体膜の上からこの誘電体膜をファイヤースルーさせてバスバー電極を形成し、前記フィンガー電極と接続することを特徴とする太陽電池の製造方法。
請求項5:
前記シリコン基板の裏面側において、裏面電極を前記第一導電型と同じ導電型の拡散層上に直接形成し、前記裏面電極と該裏面電極を除く領域の前記第一導電型と同じ導電型の拡散層を覆って前記誘電体膜を形成した後、この誘電体膜の上からこの誘電体膜をファイヤースルーさせて裏面バスバー電極を形成し、前記裏面電極と接続することを特徴とする請求項4記載の太陽電池の製造方法。
請求項6:
前記フィンガー電極及び裏面電極を同時に焼成して形成し、更に前記バスバー電極及び裏面バスバー電極を同時に焼成して受光面及び裏面の前記誘電体膜をそれぞれファイヤースルーさせて形成することを特徴とする請求項5記載の太陽電池の製造方法。
請求項7:
前記誘電体膜をプラズマCVD法により形成することを特徴とする請求項4乃至6のいずれか1項記載の太陽電池の製造方法。
Therefore, this invention provides the following solar cell and its manufacturing method.
Claim 1:
Light reception comprising a first conductive type silicon substrate, a conductive type diffusion layer opposite to the first conductive type formed on the light receiving surface side of the silicon substrate, and finger electrodes and bus bar electrodes electrically connected to the diffusion layer A solar cell comprising a surface electrode, a diffusion layer of the same conductivity type as the first conductivity type formed on the back surface side of the first conductivity type silicon substrate, and a back electrode electrically connected to the diffusion layer. The finger electrode is directly formed on the conductive type diffusion layer opposite to the first conductive type, and a silicon oxide film, a silicon nitride film, a titanium oxide film, an aluminum oxide film, a tin oxide film, a zinc oxide film, and magnesium fluoride. A dielectric film comprising a film or a combination of these films is formed to cover the finger electrode and a conductive type diffusion layer opposite to the first conductive type in a region excluding the finger electrode; Serial dielectric is formed on the film, and a solar cell of the dielectric film by firing through, characterized in that formed by connecting to the finger electrode.
Claim 2:
On the back side of the silicon substrate, the back electrode is directly formed on a diffusion layer of the same conductivity type as the first conductivity type on the back side of the silicon substrate, and the dielectric film excludes the back electrode and the back electrode A diffusion layer of the same conductivity type as that of the first conductivity type in the region is formed, and a backside bus bar electrode is formed on the dielectric film, and connected to the backside electrode through a fire-through of the dielectric film The solar cell according to claim 1, wherein the solar cell is formed.
Claim 3:
The solar cell according to claim 1, wherein the dielectric film is made of a silicon nitride film.
Claim 4:
Light reception comprising a first conductive type silicon substrate, a conductive type diffusion layer opposite to the first conductive type formed on the light receiving surface side of the silicon substrate, and finger electrodes and bus bar electrodes electrically connected to the diffusion layer Manufacturing a solar cell comprising a surface electrode, a diffusion layer of the same conductivity type as the first conductivity type formed on the back surface side of the first conductivity type silicon substrate, and a back electrode electrically connected to the diffusion layer A method wherein a conductive type diffusion layer opposite to the first conductive type is formed on the light receiving surface side of the silicon substrate, the finger electrode is directly formed on the diffusion layer, and the finger electrode and the region excluding the finger electrode are formed Covering the diffusion layer opposite to the first conductivity type of silicon oxide film, silicon nitride film, titanium oxide film, aluminum oxide film, tin oxide film, zinc oxide film, magnesium fluoride film, or these films After forming the dielectric film consisting of combined, the dielectric film is fire-through the bus bar electrode is formed by manufacturing method of a solar cell, characterized in that connected to the finger electrode over the dielectric film.
Claim 5:
On the back side of the silicon substrate, a back electrode is directly formed on the diffusion layer of the same conductivity type as the first conductivity type, and the same conductivity type as the first conductivity type in the region excluding the back electrode and the back electrode. The dielectric film is formed so as to cover a diffusion layer, and then the dielectric film is fired through from above the dielectric film to form a back busbar electrode and connected to the back electrode. 4. The method for producing a solar cell according to 4.
Claim 6:
The finger electrode and the back electrode are formed by firing at the same time, and the bus bar electrode and the back bus bar electrode are fired at the same time to form the dielectric films on the light receiving surface and the back surface by fire-through, respectively. Item 6. A method for producing a solar cell according to Item 5.
Claim 7:
The method for manufacturing a solar cell according to claim 4, wherein the dielectric film is formed by a plasma CVD method.

