JPS5979580A - Manufacture of solar battery - Google Patents

Manufacture of solar battery

Info

Publication number
JPS5979580A
JPS5979580A JP57191160A JP19116082A JPS5979580A JP S5979580 A JPS5979580 A JP S5979580A JP 57191160 A JP57191160 A JP 57191160A JP 19116082 A JP19116082 A JP 19116082A JP S5979580 A JPS5979580 A JP S5979580A
Authority
JP
Japan
Prior art keywords
diffusion
layer
solar battery
electrode
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57191160A
Other languages
Japanese (ja)
Inventor
Junichi Honda
本田 潤一
Taizou Satou
佐藤 太蔵
Hiroyuki Watanabe
博之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SOLAR ENERG KK
Japan Solar Energy Co Ltd
Original Assignee
JAPAN SOLAR ENERG KK
Japan Solar Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SOLAR ENERG KK, Japan Solar Energy Co Ltd filed Critical JAPAN SOLAR ENERG KK
Priority to JP57191160A priority Critical patent/JPS5979580A/en
Publication of JPS5979580A publication Critical patent/JPS5979580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To manufacture an Si solar battery with excellent conversion efficiency by means of double diffusion using a simple process. CONSTITUTION:After removing a broken layer on the surface of a P type Si substrate 1, a PSG2 is formed and an N<+> layer 3 is provided by P diffusion. The PSG2 is etched using a resist mask 4 to be heat-treated for the P diffusion. Next the PSG2 is etched and another resist mask 5 is used to etch the N<+> layers on the sides and back. The mask 5 is removed to provide the surface and the back with electrodes 6, 7 respectively made of Ag and Al further covered with solders 7 finally providing the surface with a reflection preventing film 9 to complete a solar battery. Through these procedures, the diffusion temperature may be set up within the range of 800-900 deg.C, (opertional temperature of 830- 900 deg.C) depending upon the diffusing time, to manufacture the solar battery with excellent performances and shallow junction surface.

Description

【発明の詳細な説明】 く技術分野〉 本発明は太陽電池の製造方法ムこ関する。[Detailed description of the invention] Technical fields> The present invention relates to a method for manufacturing solar cells.

〈角″決課題〉 一般に、シリコン結晶を基板とする太陽電池は、内部電
場を形成するためのPN接合と起電力を取り出すだめの
表面電極及び裏面電極を備えた構造をしている。更に表
面の反射を少なくしより効率を高めるために、反射防止
膜を備える場合もある。
<Corneral resolution problem> In general, solar cells using silicon crystal as a substrate have a structure that includes a PN junction for forming an internal electric field, and a front surface electrode and a back surface electrode for extracting electromotive force. In some cases, an anti-reflection coating is provided to reduce reflection and improve efficiency.

太陽電池素子において、高い効率を得るためには、入射
した光によって発生した少数荷電担体がPN接合部分に
有効に到達する必要があるが、そのためには、素子基板
自身の結晶の品質が良いこと、即ち少数荷電担体の拡散
長が長いこと、またPN接合面の深さが適切であること
などが必要である。少数荷電担体の拡散長が適当な場合
、素子の短波長側の分光感度を向上させるためには、接
合の深さをなるべく浅(して、結晶のごく表面で吸収さ
れる短波長側の光からの寄与をなるべく大きくなるよう
にする必要がある。このためには、受光面側での接合の
深さをなるべく浅くする方法が取られるが、あまり浅く
すると、次に表面に電極を形成した場合に、電極形成利
料とンリコンとの合金化が生した場合に、その合金化領
域がPN接合の境界面にまで及んで接合のつきぬけを起
こし、このために素子の特性を低下させることになる。
In order to obtain high efficiency in solar cell elements, it is necessary for minority charge carriers generated by incident light to effectively reach the PN junction, but for this purpose, the quality of the crystal of the element substrate itself must be good. That is, it is necessary that the diffusion length of minority charge carriers be long and that the depth of the PN junction surface be appropriate. When the diffusion length of minority charge carriers is appropriate, in order to improve the spectral sensitivity of the device on the short wavelength side, the depth of the junction should be made as shallow as possible (by which the light on the short wavelength side is absorbed at the very surface of the crystal). It is necessary to maximize the contribution from In some cases, when alloying occurs between the electrode forming material and silicon, the alloyed region extends to the interface of the PN junction, causing the junction to penetrate through, thereby degrading the characteristics of the element. Become.

