JPH069275A - Aluminum nitride sintered product and semiconductor device substrate using the same - Google Patents

Aluminum nitride sintered product and semiconductor device substrate using the same

Info

Publication number
JPH069275A
JPH069275A JP4191587A JP19158792A JPH069275A JP H069275 A JPH069275 A JP H069275A JP 4191587 A JP4191587 A JP 4191587A JP 19158792 A JP19158792 A JP 19158792A JP H069275 A JPH069275 A JP H069275A
Authority
JP
Japan
Prior art keywords
aluminum nitride
particles
product
sintered body
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4191587A
Other languages
Japanese (ja)
Inventor
Tatsuya Ikeda
達也 池田
Yukito Nakayama
幸人 仲山
Tsuneyuki Sukegawa
恒之 助川
Atsushi Kanda
篤 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP4191587A priority Critical patent/JPH069275A/en
Publication of JPH069275A publication Critical patent/JPH069275A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an AIN sintered product containing yttrium aluminate so as to surround AlN crystal particles and free from the falling of the AlN particles when polished into a mirror surface, by adding Y2O3 to AlN powder, processing the mixture into particles, compacting the particles, and subsequently sintering the compacted product. CONSTITUTION:Aluminum nitride powder is mixed with yttrium oxide as a sintering auxiliary and an organic binder as a hinder, and subsequently spray- dried into particles. The particles are pressed into a desired shape, or formed into a sheet by a doctor blade method and then processed into the desired shape. The formed green shaped product of the aluminum nitride is defatted and subsequently sintered in a non-oxidative atmosphere to produce the aluminum nitride sintered product having a fine structure in which the crystal particles of the aluminum nitride are surrounded with the yttrium aluminate. The application of a mirror surface polishing to the sintered product gives a polished surface improved in surface roughness characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化アルミニウム焼結
体に係り、特に鏡面研磨加工を施して使用される窒化ア
ルミニウム焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body, and more particularly to an aluminum nitride sintered body used after being mirror-polished.

【0002】[0002]

【従来の技術】近年、半導体集積回路等の半導体装置
は、多機能化に伴う素子集積密度の増加、高速化あるい
は高出力化といった特性の著しい向上が図られてきてい
る。これにともなって半導体装置から発生する熱量の増
加も著しく、この発生熱を外部に有効に放出させるため
に半導体装置を搭載するセラミック基板に熱伝導率の高
い材料が要求されてきている。ところで、かかる半導体
装置用基板として汎用性の高いアルミナ基板は、熱伝導
率が約20W/m・kと低く、また、熱膨張率が半導体
装置の材料であるシリコンに比べて大きいためシリコン
との接合性が悪い等の問題があった。かかるアルミナの
問題点を解消し得る材料として熱伝導率が約190W/
m・kと高くかつ熱膨張率がシリコンに近い窒化アルミ
ニウムが注目されてきており、この窒化アルミニウム焼
結体に鏡面研磨加工を施し、さらに薄膜等による微細配
線パターンを設けた半導体装置用基板等が実用化されつ
つある。
2. Description of the Related Art In recent years, semiconductor devices such as semiconductor integrated circuits have been remarkably improved in characteristics such as increase in element integration density, higher speed, and higher output due to multifunctionalization. Along with this, the amount of heat generated from the semiconductor device also remarkably increases, and in order to effectively dissipate the generated heat to the outside, a material having high thermal conductivity is required for the ceramic substrate on which the semiconductor device is mounted. By the way, such an alumina substrate, which is highly versatile as a substrate for a semiconductor device, has a low thermal conductivity of about 20 W / m · k, and has a thermal expansion coefficient larger than that of silicon, which is a material of the semiconductor device. There were problems such as poor bondability. As a material that can solve the problems of alumina, the thermal conductivity is about 190 W /
Aluminum nitride, which has a high m · k and a thermal expansion coefficient close to that of silicon, has been attracting attention. This aluminum nitride sintered body is subjected to mirror-polishing, and a substrate for semiconductor devices, etc., on which a fine wiring pattern made of a thin film or the like is further provided. Is being put to practical use.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記窒化アル
ミニウム焼結体に鏡面研磨加工を施すと、研磨面に窒化
アルミニウム粒子の脱落等による欠陥(ボイド)が生
じ、この欠陥の存在により半導体装置用基板上に微細配
線パターンを形成したときに微細配線に断線,ショート
等の不良が生じ、基板の信頼性を損なうという問題があ
る。本発明は、上記した課題を解決しようとするもの
で、鏡面研磨加工を施したときに窒化アルミニウム粒子
の脱落等の生じにくい窒化アルミニウム焼結体を提供す
ることを目的とする。
However, when the above-mentioned aluminum nitride sintered body is subjected to mirror-polishing, defects (voids) are generated on the polished surface due to the dropping of aluminum nitride particles, and the presence of these defects results in semiconductor devices. When the fine wiring pattern is formed on the substrate, there is a problem that the fine wiring has defects such as disconnection and short circuit, and the reliability of the substrate is impaired. The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide an aluminum nitride sintered body in which the aluminum nitride particles are unlikely to fall off when mirror-polished.