本発明によれば、受光面電極形成直下にあたるシリコン基板上に誘電体膜が形成されない構造となり、電極細線化に対しても低コンタクト抵抗を維持できる高性能な太陽電池を提供することができる。特に、フィンガー電極、バスバー電極を形成する場合、フィンガー電極形成後に誘電体膜を形成することで、シリコン基板とフィンガー電極間に誘電体膜を介さずにフィンガー電極が形成可能となり、フィンガー電極とシリコン基板とのコンタクト性が悪化することなくフィンガー電極の細線化が可能となる。更に、フィンガー電極とバスバー電極間では誘電体膜を介してもファイヤースルーが容易であることから、誘電体膜を形成後にバスバー電極を形成することで、バスバー電極上への半田接合性も良好な太陽電池を製造することが可能となる。   According to the present invention, a dielectric film is not formed on a silicon substrate immediately below the formation of a light-receiving surface electrode, and a high-performance solar cell that can maintain a low contact resistance even when the electrode is thinned can be provided. In particular, when forming a finger electrode and a bus bar electrode, by forming a dielectric film after the finger electrode is formed, the finger electrode can be formed without a dielectric film between the silicon substrate and the finger electrode. The finger electrode can be thinned without deteriorating the contact property with the substrate. Further, since the fire-through is easy between the finger electrode and the bus bar electrode even through the dielectric film, the bus bar electrode is formed after the dielectric film is formed, so that the solderability on the bus bar electrode is also good. A solar cell can be manufactured.

本発明の太陽電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the solar cell of this invention. 太陽電池の受光面電極形成例について説明する概略平面図である。It is a schematic plan view explaining the example of light-receiving surface electrode formation of a solar cell. (A)〜(G)は本発明の太陽電池の製造方法の一例についてその工程を順次説明する概略断面図である。(A)-(G) is a schematic sectional drawing which demonstrates the process sequentially about an example of the manufacturing method of the solar cell of this invention. (A)〜(F)は比較例の太陽電池の製造方法の一例についてその工程を順次説明する概略断面図である。(A)-(F) is a schematic sectional drawing which demonstrates the process sequentially about an example of the manufacturing method of the solar cell of a comparative example.

本発明の太陽電池は、第一導電型のシリコン基板と、前記シリコン基板の受光面側に形成された第一導電型と反対の導電型拡散層と、これに電気的に接続する受光面電極と、前記第一導電型のシリコン基板の裏面側に形成された第一導電型と同じ導電型の拡散層と、これに電気的に接続する裏面電極とを備える太陽電池であって、前記受光面側電極直下となる第一導電型の反対の導電型拡散層が誘電体膜と接しないことを特徴とする。
この場合、受光面電極は、フィンガー電極及びバスバー電極にて構成することが好ましい。図1〜3は、このような太陽電池の一実施例を示す。
即ち、図1は、本発明の一実施例に係る太陽電池の概略断面図であり、図2は、図1の受光面側からみた平面図であり、図3は、本発明の一実施例に係る太陽電池の製造方法を説明する概略断面図である。
The solar cell of the present invention includes a first conductive type silicon substrate, a conductive type diffusion layer opposite to the first conductive type formed on the light receiving surface side of the silicon substrate, and a light receiving surface electrode electrically connected thereto. A diffusion layer of the same conductivity type as the first conductivity type formed on the back surface side of the first conductivity type silicon substrate, and a back electrode electrically connected to the diffusion layer, The conductive type diffusion layer opposite to the first conductive type directly below the surface side electrode is not in contact with the dielectric film.
In this case, the light-receiving surface electrode is preferably composed of finger electrodes and bus bar electrodes. 1-3 show an example of such a solar cell.
1 is a schematic cross-sectional view of a solar cell according to one embodiment of the present invention, FIG. 2 is a plan view seen from the light receiving surface side of FIG. 1, and FIG. 3 is one embodiment of the present invention. It is a schematic sectional drawing explaining the manufacturing method of the solar cell which concerns on.