一方この領域を浅くして、PN接合部分まで及ばないよ
うに電極形成時の作成条件を調整して、例えば焼成温度
を低温で処理するようにした場合には、充分な電気的接
続が得られなかったり、機械的な強度が(8られないた
め端子の接続が出来ないなどの不都合を生しる。このた
め一般にはあまりPN接合の深さを浅くすることが出来
ない。
On the other hand, if this region is made shallow and the electrode formation conditions are adjusted so that it does not extend to the PN junction, for example by firing at a low temperature, a sufficient electrical connection will not be obtained. Otherwise, the mechanical strength may be poor, resulting in inconveniences such as the inability to connect terminals.For this reason, it is generally not possible to make the depth of the PN junction very shallow.

〈発明の目的〉 本発明の主たる目的は、簡単な方法で二重拡散処理を行
うことにより、変換効率の高いシリコン結晶太陽電池の
製造方法を提供することにある。
<Objective of the Invention> The main object of the present invention is to provide a method for manufacturing a silicon crystal solar cell with high conversion efficiency by performing double diffusion treatment using a simple method.

〈発明の構成〉 本発明の製造方法は、高温中でシリコンウェハーの表面
に被拡散不純物元素を含むシリコン酸化膜層を形成する
ことにより、所定深さまで第1の拡散を行い、次に、素
子表面に形成すべき電極パターンに相当する部分を残し
て上記被拡散不純物3へ 元素を含むシリコン酸化膜層を除去し、次に再び高温中
で熱処理を行うことにより上記電極パターンに相当する
部分に第2の拡散を行い、その後、電極を設りることを
特徴としている。
<Structure of the Invention> The manufacturing method of the present invention performs first diffusion to a predetermined depth by forming a silicon oxide film layer containing an impurity element to be diffused on the surface of a silicon wafer at high temperature, and then The silicon oxide film layer containing the element to be diffused 3 is removed leaving a portion corresponding to the electrode pattern to be formed on the surface, and then heat treatment is performed again at high temperature to form the portion corresponding to the electrode pattern. The method is characterized in that a second diffusion is performed and then an electrode is provided.

本発明における拡散温度は、拡散時間にも依存するが、
800°Cないし950”Cの筒面で実施することがで
き、830°Cないし900 ’Cの範囲が実用的であ
る。
Although the diffusion temperature in the present invention also depends on the diffusion time,
It can be carried out on a cylindrical surface at 800°C to 950''C, with a range of 830°C to 900'C being practical.

〈実施例1〉 第1図ないし第12図に本発明の第1の実施例を模型図
により経時的に示す。P型のSi ウェハー1を弗酸と
硝酸の混合比率が1:9なる混酸により5分間エツチン
グしてウェハー表面のダメージ層を含む約20μの層を
取り除き、水洗を行った(第1図)。引き続いて拡散炉
中において、オキシ塩化燐(POCjl!3)を拡散源
として気相反応により燐を拡散した。拡散温度830℃
で炉中にPOCβ3の蒸気を20分送入することにより
ウェハー表面には燐を含む燐ガラス層2が形成された。
<Example 1> Figs. 1 to 12 show a first example of the present invention in schematic diagrams over time. A P-type Si wafer 1 was etched for 5 minutes using a mixed acid containing hydrofluoric acid and nitric acid at a mixing ratio of 1:9 to remove a layer of about 20 μm including a damaged layer on the wafer surface, and then washed with water (FIG. 1). Subsequently, in a diffusion furnace, phosphorus was diffused by gas phase reaction using phosphorus oxychloride (POCjl!3) as a diffusion source. Diffusion temperature 830℃
A phosphorus glass layer 2 containing phosphorus was formed on the wafer surface by feeding POCβ3 vapor into the furnace for 20 minutes.

そのガラス層中より燐がシリコン基板中に拡散すること
によりウェハー表面にn+N3を形成した(第2図)。
Phosphorus was diffused from the glass layer into the silicon substrate to form n+N3 on the wafer surface (FIG. 2).