【0004】[0004]

【課題を解決するための手段】上記請求項1に係る発明
の窒化アルミニウム焼結体は、窒化アルミニウム結晶粒
子と、該窒化アルミニウム結晶粒子を囲むアルミン酸イ
ットリウムとを含むことを特徴とする。ここで、上記窒
化アルミニウム焼結体の製造に用いる窒化アルミニウム
粉末は平均粒径10μm以下の細かいものが用いられ特
に2μm以下のものが好ましい。また、焼結助剤の酸化
イットリウムは、平均粒径10μm以下のものが使用さ
れ特に5μm以下のものが好ましい。さらに、非透光性
基板(黒色基板)が必要な場合、周期表IIIa、IVa 、Va
族元素又はそれら元素の酸化物、炭化物、ホウ化物、窒
化物等を添加することもある。この場合、それらの平均
粒径は10μm以下のものが使用され特に5μm以下の
ものが好ましい。
The aluminum nitride sintered body of the invention according to claim 1 is characterized in that it contains aluminum nitride crystal grains and yttrium aluminate surrounding the aluminum nitride crystal grains. Here, as the aluminum nitride powder used for producing the above-mentioned aluminum nitride sintered body, a fine powder having an average particle diameter of 10 μm or less is used, and particularly preferably 2 μm or less. The yttrium oxide as a sintering aid has an average particle size of 10 μm or less, and particularly preferably 5 μm or less. Furthermore, if a non-translucent substrate (black substrate) is required, the periodic table IIIa, IVa, Va
Group elements or oxides, carbides, borides, nitrides of these elements may be added. In this case, those having an average particle diameter of 10 μm or less are used, and those having an average particle diameter of 5 μm or less are particularly preferable.