この太陽電池は、シリコン基板1と、前記シリコン基板1の受光面側に形成されるp型拡散層2と、該p型拡散層2と電気的に接続するフィンガー電極5とバスバー電極7、前記シリコン基板1の裏面側に形成されたn型拡散層3と、前記n型拡散層3と電気的に接続する裏面電極6とを備えた太陽電池であって、この太陽電池の製造方法は、シリコン基板の裏面側にn型拡散層を形成後、シリコン基板の受光面側にp型拡散層を形成し、次いで裏面電極6及びフィンガー電極5を形成する。その後、シリコン基板表面にプラズマCVD法により誘電膜4を形成した後、裏面及び受光面側にバスバー電極7を形成するものである。   This solar cell includes a silicon substrate 1, a p-type diffusion layer 2 formed on the light-receiving surface side of the silicon substrate 1, finger electrodes 5 and bus bar electrodes 7 electrically connected to the p-type diffusion layer 2, A solar cell including an n-type diffusion layer 3 formed on the back surface side of the silicon substrate 1 and a back electrode 6 electrically connected to the n-type diffusion layer 3, After forming the n-type diffusion layer on the back surface side of the silicon substrate, the p-type diffusion layer is formed on the light receiving surface side of the silicon substrate, and then the back electrode 6 and the finger electrode 5 are formed. Thereafter, the dielectric film 4 is formed on the silicon substrate surface by plasma CVD, and then the bus bar electrodes 7 are formed on the back surface and the light receiving surface side.

以下、本発明の太陽電池の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the solar cell of this invention is demonstrated in detail.

(1)シリコン基板
シリコン基板1はn型でもp型でもよいが、本発明の一実施例においてはn型基板を使用する。このシリコン単結晶基板はチョクラルスキー(CZ)法及びフロートゾーン(FZ)法のいずれの方法によって作製されていてもよい。シリコン基板1の比抵抗は、高性能の太陽電池を作る点から、0.1〜20Ω・cmが好ましく、0.5〜2.0Ω・cmがより好ましい。シリコン基板としては、リンドープn型単結晶シリコン基板が好ましい。リンドープのドーパント濃度は1×1015cm-3〜5×1016cm-3が好ましい[図3(A)]。
(1) Silicon substrate The silicon substrate 1 may be n-type or p-type, but an n-type substrate is used in one embodiment of the present invention. This silicon single crystal substrate may be produced by any of the Czochralski (CZ) method and the float zone (FZ) method. The specific resistance of the silicon substrate 1 is preferably 0.1 to 20 Ω · cm, and more preferably 0.5 to 2.0 Ω · cm from the viewpoint of producing a high-performance solar cell. As the silicon substrate, a phosphorus-doped n-type single crystal silicon substrate is preferable. The phosphorus-doped dopant concentration is preferably 1 × 10 15 cm −3 to 5 × 10 16 cm −3 [FIG. 3A].

(2)ダメージエッチング/テクスチャ形成
例えば、シリコン基板1を水酸化ナトリウム水溶液に浸し、ダメージ層をエッチングで取り除く。この基板のダメージ除去は、水酸化カリウム等の強アルカリ水溶液を用いてもよく、フッ硝酸等の酸水溶液でも同様の目的を達成することが可能である。ダメージエッチングを行った基板1にランダムテクスチャを形成する。太陽電池は通常、表面に凹凸形状を形成するのが好ましい。その理由は、可視光域の反射率を低減させるために、できる限り2回以上の反射を受光面で行わせる必要があるためである。これら一つ一つの山のサイズは1〜20μm程度が好ましい。代表的な表面凹凸構造としては、V溝、U溝が挙げられる。これらは、研削機を利用して形成可能である。また、ランダムな凹凸構造を作るには、水酸化ナトリウムにイソプロピルアルコールを加えた水溶液に浸してウェットエッチングしたり、他には、酸エッチングやリアクティブ・イオン・エッチング等を用いることができる。なお、図中では両面に形成したテクスチャ構造は微細なため省略する。
(2) Damage etching / texture formation For example, the silicon substrate 1 is immersed in an aqueous sodium hydroxide solution, and the damaged layer is removed by etching. For removing damage from the substrate, a strong alkaline aqueous solution such as potassium hydroxide may be used, and a similar purpose can be achieved with an acid aqueous solution such as hydrofluoric acid. A random texture is formed on the substrate 1 subjected to damage etching. In general, a solar cell preferably has an uneven shape on the surface. The reason is that in order to reduce the reflectance in the visible light region, it is necessary to cause the light receiving surface to perform reflection at least twice as much as possible. The size of each mountain is preferably about 1 to 20 μm. Typical surface uneven structures include V-grooves and U-grooves. These can be formed using a grinding machine. In order to create a random uneven structure, wet etching can be performed by dipping in an aqueous solution obtained by adding isopropyl alcohol to sodium hydroxide, or acid etching, reactive ion etching, or the like can be used. In the drawing, the texture structure formed on both sides is fine and therefore omitted.