この拡散後のウェハーの受光表面となる片面に、表面電
極パターンと同一の)iターンで且つ、わずかにそのパ
ターンの輪郭寸法の大きなパターン(Q、l*mないし
0.21中の広1.M)4とエツチングレジスト4を印
刷塗布することにより形成した(第3図)。次に、弗酸
及び純水1:3の混合液によりエツチングして、パター
ン部分の燐ガラス層のみを残して露出した部分の燐ガラ
ス層を除去した(第4図)。工・ノチングレジスト4を
有機溶剤により除去した後、純水により洗浄した(第5
図)。次に再び860 ’Cの炉中で30分間熱処理し
た結果、燐ガラス層の残された部分で番よ、新たに燐の
シリコン基板への拡散が起こり、そのため面積抵抗はそ
れぞれ燐ガラス層の残された部分35Ω、除去した部分
45Ωと差が生じたく第6図)。この熱処理の後に弗酸
及び純水1:3の混合液によりエツチングりで残ってい
た燐力゛ラス層2を取り除いた(第7図)。次に、ウェ
ハー表面にエツチングレジスト5を塗布した後に(第8
図)、裏面を前記混酸により工・ノチングして裏面と側
面のn干鰯3を除去した(第9図)。次に、エツチング
レジスト5を有機溶剤により除去した後、純水にて洗浄
した(第10図)。このウニ/”t−の表面及び裏面に
印刷方法によりAgペースト及び/lベース1−を電極
として印刷焼成を行った。
After this diffusion, on one side of the wafer, which becomes the light-receiving surface, there is a pattern with an i-turn (same as the surface electrode pattern) and a slightly larger outline size (Q, width 1.5 in l*m to 0.21). It was formed by printing and coating M) 4 and etching resist 4 (FIG. 3). Next, etching was performed using a mixture of hydrofluoric acid and pure water in a ratio of 1:3 to remove the exposed portion of the phosphor glass layer, leaving only the phosphor glass layer in the patterned portion (FIG. 4). After removing the notching resist 4 with an organic solvent, it was washed with pure water (5th
figure). Next, as a result of heat treatment again in a furnace at 860'C for 30 minutes, new diffusion of phosphorus into the silicon substrate occurs in the remaining portion of the phosphor glass layer, so that the sheet resistance increases, respectively. There should be a difference between the removed part (35Ω) and the removed part (45Ω) (Figure 6). After this heat treatment, the remaining phosphorescent layer 2 was removed by etching with a 1:3 mixture of hydrofluoric acid and pure water (FIG. 7). Next, after coating the etching resist 5 on the wafer surface (8th
(Fig. 9), the back side was processed and notched with the mixed acid to remove the dried sardines 3 on the back and sides (Fig. 9). Next, the etching resist 5 was removed using an organic solvent and then washed with pure water (FIG. 10). Printing and baking were performed on the front and back surfaces of this sea urchin/"t- by a printing method using Ag paste and /l base 1- as electrodes.

表面電極パターンは先に二重に拡散したパターン部分と
一致するように合わせた。表面及び裏面の電極6及び7
を焼成した後、半田デツプを行い・半田8で電極を覆っ
た(第11図)。最後に反射防止膜9を表面、こ形成す
ることにより、当該太陽電池素子を得た。
The surface electrode pattern was aligned to match the previously doubly diffused pattern portion. Electrodes 6 and 7 on the front and back sides
After firing, a solder layer was applied and the electrodes were covered with solder 8 (FIG. 11). Finally, an antireflection film 9 was formed on the surface to obtain the solar cell element.

〈比較例〉 一方、比較のために従来法によって素子を製造した。そ
の製造工程を第13図ないし第19図に示す。
<Comparative Example> On the other hand, for comparison, an element was manufactured by a conventional method. The manufacturing process is shown in FIGS. 13 to 19.

P型のシリコンウェハー1を弗酸と硝酸の混合比率が1
;9なる混酸により5分間エツチングしてウェハー表面
のダメージ層を含む約20μの層を取り除き水洗を行っ
た(第13図)。引続き拡散炉中において860℃で2
3分間オキシ塩化燐を拡散源として気相反応により燐を
拡散してn→−屓3をウェハー表面に形成した(第14
図)。この時の面積抵抗は35Ωであった。この拡散後
ウェハーの受光表面となる片面にエツチングレジスト5
を塗布した後に(第15図)、裏面を前記混酸によりエ
ツチングして裏面のn+Jiのみを除去した(第16図
)。エツチングレジストを有機溶剤により除去した後、
弗酸と純水の混合液により表面に残った燐ガラス層も除
去してから純水にて洗浄した(第17図)。その後素子
の表面及び裏面にAg及びA/ペーストを印刷し焼成し
、半田デツプを行った(第18図)。最後に、素子表面
に反射防止膜9を形成した(第19図)。
P-type silicon wafer 1 is mixed with hydrofluoric acid and nitric acid at a mixing ratio of 1.
The wafer surface was etched for 5 minutes with a mixed acid of No. 9 to remove a layer of about 20 μm including a damaged layer, and then washed with water (FIG. 13). Subsequently, in a diffusion furnace at 860°C
Phosphorus was diffused by gas phase reaction using phosphorus oxychloride as a diffusion source for 3 minutes to form n→-layer 3 on the wafer surface (14th
figure). The sheet resistance at this time was 35Ω. After this diffusion, an etching resist 5 is applied to one side of the wafer which becomes the light receiving surface.
After coating (FIG. 15), the back surface was etched with the mixed acid to remove only n+Ji on the back surface (FIG. 16). After removing the etching resist with an organic solvent,
The phosphorus glass layer remaining on the surface was also removed with a mixture of hydrofluoric acid and pure water, and then washed with pure water (FIG. 17). Thereafter, Ag and A/pastes were printed on the front and back surfaces of the device, baked, and soldered (FIG. 18). Finally, an antireflection film 9 was formed on the surface of the element (FIG. 19).