【0005】以下、窒化アルミニウム焼結体の製造工程
について簡単に説明する。まず、上記の原料粉末に結合
剤として有機バインダを加え、有機溶剤など用いて湿式
混合する。次に噴霧乾燥によって造粒粉を作成し所望の
形状にプレス加工するか、ドクターブレード法によって
シートを作成し所望の形状に生加工を行い窒化アルミニ
ウムのグリーン成形体とする。次に有機バインダを除去
するため空気中、窒素中、分解ガス中等で加熱する(脱
脂工程)。この場合窒化アルミニウムの酸化が起こる温
度以下で脱脂を行う必要がある。こうして得られた脱脂
済みの窒化アルミニウム成形体を窒化ホウ素製容器に収
納し、非酸化性雰囲気で焼成を行う。非酸化性雰囲気と
しては窒素ガスが望ましい。焼成温度は1600〜21
00℃の範囲で定められ、特に1650〜1800℃の
範囲が好ましい。1600℃以下では焼結が十分行われ
ず、また2100℃以上では窒化アルミニウム自体の分
解が起こるからである。また焼結は常圧焼結法で行う
が、ホットプレス法、加圧焼結法でもよい。
The manufacturing process of the aluminum nitride sintered body will be briefly described below. First, an organic binder is added to the above raw material powder as a binder, and wet mixed using an organic solvent or the like. Next, granulated powder is prepared by spray drying and pressed into a desired shape, or a sheet is prepared by a doctor blade method and green-processed into a desired shape to obtain an aluminum nitride green compact. Next, in order to remove the organic binder, heating is performed in air, nitrogen, decomposed gas or the like (degreasing step). In this case, it is necessary to perform degreasing at a temperature not higher than the temperature at which aluminum nitride is oxidized. The degreased aluminum nitride compact thus obtained is placed in a boron nitride container and fired in a non-oxidizing atmosphere. Nitrogen gas is desirable as the non-oxidizing atmosphere. The firing temperature is 1600-21
It is determined in the range of 00 ° C, and particularly preferably in the range of 1650 to 1800 ° C. This is because sintering is not sufficiently performed at 1600 ° C or lower, and decomposition of aluminum nitride itself occurs at 2100 ° C or higher. The sintering is carried out by the atmospheric pressure sintering method, but it may be carried out by the hot pressing method or the pressure sintering method.

【0006】また、上記請求項2に係る発明の半導体装
置用基板は、上記請求項1に記載の窒化アルミニウム焼
結体からなり、表面粗さRmaxが1.0μm以下であ
ることを特徴とする。この半導体装置用基板は、上記請
求項1の窒化アルミニウム焼結体の表面を鏡面研磨加工
することにより得られる。なお、表面粗さRmaxは
1.0μm以下であるが、0.5μm以下であるとより
好ましい。
The semiconductor device substrate according to the second aspect of the present invention is made of the aluminum nitride sintered body according to the first aspect, and has a surface roughness Rmax of 1.0 μm or less. . This substrate for a semiconductor device is obtained by mirror-polishing the surface of the aluminum nitride sintered body according to claim 1. The surface roughness Rmax is 1.0 μm or less, and more preferably 0.5 μm or less.

【0007】[0007]

【発明の作用・効果】上記請求項1に係る発明の窒化ア
ルミニウム焼結体は、窒化アルミニウム結晶粒子がアル
ミン酸イットリウムにより囲まれるように存在する微細
構造を有しているので、鏡面研磨加工が施されたとき
に、焼結体からの窒化アルミニウム結晶粒子の脱落等が
抑制される。
Since the aluminum nitride sintered body of the invention according to claim 1 has a fine structure in which the aluminum nitride crystal grains are surrounded by the yttrium aluminate, mirror polishing is performed. When applied, the dropping of aluminum nitride crystal particles from the sintered body is suppressed.

【0008】また、上記窒化アルミニウム焼結体からな
る半導体装置用基板は、鏡面研磨加工が施されたとき窒
化アルミニウム粒子の脱落が抑制されるために、表面粗
さRmaxが1.0μm以下という非常に良好な表面状
態に維持される。このため、この半導体装置用基板表面
に薄膜等の微細配線パターンを形成したときに配線の断
線,ショート等の不良を生じることが少なく、半導体装
置用基板としての信頼性が高められる。
Further, the semiconductor device substrate made of the above-mentioned aluminum nitride sintered body has a surface roughness Rmax of 1.0 μm or less because the aluminum nitride particles are prevented from falling off when mirror-polished. Maintain a good surface condition. Therefore, when a fine wiring pattern such as a thin film is formed on the surface of the semiconductor device substrate, defects such as wire disconnection and short circuit are less likely to occur, and the reliability of the semiconductor device substrate is improved.