(3)n型拡散層形成
シリコン基板1の裏面にドーパントを含む塗布剤を塗布した後に熱処理を行うことでn型拡散層3を裏面に形成する[図3(B)]。熱処理後、シリコン基板1に付いたガラス成分はガラスエッチング等により洗浄する。ドーパントはリンが好ましい。n型拡散層3の表面ドーパント濃度は、1×1018cm-3〜5×1020cm-3が好ましく、5×1018cm-3〜1×1020cm-3がより好ましい。
(3) Formation of n-type diffusion layer The n-type diffusion layer 3 is formed on the back surface by applying a coating agent containing a dopant to the back surface of the silicon substrate 1 and then performing heat treatment [FIG. 3 (B)]. After the heat treatment, the glass component attached to the silicon substrate 1 is washed by glass etching or the like. The dopant is preferably phosphorus. The surface dopant concentration of the n-type diffusion layer 3 is preferably 1 × 10 18 cm −3 to 5 × 10 20 cm −3, and more preferably 5 × 10 18 cm −3 to 1 × 10 20 cm −3 .

(4)p型拡散層形成
同様の処理を受光面で行い、p型拡散層2を受光面全体に形成する[図3(C)]。受光面にドーパントを含む塗布剤を塗布して熱処理を行い、p型拡散層2を形成する。ドーパントはボロンが好ましく、また、p型拡散層2の表面ドーパント濃度は、1×1018cm-3〜5×1020cm-3が好ましく、更には5×1018cm-3〜1×1020cm-3がより好ましい。
(4) Formation of p-type diffusion layer A similar process is performed on the light-receiving surface to form the p-type diffusion layer 2 on the entire light-receiving surface [FIG. 3C]. A p-type diffusion layer 2 is formed by applying a coating agent containing a dopant to the light receiving surface and performing a heat treatment. The dopant is preferably boron, and the surface dopant concentration of the p-type diffusion layer 2 is preferably 1 × 10 18 cm −3 to 5 × 10 20 cm −3 and more preferably 5 × 10 18 cm −3 to 1 × 10. 20 cm −3 is more preferable.

(5)pn接合分離
プラズマエッチャーを用い、pn接合分離を行う。このプロセスではプラズマやラジカルが受光面や裏面に侵入しないよう、サンプルをスタックし、その状態で端面を数ミクロン削る。接合分離後、基板に付いたガラス成分、シリコン粉等はガラスエッチング等により洗浄する。
(5) Pn junction isolation Pn junction isolation is performed using a plasma etcher. In this process, the sample is stacked so that plasma and radicals do not enter the light-receiving surface and the back surface, and the end surface is cut by several microns in that state. After bonding and separation, glass components, silicon powder, and the like attached to the substrate are washed by glass etching or the like.

(6)フィンガー電極形成
スクリーン印刷装置等を用い、受光面側及び裏面側に、例えば銀を含むペーストを、スクリーン印刷装置を用いてp型拡散層及びn型拡散層上に印刷し、櫛形電極パターン状に塗布して乾燥させる。最後に、焼成炉において、500〜900℃で1〜30分焼成を行い、前記p型拡散層及びn型拡散層と電気的に接続するフィンガー電極5、裏面電極6を形成する[図3(D)]。
(6) Finger electrode formation Using a screen printing device or the like, a paste containing silver, for example, is printed on the p-type diffusion layer and the n-type diffusion layer using a screen printing device on the light-receiving surface side and the back surface side. Apply in a pattern and dry. Finally, firing is performed at 500 to 900 ° C. for 1 to 30 minutes in a firing furnace to form the finger electrode 5 and the back electrode 6 that are electrically connected to the p-type diffusion layer and the n-type diffusion layer [FIG. D)].

(7)誘電体膜形成
引き続き、CVD装置を用い、n型拡散層3及びp型拡散層2上に誘電体膜4である窒化シリコン膜を堆積する[図3(E)]。この膜厚は70〜100nmが好ましい。他の反射防止膜として酸化シリコン膜、二酸化チタン膜、酸化亜鉛膜、酸化スズ膜、酸化アルミニウム膜、フッ化マグネシウム膜及びこれらの膜の組合せなどがあり、代替が可能である。また、形成法も上記以外にリモートプラズマCVD法、コーティング法、真空蒸着法などがあるが、経済的な観点から、上記窒化シリコン膜などをプラズマCVD法によって形成するのが好適である。
(7) Dielectric Film Formation Subsequently, a silicon nitride film as the dielectric film 4 is deposited on the n-type diffusion layer 3 and the p-type diffusion layer 2 using a CVD apparatus [FIG. 3 (E)]. This film thickness is preferably 70 to 100 nm. Other antireflection films include silicon oxide films, titanium dioxide films, zinc oxide films, tin oxide films, aluminum oxide films, magnesium fluoride films, and combinations of these films, which can be substituted. In addition to the above, the formation method includes a remote plasma CVD method, a coating method, a vacuum deposition method, and the like. From an economical viewpoint, it is preferable to form the silicon nitride film or the like by the plasma CVD method.