表1に本発明に基づいた製法により得られた太陽電池素
子の電気的特性を比較例1と対比して示した。測定条件
はソーラーシュミレークでAMI(照射強度100mW
/crA)温度25℃において測定した。
Table 1 shows the electrical characteristics of the solar cell element obtained by the manufacturing method based on the present invention in comparison with Comparative Example 1. The measurement conditions were solar simulator and AMI (irradiation intensity 100mW).
/crA) Measured at a temperature of 25°C.

〈実施例2〉 第2の実施例としてで実施例1の第8図以降の工程の代
わりに第20図ないし第27図で示される工程による製
造方法を説明する。
<Example 2> As a second example, a manufacturing method using the steps shown in FIGS. 20 to 27 instead of the steps after FIG. 8 of Example 1 will be described.

この実施例は、二重拡散までの工程は第1の実施例と同
じであるが、反射防止膜を形成した後に電極を形成する
点で第1の実施例と相違している。
This example is the same as the first example in the steps up to double diffusion, but is different from the first example in that the electrodes are formed after the antireflection film is formed.

この相違により変換効率が向上した。その理由は、25
0°C〜600°Cの高温度で反射防止膜が形成された
ため素子表面が不活性化し、受光時に生した少数担体の
表面再結合速度が低下するためであると考えられる。
This difference improved conversion efficiency. The reason is 25
This is thought to be because the antireflection film was formed at a high temperature of 0° C. to 600° C., which inactivated the element surface and reduced the surface recombination rate of minority carriers generated during light reception.

二重拡散を行いすべての燐ガラス層を除去した後に窒化
シリコンの反射防止膜10をプラズマCVD装置により
素子表面に堆積した(第20図)。
After double diffusion was performed and all the phosphorous glass layers were removed, an antireflection film 10 of silicon nitride was deposited on the device surface using a plasma CVD apparatus (FIG. 20).

続いてエツチングレジスト5を反射防止膜10の表面に
塗布して(第21図)素子の裏面を前記の混酸によりエ
ツチングしてn+Fi3を除去した(第22図)。エツ
チングレジスト5を有機溶剤で取り除き(第23図)、
再びエツチングレジスト11を印刷塗布して表面電極パ
ターンに相当する部分の反射防止膜を取り除くためのマ
スクパターンを形成した(第24図)。再び前記の弗酸
と純水の混合液でエツチングを行い、反射防止膜の露出
した部分をエツチングで取り除いた(第25図)。
Subsequently, an etching resist 5 was applied to the surface of the antireflection film 10 (FIG. 21), and the back surface of the element was etched with the mixed acid described above to remove n+Fi3 (FIG. 22). Remove the etching resist 5 with an organic solvent (Fig. 23),
Etching resist 11 was applied again by printing to form a mask pattern for removing the antireflection film in the portion corresponding to the surface electrode pattern (FIG. 24). Etching was performed again using the above-mentioned mixture of hydrofluoric acid and pure water, and the exposed portion of the antireflection film was removed by etching (FIG. 25).

次にエツチングレジスト11を有機溶剤により除いた(
第26図)。最後に、表面及び裏面にAg及びAIペー
ストを印刷焼成して電極6,7を形成した後、半田デツ
プにより半田8を電極表面につしJて当該素子が得られ
た(第27図)。
Next, the etching resist 11 was removed using an organic solvent (
Figure 26). Finally, after printing and firing Ag and AI pastes on the front and back surfaces to form electrodes 6 and 7, solder 8 was applied to the electrode surfaces using a solder dip to obtain the device (FIG. 27).

〈実施例3〉 − 第3の実施例として、実施例1の第7図以降の工程の代
わりに第39図ないし第44図、第26図及び第27図
で示される工程による製造方法を説明する。
<Example 3> - As a third example, a manufacturing method using the steps shown in FIGS. 39 to 44, FIGS. 26 and 27 instead of the steps after FIG. 7 of Example 1 will be explained. do.