(8)バスバー電極形成
フィンガー電極及び裏面電極形成同様、スクリーン印刷装置等を用い、受光面側及び裏面側に、例えば銀を含むペーストを、スクリーン印刷装置を用いて前記形成した誘電体膜上に印刷し、乾燥させる[図3(F)]。引き続き焼成炉にて500〜900℃で1〜30分焼成を行い、前記フィンガー電極と接続するバスバー電極7を形成する[図3(G)]。なお、図3(F)は焼成前、(G)は焼成後の状態を示す。
(8) Bus bar electrode formation Similar to the finger electrode and back surface electrode formation, a screen printing device or the like is used, and, for example, a paste containing silver is applied to the light receiving surface side and the back surface side on the dielectric film formed using the screen printing device. Print and dry [FIG. 3 (F)]. Subsequently, firing is performed at 500 to 900 ° C. for 1 to 30 minutes in a firing furnace to form a bus bar electrode 7 connected to the finger electrode [FIG. 3 (G)]. FIG. 3F shows a state before firing, and FIG. 3G shows a state after firing.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
図3及び表1に示す製造方法フローチャートにより、図1に示す太陽電池を製造した。
結晶面方位(100)、15.65cm角200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm-3)リンドープn型単結晶シリコン基板を、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った。得られたシリコン基板1の裏面に、リンドーパントを含む塗布剤を塗布した後に、900℃,1時間熱処理を行い、n型拡散層3を裏面に形成した。熱処理後、基板に付いたガラス成分は高濃度フッ酸溶液等により除去後、洗浄した。
引き続き受光面にボロンドーパントを含む塗布剤を塗布した後に、1000℃,1時間熱処理を行い、p型拡散層2を受光面全体に形成した。
[Example 1]
The solar cell shown in FIG. 1 was manufactured according to the manufacturing method flowchart shown in FIG.
Crystal plane orientation (100), 15.65 cm square 200 μm thickness, as-slice specific resistance 2 Ω · cm (dopant concentration 7.2 × 10 15 cm −3 ) Phosphorus-doped n-type single crystal silicon substrate is immersed in an aqueous sodium hydroxide solution The damaged layer was removed by etching, and texture formation was performed by soaking in an aqueous solution obtained by adding isopropyl alcohol to an aqueous potassium hydroxide solution and performing alkali etching. After applying the coating agent containing a phosphorus dopant to the back surface of the obtained silicon substrate 1, heat treatment was performed at 900 ° C. for 1 hour to form the n-type diffusion layer 3 on the back surface. After the heat treatment, the glass component attached to the substrate was removed by high concentration hydrofluoric acid solution and then washed.
Subsequently, a coating agent containing a boron dopant was applied to the light receiving surface, followed by heat treatment at 1000 ° C. for 1 hour to form the p-type diffusion layer 2 over the entire light receiving surface.

次に、プラズマエッチャーを用い、pn接合分離を行った。プラズマやラジカルが受光面や裏面に侵入しないよう、対象をスタックした状態で端面を数ミクロン削った。基板に付いたガラス成分を高濃度フッ酸溶液等により除去後、洗浄した。
次に、受光面側及び裏面側にそれぞれ銀ペーストを電極印刷し、乾燥後800℃で20分焼成を行い、フィンガー電極5及び裏面電極6を形成した。
引き続き、ダイレクトプラズマCVD装置を用い、受光面側p型拡散層、及び裏面n型拡散層上に誘電体膜であるシリコン窒化膜4を積層した。この膜厚は70nmであった。
最後に受光面側及び裏面側にそれぞれ銀ペーストを電極印刷し、乾燥後800℃で20分焼成を行い、バスバー電極7を形成した。
Next, pn junction isolation was performed using a plasma etcher. In order to prevent plasma and radicals from entering the light-receiving surface and back surface, the end face was cut several microns with the target stacked. The glass component attached to the substrate was removed with a high-concentration hydrofluoric acid solution and then washed.
Next, silver paste was electrode-printed on the light-receiving surface side and the back surface side, respectively, dried, and then fired at 800 ° C. for 20 minutes to form the finger electrode 5 and the back electrode 6.
Subsequently, a silicon nitride film 4 as a dielectric film was laminated on the light receiving surface side p-type diffusion layer and the back surface n-type diffusion layer using a direct plasma CVD apparatus. This film thickness was 70 nm.
Finally, a silver paste was electrode-printed on each of the light-receiving surface side and the back surface side, dried, and then fired at 800 ° C. for 20 minutes to form bus bar electrodes 7.