この実施例は、二重拡散までの工程は第1及び′第2の
実施例と同じであるが、第6図に示す電極部分の燐ガラ
ス層2を残したまま反射防止膜を形成し、その後、電極
形成部分の反射防止膜とヱノヂングレジスl−を一工程
で除去することにより、工程数を簡素化した点に特徴が
ある。
In this example, the steps up to double diffusion are the same as those in the first and second examples, but an antireflection film is formed while leaving the phosphor glass layer 2 on the electrode part shown in FIG. Thereafter, the anti-reflection film and the nodding resist 1- in the electrode forming portion are removed in one step, thereby simplifying the number of steps.

二重拡散を行った後にパターン状の燐ガラス層2はその
ままにして直ちに窒化シリコンの反射防止膜10をプラ
ズマCVD装置により素子表面に堆積した(第39図)
。続いてエツチングレジスト5を反射防止膜10の表面
に塗布して(第40図)、素子の裏面を前記の混酸によ
りエツチングしてn十屓3を除去したく第41図)。エ
ツチングレジスト5を有機溶剤で取り除きく第42図)
、再び、エソチンダレシスト11を印刷塗布して表面電
極パターンに相当する部分の反射防止膜を取り除くため
のマスクパターンを形成した(第43図)。再び前記の
弗酸と純水の混合液でエツチングを行い、反射防止膜の
露出した部分とその下の燐ガラス層を同時にエツチング
により取り除いた(第44図)。最後にエツチングレジ
ストを有機溶剤により取り除いた後(第26図)、電極
形成と半田デツプを行い当該素子が得られた(第27図
)。
After performing double diffusion, the patterned phosphor glass layer 2 was left as it was, and immediately an antireflection film 10 of silicon nitride was deposited on the element surface using a plasma CVD apparatus (FIG. 39).
. Subsequently, an etching resist 5 is applied to the surface of the antireflection film 10 (FIG. 40), and the back surface of the element is etched with the mixed acid described above to remove the n-layer 3 (FIG. 41). (Figure 42) Removing the etching resist 5 with an organic solvent)
Then, Esochindaresist 11 was applied by printing again to form a mask pattern for removing the antireflection film in the portion corresponding to the surface electrode pattern (FIG. 43). Etching was performed again using the above-mentioned mixture of hydrofluoric acid and pure water, and the exposed portion of the anti-reflection film and the phosphor glass layer underneath were etched away at the same time (FIG. 44). Finally, after removing the etching resist with an organic solvent (FIG. 26), electrodes were formed and solder was deposited to obtain the device (FIG. 27).

〈実施例4〉 第4の実施例として、実施例1の第6図以降の工程の代
わりに第45図ないし第49図、第26図及び第27図
で示される工程による製造方法を説明する。
<Example 4> As a fourth example, a manufacturing method using the steps shown in FIGS. 45 to 49, 26, and 27 instead of the steps after FIG. 6 of Example 1 will be explained. .

この実施例は、第2の拡散工程を行う前に反射防止膜を
形成することにより、変換効率を低下さ一部ることなく
、第3の実施例、よりも更に工程を簡素化したことに特
徴がある。
In this example, by forming an anti-reflection film before performing the second diffusion process, the process is further simplified than in the third example without reducing the conversion efficiency. It has characteristics.

第1の拡散を行った後に素子表面側の燐ガラス層を表電
極パターン状にパターン抜きした後(第5図)に直ちに
窒化シリコンの反、射防止膜10をプラズマCVD装置
により素子表面に堆積した(第45図)。次に再び90
0°Cの炉中で10分間熱処理した結果、燐ガラス層の
残された部分では新たに燐のシリコン基板への拡散が起
こり、そのため面積抵抗はそれぞれ燐ガラス層の残され
た部分35Ω、除去した部分45Ωの差が生じた(第4
6図)。この際、燐ガラス層からはその層上の窒化シリ
コン膜10’中へ焼の拡散が起こり、このため膜質が変
化して弗酸と純水の混合液によりエツチング速度は他の
部分の膜のエツチング速度に比べ極端に大きくなる。本
実施例では後の工程でこの性質を利用する。次に、エツ
チングレジスト5を反射防止膜100表面に塗布して(
第47図)、素子の裏面を前記の混酸によりエツチング
してn干鰯3を除去した(第48図)。続いてエツチン
グレジストを有機溶剤で取り除き(第49図)、次に弗
酸と純水の混合比1:3の混合液で3分間エツチングし
て反射防止膜の10’の部分及びその下面の燐ガラス層
2のみエツチング除去した(第26図)。最後に電極形
成と半田デツプを行い、当該太陽電池が得られたく第2
7図)。
After performing the first diffusion, the phosphor glass layer on the element surface side is patterned into a front electrode pattern (Fig. 5), and then immediately an anti-reflection film 10 of silicon nitride is deposited on the element surface using a plasma CVD device. (Figure 45). then again 90
As a result of heat treatment in a 0°C furnace for 10 minutes, phosphorus newly diffuses into the silicon substrate in the remaining portion of the phosphor glass layer, so that the sheet resistance is 35 Ω in the remaining portion of the phosphor glass layer, and 35 Ω in the remaining portion of the phosphor glass layer, and 35 Ω in the remaining portion of the phosphor glass layer, and 35 Ω in the remaining portion of the phosphor glass layer, and There was a difference of 45Ω in the part where
Figure 6). At this time, diffusion of oxidation occurs from the phosphorous glass layer into the silicon nitride film 10' on the layer, and as a result, the film quality changes and the etching rate is lower than that of other parts of the film due to the mixture of hydrofluoric acid and pure water. It becomes extremely large compared to the etching speed. In this embodiment, this property is utilized in a later process. Next, an etching resist 5 is applied to the surface of the antireflection film 100 (
(Fig. 47), and the dried sardine 3 was removed by etching the back side of the element with the mixed acid described above (Fig. 48). Next, the etching resist was removed with an organic solvent (Fig. 49), and then etched for 3 minutes with a mixture of hydrofluoric acid and pure water at a mixing ratio of 1:3 to remove the phosphorus on the 10' part of the antireflection film and its lower surface. Only glass layer 2 was removed by etching (FIG. 26). Finally, electrode formation and solder depth are performed to obtain the second solar cell.
Figure 7).

〈1シ較例2〉 比較のために二重拡散を行わない方法で作成した場合の
太陽電池素子の場合の製造工程を第28図ないし第38
図に示す。
<1 Comparative Example 2> For comparison, Figures 28 to 38 show the manufacturing process for a solar cell element produced by a method that does not involve double diffusion.
As shown in the figure.

P型のシリコンウェハー1を前記a酸により5分間エツ
チングしてウェハー表面のダメージ層を含む約20μの
層を取り除き水洗を行った(第28図)。引続き拡散炉
中において、860°Cで23分間オキシ塩化燐を拡散
として気相反応により燐を拡散してn+52を受光表面
に形成した。表面抵抗は35Ωであった。この素子の表
面についている燐ガラス層3を前記弗酸と純水の混合液
でエツチングして取り除き(第30図)、次に素子の表
面にプラズマCVD装置により反射防止膜10を形成し
た(第31図)。反射防止膜面に工・ツチングレジス1
−5を塗布しく第32図)、裏面を前記混酸によりエツ
チングして取り除き(第33図)、続いてエツチングレ
ジストを有機溶剤で則り除き(第34図)、新たに表電
極パターンに相当するマスクパターンをエツチングレジ
ストを印刷塗布することにより形成した(第35図)。
A P-type silicon wafer 1 was etched for 5 minutes using the above-mentioned a acid to remove a layer of about 20 μm including a damaged layer on the wafer surface, and then washed with water (FIG. 28). Subsequently, in a diffusion furnace, phosphorus oxychloride was diffused at 860° C. for 23 minutes, and phosphorus was diffused by a gas phase reaction to form n+52 on the light-receiving surface. The surface resistance was 35Ω. The phosphor glass layer 3 on the surface of this element was removed by etching with the above-mentioned mixture of hydrofluoric acid and pure water (Fig. 30), and then an antireflection film 10 was formed on the surface of the element using a plasma CVD apparatus (Fig. 30). Figure 31). Anti-reflection film surface is machined/touching resist 1
-5 (Fig. 32), the back side is etched and removed with the mixed acid (Fig. 33), the etching resist is removed with an organic solvent (Fig. 34), and a new mask corresponding to the front electrode pattern is created. A pattern was formed by printing and applying an etching resist (Figure 35).

前記の弗酸を純水の混合液によりエツチングすることに
より反射防止膜の露出した部分をパターン状に取り除き
(第36図)、続いて有機溶剤によりエツチングレジス
トを取り除いた(ffi37Fl)。
The exposed portions of the antireflection film were removed in a pattern by etching the hydrofluoric acid with a mixture of pure water (FIG. 36), and then the etching resist was removed with an organic solvent (ffi37Fl).

続いて、表面及び裏面にAg及びAβペーストを印刷焼
成した後、半田デツプにより電極表面を半田により覆っ
た(第38図)。
Subsequently, after printing and firing Ag and Aβ pastes on the front and back surfaces, the electrode surfaces were covered with solder using a solder depth (FIG. 38).