[比較例1]
図4に示した通り、受光面電極及び裏面電極の形成を、シリコン窒化膜形成後に行った以外は、実施例1と同様な方法にて作製した。
即ち、図3の実施例と対比した場合、図4(C)までの工程は図3(C)までと同じであるが、p型拡散層の形成後、図4(D)に示すように、ダイレクトプラズマCVD装置によりシリコン窒化膜4を受光面側p型拡散層2、及び裏面n型拡散層3上に形成し、その後、図4(E)に示すように、フィンガー電極5及び裏面電極6をファイヤースルーさせて各拡散層2,3と接続して形成し、更にバスバー電極を形成したものである。なお、図4(E),(F)ではフィンガー電極5、裏面電極6は拡散層2,3と接続されていないように示されているが、焼成によりファイヤースルーされ、実際は実施例ほど完全ではないが、拡散層2,3と接続されている。
[Comparative Example 1]
As shown in FIG. 4, the light-receiving surface electrode and the back surface electrode were formed by the same method as in Example 1 except that the formation was performed after the silicon nitride film was formed.
That is, when compared with the embodiment of FIG. 3, the process up to FIG. 4C is the same as that up to FIG. 3C, but after forming the p-type diffusion layer, as shown in FIG. Then, a silicon nitride film 4 is formed on the light-receiving surface side p-type diffusion layer 2 and the back surface n-type diffusion layer 3 by a direct plasma CVD apparatus, and then, as shown in FIG. 6 is fired through and connected to each of the diffusion layers 2 and 3, and a bus bar electrode is further formed. 4E and 4F show that the finger electrode 5 and the back electrode 6 are not connected to the diffusion layers 2 and 3, but are fired through by firing, and are actually not as complete as the examples. Although not, it is connected to the diffusion layers 2 and 3.

実施例1の製造フローチャートを表1に、比較例1の製造フローチャートを表2に示す。   The production flowchart of Example 1 is shown in Table 1, and the production flowchart of Comparative Example 1 is shown in Table 2.

Figure 0005375414
Figure 0005375414

Figure 0005375414
Figure 0005375414

実施例及び比較例で得られた太陽電池を、25℃の雰囲気の中、ソーラーシミュレーター(光強度:1kW/m2,スペクトル:AM1.5グローバル)の下で電流電圧特性を測定した。結果を表3に示す。なお、表中の数字は実施例及び比較例で試作したセル10枚の平均値である。 The current-voltage characteristics of the solar cells obtained in Examples and Comparative Examples were measured in a 25 ° C. atmosphere under a solar simulator (light intensity: 1 kW / m 2 , spectrum: AM1.5 global). The results are shown in Table 3. In addition, the number in a table | surface is an average value of ten cells made as an experiment in an Example and a comparative example.

Figure 0005375414
Figure 0005375414

上記のように、実施例による太陽電池は、受光面フィンガー電極とシリコン基板界面とのコンタクト性が増した効果により、比較例と比較して、フィルファクタが向上した結果となった。   As described above, the solar cell according to the example resulted in an improved fill factor compared to the comparative example due to the effect of increased contact between the light-receiving surface finger electrode and the silicon substrate interface.

1 シリコン基板
2 p型拡散層
3 n型拡散層
4 誘電体膜
5 受光面電極(フィンガー電極)
6 裏面電極
7 バスバー電極
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 P-type diffusion layer 3 N-type diffusion layer 4 Dielectric film 5 Light-receiving surface electrode (finger electrode)
6 Back electrode 7 Bus bar electrode

Claims (7)

第一導電型のシリコン基板と、前記シリコン基板の受光面側に形成された第一導電型と反対の導電型拡散層と、この拡散層に電気的に接続するフィンガー電極及びバスバー電極からなる受光面電極と、前記第一導電型のシリコン基板の裏面側に形成された第一導電型と同じ導電型の拡散層と、この拡散層に電気的に接続する裏面電極とを備える太陽電池であって、前記フィンガー電極が第一導電型と反対の導電型拡散層上に直接形成され、酸化シリコン膜、窒化シリコン膜、酸化チタン膜、酸化アルミニウム膜、酸化スズ膜、酸化亜鉛膜、フッ化マグネシウム膜又はこれらの膜の組合せからなる誘電体膜が前記フィンガー電極と該フィンガー電極を除く領域の前記第一導電型と反対の導電型拡散層を覆うように形成され、前記バスバー電極が前記誘電体膜上に形成され、かつ該誘電体膜をファイヤースルーして前記フィンガー電極と接続されてなることを特徴とする太陽電池。 Light reception comprising a first conductive type silicon substrate, a conductive type diffusion layer opposite to the first conductive type formed on the light receiving surface side of the silicon substrate, and finger electrodes and bus bar electrodes electrically connected to the diffusion layer A solar cell comprising a surface electrode, a diffusion layer of the same conductivity type as the first conductivity type formed on the back surface side of the first conductivity type silicon substrate, and a back electrode electrically connected to the diffusion layer. The finger electrode is directly formed on the conductive type diffusion layer opposite to the first conductive type, and a silicon oxide film, a silicon nitride film, a titanium oxide film, an aluminum oxide film, a tin oxide film, a zinc oxide film, and magnesium fluoride. A dielectric film comprising a film or a combination of these films is formed to cover the finger electrode and a conductive type diffusion layer opposite to the first conductive type in a region excluding the finger electrode; Serial dielectric is formed on the film, and a solar cell of the dielectric film by firing through, characterized in that formed by connecting to the finger electrode. 前記シリコン基板の裏面側において、前記裏面電極が前記シリコン基板の裏面側の第一導電型と同じ導電型の拡散層上に直接形成され、前記誘電体膜が前記裏面電極と該裏面電極を除く領域の前記第一導電型と同じ導電型の拡散層を覆うように形成され、更に裏面バスバー電極が前記誘電体膜上に形成され、かつ該誘電体膜をファイヤースルーして前記裏面電極と接続されてなることを特徴とする請求項1記載の太陽電池。On the back side of the silicon substrate, the back electrode is directly formed on a diffusion layer of the same conductivity type as the first conductivity type on the back side of the silicon substrate, and the dielectric film excludes the back electrode and the back electrode A diffusion layer of the same conductivity type as that of the first conductivity type in the region is formed, and a backside bus bar electrode is formed on the dielectric film, and connected to the backside electrode through a fire-through of the dielectric film The solar cell according to claim 1, wherein the solar cell is formed. 前記誘電体膜が窒化シリコン膜からなることを特徴とする請求項1又は2記載の太陽電池。The solar cell according to claim 1, wherein the dielectric film is made of a silicon nitride film. 第一導電型のシリコン基板と、前記シリコン基板の受光面側に形成された第一導電型と反対の導電型拡散層と、この拡散層に電気的に接続するフィンガー電極及びバスバー電極からなる受光面電極と、前記第一導電型のシリコン基板の裏面側に形成された第一導電型と同じ導電型の拡散層と、この拡散層に電気的に接続する裏面電極とを備える太陽電池の製造方法であって、前記シリコン基板の受光面側に第一導電型と反対の導電型拡散層を形成し、この拡散層に前記フィンガー電極を直接形成し、前記フィンガー電極と該フィンガー電極を除く領域の前記第一導電型と反対の導電型拡散層を覆って、酸化シリコン膜、窒化シリコン膜、酸化チタン膜、酸化アルミニウム膜、酸化スズ膜、酸化亜鉛膜、フッ化マグネシウム膜又はこれらの膜の組合せからなる誘電体膜を形成した後、この誘電体膜の上からこの誘電体膜をファイヤースルーさせてバスバー電極を形成し、前記フィンガー電極と接続することを特徴とする太陽電池の製造方法。Light reception comprising a first conductive type silicon substrate, a conductive type diffusion layer opposite to the first conductive type formed on the light receiving surface side of the silicon substrate, and finger electrodes and bus bar electrodes electrically connected to the diffusion layer Manufacturing a solar cell comprising a surface electrode, a diffusion layer of the same conductivity type as the first conductivity type formed on the back surface side of the first conductivity type silicon substrate, and a back electrode electrically connected to the diffusion layer A method wherein a conductive type diffusion layer opposite to the first conductive type is formed on the light receiving surface side of the silicon substrate, the finger electrode is directly formed on the diffusion layer, and the finger electrode and the region excluding the finger electrode are formed Covering the diffusion layer opposite to the first conductivity type of silicon oxide film, silicon nitride film, titanium oxide film, aluminum oxide film, tin oxide film, zinc oxide film, magnesium fluoride film, or these films After forming the dielectric film consisting of combined, the dielectric film is fire-through the bus bar electrode is formed by manufacturing method of a solar cell, characterized in that connected to the finger electrode over the dielectric film. 前記シリコン基板の裏面側において、裏面電極を前記第一導電型と同じ導電型の拡散層上に直接形成し、前記裏面電極と該裏面電極を除く領域の前記第一導電型と同じ導電型の拡散層を覆って前記誘電体膜を形成した後、この誘電体膜の上からこの誘電体膜をファイヤースルーさせて裏面バスバー電極を形成し、前記裏面電極と接続することを特徴とする請求項4記載の太陽電池の製造方法。On the back side of the silicon substrate, a back electrode is directly formed on the diffusion layer of the same conductivity type as the first conductivity type, and the same conductivity type as the first conductivity type in the region excluding the back electrode and the back electrode. The dielectric film is formed so as to cover a diffusion layer, and then the dielectric film is fired through from above the dielectric film to form a back busbar electrode and connected to the back electrode. 4. The method for producing a solar cell according to 4. 前記フィンガー電極及び裏面電極を同時に焼成して形成し、更に前記バスバー電極及び裏面バスバー電極を同時に焼成して受光面及び裏面の前記誘電体膜をそれぞれファイヤースルーさせて形成することを特徴とする請求項5記載の太陽電池の製造方法。The finger electrode and the back electrode are formed by firing at the same time, and the bus bar electrode and the back bus bar electrode are fired at the same time to form the dielectric films on the light receiving surface and the back surface by fire-through, respectively. Item 6. A method for producing a solar cell according to Item 5. 前記誘電体膜をプラズマCVD法により形成することを特徴とする請求項4乃至6のいずれか1項記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 4, wherein the dielectric film is formed by a plasma CVD method.
JP2009178854A 2009-07-31 2009-07-31 Solar cell and manufacturing method thereof Active JP5375414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178854A JP5375414B2 (en) 2009-07-31 2009-07-31 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178854A JP5375414B2 (en) 2009-07-31 2009-07-31 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011035101A JP2011035101A (en) 2011-02-17
JP5375414B2 true JP5375414B2 (en) 2013-12-25