〈発明の効果〉 上記した実施例1ないし実施例4により製造し−た太陽
電池素子の特性を、比較例1及び2により製造されたも
のと対比して表1に示す。この表から明らかなように、
変換効率について、比較例1のちのは10.4%である
のに対し、実施例1のものは11.4%と向上し、比較
例2のものが11.9%であるのに対し、実施例2ない
し4のものがそれぞれ12.8%、 13.0%、 1
2.7%と向上した。
<Effects of the Invention> Table 1 shows the characteristics of the solar cell elements manufactured according to Examples 1 to 4 described above in comparison with those manufactured according to Comparative Examples 1 and 2. As is clear from this table,
Regarding the conversion efficiency, Comparative Example 1 was 10.4%, while Example 1 was improved to 11.4%, and Comparative Example 2 was 11.9%. Examples 2 to 4 were 12.8%, 13.0%, and 1, respectively.
This increased to 2.7%.

また、本発明によれば、第1の拡散工程のために形成さ
れた燐ガラス層等のシリコン酸化膜層の一部を残してお
き、これを再利用して第2の拡散工程を行わせているの
で、予測しうる他の二重拡散法に比べて工程か簡素化さ
れる。
Further, according to the present invention, a part of the silicon oxide film layer such as the phosphor glass layer formed for the first diffusion process is left and reused to perform the second diffusion process. This simplifies the process compared to other predictable double diffusion methods.

表  1 □ □ 〈他の変形実施例〉 本発明は一ト記した実施例1〜4に限定されるものでな
く、各種の変形実施例により実施することができる。
Table 1 □ □ Other Modified Examples The present invention is not limited to Examples 1 to 4 mentioned above, but can be implemented by various modified examples.

拡散方法として実施例でpocβ3による気相拡散で填
ガラス層を形成する方法を示したが、他にCVD法、塗
布法等の方法を用いることができる。
As a diffusion method, a method of forming a glass filler layer by vapor phase diffusion using pocβ3 was shown in the example, but other methods such as a CVD method and a coating method can be used.

これらの場合も、一旦拡散を行った後その一部を残して
再度熱処理を行うことは可能である。又実施例ではP型
のシリコンウェハー基板を使用した場合について述べた
が、n型の基板についても同しように、例えば硼素を拡
散することによりPN接合の形成が可能であり、同様に
ウェハー表面に形成された硼素を含むガラス層(又はシ
リコン酸化膜層)を使用してパターン抜きを行い部分的
に二重拡散することも可能である。
In these cases as well, it is possible to perform the heat treatment again after performing the diffusion and leaving a part of the diffusion. Furthermore, in the embodiment, the case where a P-type silicon wafer substrate was used was described, but it is also possible to form a PN junction with an N-type substrate, for example, by diffusing boron. It is also possible to perform pattern cutting using the formed boron-containing glass layer (or silicon oxide film layer) to perform partial double diffusion.

電極形成方法としてはAg又はA72ペーストを使用し
た印刷焼成による例を示したが、この他に蒸着あるいは
メッキによる電極形成も本発明で適用することは勿論可
能である。
Although printing and firing using Ag or A72 paste has been shown as an electrode forming method, it is of course possible to apply electrode forming by vapor deposition or plating in the present invention.

反射防止膜としては、窒化硅素膜を使用した例を示した
が、この他にSiO、TiO2,Ta20a等従来良く
使用されている膜を使用することも勿論可能である。
As the anti-reflection film, although an example is shown in which a silicon nitride film is used, it is of course possible to use other conventionally used films such as SiO, TiO2, Ta20a, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第12図は本発明の第1の実施例を経時的
に説明する模型的断面図である。 第13図ないし第19図は第1の比較例を経時的に説明
する模型的断面図である。 第20図ないし第27図は本発明の第2の実施例の要部
を経時的に説明する模型的断面図である。 第28図ないし第44図は本発明の第3の実施例の要部
を経時的に説明する模型的断面図である。 第45図ないし第49図は本発明の第4の実施例の要部
を経時的に説明する模型的断面図である。 1・・・シリコンウェハー、 2・・・燐ガラス層(シリコン酸化膜層)、3・・・n
干鰯、    6・・・表面電極、9.10・・・反射
防止膜、 10′・・・反射防止膜の変質部分
1 to 12 are schematic sectional views illustrating a first embodiment of the present invention over time. FIGS. 13 to 19 are schematic cross-sectional views illustrating the first comparative example over time. FIGS. 20 to 27 are schematic sectional views chronologically explaining the main parts of the second embodiment of the present invention. FIGS. 28 to 44 are schematic cross-sectional views illustrating the main parts of the third embodiment of the present invention over time. FIGS. 45 to 49 are schematic cross-sectional views illustrating the main parts of the fourth embodiment of the present invention over time. 1... Silicon wafer, 2... Phosphorus glass layer (silicon oxide film layer), 3... n
Dried sardine, 6... Surface electrode, 9.10... Anti-reflection film, 10'... Altered portion of anti-reflection film