Family

ID=43763898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178854A Active JP5375414B2 (en) 2009-07-31 2009-07-31 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5375414B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103501B1 (en) * 2011-05-30 2012-01-09 한화케미칼 주식회사 Solar cell and the fabrication method thereof
JP2013149815A (en) * 2012-01-20 2013-08-01 Shin Etsu Chem Co Ltd Solar battery and method of manufacturing the same
JP6176195B2 (en) * 2014-06-30 2017-08-09 信越化学工業株式会社 Solar cell
JP2015062251A (en) * 2014-11-28 2015-04-02 信越化学工業株式会社 Solar cell and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156881A (en) * 1985-12-28 1987-07-11 Sharp Corp Solar battery device
EP0729189A1 (en) * 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof
JPH11135812A (en) * 1997-10-29 1999-05-21 Kyocera Corp Formation method for solar cell element
JP2004006565A (en) * 2002-04-16 2004-01-08 Sharp Corp Solar cell and its manufacturing method
JP4660642B2 (en) * 2003-10-17 2011-03-30 信越化学工業株式会社 Solar cell and manufacturing method thereof
TWI438916B (en) * 2007-07-13 2014-05-21 Sanyo Electric Co Method for making a solar battery module set

Also Published As

Publication number Publication date
JP2011035101A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP2009152222A (en) Manufacturing method of solar cell element
TW201203588A (en) Solar cell including sputtered reflective layer and method of manufacture thereof
CN105247686A (en) Solar battery cell, method for producing same, and solar battery module
US9171975B2 (en) Solar cell element and process for production thereof
JP6525583B2 (en) Solar cell element and solar cell module
JP5477220B2 (en) Solar cell and manufacturing method thereof
WO2014206211A1 (en) Back-passivated solar battery and manufacturing method therefor
JP5375414B2 (en) Solar cell and manufacturing method thereof
KR101159277B1 (en) A fabricating method of solar cell using ferroelectric material
CN113224210A (en) Preparation method of P-type IBC battery
TWM517422U (en) Heterojunction solar cell with local passivation
JP5817046B2 (en) Manufacturing method of back contact type crystalline silicon solar cell
JP5623131B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
JP2001257371A (en) Method for manufacturing solar cell, solar cell and condensing type solar cell module
TWI415272B (en) Method of fabricating rear surface point contact of solar cells
Kim et al. The influence of surface texture on the efficiency of crystalline Si solar cells
JP5501549B2 (en) Photoelectric conversion element and photoelectric conversion module composed thereof
CN114038922A (en) Back contact heterojunction solar cell capable of improving insulation and isolation effects and manufacturing method thereof
JP5494511B2 (en) Manufacturing method of solar cell
JP2014075505A (en) Photoelectric conversion device, process of manufacturing the same, and photoelectric conversion module
JP5545277B2 (en) Solar cell and manufacturing method thereof
JP6076814B2 (en) Manufacturing method of solar cell
JP5516611B2 (en) Solar cell manufacturing method and solar cell
TWI532205B (en) A Method for Fabricating Crystalline Silicon Solar Cell Having Local Rear Contacts and Passivation Layer and the Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150