Claims (1)

【特許請求の範囲】[Claims] シリコンウェハーを基板とするP−N接合型太陽電池の
製造方法tこおいて、高温中で上記シリコンウェハーの
表面に被拡散不純物元素を含むシリコン酸化膜層を形成
するごとにより所定深さまで第1の拡fi&を行い、次
に、素子表面に形成すべき電極パターンに相当する部分
を残して上記被拡散不純物元素を含むシリコン酸化膜層
を除去し、次ムこ、再び高温中で熱処理を行うことによ
り上記電極バクーンに相当する部分に第2の拡散を行い
、その後、電極を設りるこ吉を特徴とする太陽電池の製
造方法。
A method for manufacturing a P-N junction solar cell using a silicon wafer as a substrate, in which a silicon oxide film layer containing a diffused impurity element is formed on the surface of the silicon wafer at a high temperature to a predetermined depth. Then, the silicon oxide film layer containing the diffused impurity element is removed leaving a portion corresponding to the electrode pattern to be formed on the element surface, and the next step is heat treatment at high temperature again. A method for manufacturing a solar cell, characterized in that a second diffusion is performed in a portion corresponding to the electrode bag, and then an electrode is provided.
JP57191160A 1982-10-29 1982-10-29 Manufacture of solar battery Pending JPS5979580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191160A JPS5979580A (en) 1982-10-29 1982-10-29 Manufacture of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191160A JPS5979580A (en) 1982-10-29 1982-10-29 Manufacture of solar battery

Publications (1)

Publication Number Publication Date
JPS5979580A true JPS5979580A (en) 1984-05-08

Family

ID=16269894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191160A Pending JPS5979580A (en) 1982-10-29 1982-10-29 Manufacture of solar battery

Country Status (1)

Country Link
JP (1) JPS5979580A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246214A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Method for manufacturing of diffusion layer for photovoltaics and method for manufacturing of solar cell
JP2011512041A (en) * 2008-04-17 2011-04-14 エルジー エレクトロニクス インコーポレイティド Solar cell, method for forming emitter layer of solar cell, and method for manufacturing solar cell
CN103022264A (en) * 2013-01-08 2013-04-03 奥特斯维能源(太仓)有限公司 Process for simultaneously forming front surface field and rear surface field of n-shaped battery with full-back electrode
JP2013161818A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Method of manufacturing solar battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246214A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Method for manufacturing of diffusion layer for photovoltaics and method for manufacturing of solar cell
JP2011512041A (en) * 2008-04-17 2011-04-14 エルジー エレクトロニクス インコーポレイティド Solar cell, method for forming emitter layer of solar cell, and method for manufacturing solar cell
US8513754B2 (en) 2008-04-17 2013-08-20 Lg Electronics Inc. Solar cell, method of forming emitter layer of solar cell, and method of manufacturing solar cell
JP2013161818A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Method of manufacturing solar battery
CN103022264A (en) * 2013-01-08 2013-04-03 奥特斯维能源(太仓)有限公司 Process for simultaneously forming front surface field and rear surface field of n-shaped battery with full-back electrode

Similar Documents

Publication Publication Date Title
JP3722326B2 (en) Manufacturing method of solar cell
JPH0572114B2 (en)
JP2009295715A (en) Photoelectric conversion device and method of manufacturing the same
WO2015182503A1 (en) Solar cell element, method for manufacturing same and solar cell module
JPS6215864A (en) Manufacture of solar cell
JP5991945B2 (en) Solar cell and solar cell module
JP2000183379A (en) Method for manufacturing solar cell
JP2013161847A (en) Solar cell
JPH02177569A (en) Manufacture of solar cell
JP2017033970A (en) Solar cell element and method of manufacturing the same
JP2015050277A (en) Solar cell and process of manufacturing the same
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JPS62156881A (en) Solar battery device
JP2005183469A (en) Solar cell
JP2951061B2 (en) Solar cell manufacturing method
JP2016164969A (en) Solar cell element and method of manufacturing the same
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JP2006295212A (en) Method of producing solar cell and method of producing semiconductor device
JP2016139762A (en) Method of manufacturing solar cell element
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
JPS5979580A (en) Manufacture of solar battery
JP6114171B2 (en) Manufacturing method of solar cell
JP2004281569A (en) Method for producing solar cell element
JP2002198546A (en) Formation method for solar cell element
JPH1197726A (en) Manufacture of solar battery