【0009】[0009]

【実施例】以下、実施例により本発明を具体的に説明す
る。本実施例では、本発明に係る窒化アルミニウム焼結
体の特性(密度、熱伝導率、表面粗さ、表面状態)の評
価を行った。 (1)試験品の作製 平均粒径1.2μmの窒化アルミニウム(AlN )粉末に
焼結助剤として平均粒径1.4μmの酸化イットリウム
粉末(Y2O3)、着色剤として平均粒径0.7μmの二酸
化チタン粉末(TiO2)を表1に示す割合で配合した。な
お、表1の試験品は、No.1〜4が実施品、No.5
〜9が比較品を示し、以下同様に表示する。
EXAMPLES The present invention will be specifically described below with reference to examples. In this example, the characteristics (density, thermal conductivity, surface roughness, surface state) of the aluminum nitride sintered body according to the present invention were evaluated. (1) Preparation of test product Aluminum nitride (AlN) powder having an average particle diameter of 1.2 μm, yttrium oxide powder (Y 2 O 3 ) having an average particle diameter of 1.4 μm as a sintering aid, and an average particle diameter of 0 as a colorant. 0.7 μm titanium dioxide powder (TiO 2 ) was blended in the proportion shown in Table 1. The test products in Table 1 are No. Nos. 1 to 4 are implemented products. 5
9 to 9 indicate comparative products, which will be similarly displayed below.

【0010】[0010]

【表1】 [Table 1]

【0011】上記試験品に関して、表2に示すように、
試験品No.1,3,5,6,8は表1の粉末にバイン
ダーを加えて造粒粉とし、この造粒粉を室温にて約10
00kg/cm2 で加圧して成形された。また、試験品
No.2,4,7,9は、表1の粉末にバインダーを加
えてドクターブレード法によってグリーンシートを作成
し、このシートを積層することにより成形された。更に
これら成形体を大気中にて脱脂後、表2に示すように、
窒化ホウ素製容器,炭素製容器又は窒化アルミニウム製
容器に収容し、窒素雰囲気中にて1730℃で6時間焼
成した。
Regarding the above-mentioned test product, as shown in Table 2,
Test product No. Nos. 1, 3, 5, 6 and 8 were made into granulated powder by adding a binder to the powders shown in Table 1, and the granulated powder was heated to about 10 at room temperature.
It was molded under pressure of 00 kg / cm 2 . In addition, the test product No. 2, 4, 7, and 9 were formed by adding a binder to the powders in Table 1 to prepare green sheets by the doctor blade method, and stacking the sheets. Further, after degreasing these molded bodies in the atmosphere, as shown in Table 2,
It was housed in a container made of boron nitride, a container made of carbon or a container made of aluminum nitride, and baked at 1730 ° C. for 6 hours in a nitrogen atmosphere.

【0012】[0012]

【表2】 [Table 2]

【0013】(2)特性の評価 上記焼結体の密度,熱伝導率特性の測定結果及び焼結体
に鏡面研磨加工を施した後の表面粗さ特性(最大粗さR
max及び中心線平均粗さRa)の測定結果と表面状態
の観察結果を表3に示す。焼結体の鏡面研磨加工は、#
325のダイヤモンド砥石で粗研磨後、#2000のダ
イヤモンド砥粒を用いて中仕上げ研磨を行い、さらに#
8000のダイヤモンド砥粒を用いて鏡面仕上げ研磨を
行なった。なお、各特性の測定は、セラミック焼結体に
ついて通常用いられる方法を用いて行われた。また、表
面観察は、反射顕微鏡(金属顕微鏡)を用いて目視によ
り行われた。
(2) Evaluation of characteristics Results of measurement of density and thermal conductivity characteristics of the above-mentioned sintered body and surface roughness characteristics (maximum roughness R after polishing the mirror surface of the sintered body).
Table 3 shows the measurement results of max and centerline average roughness Ra) and the observation results of the surface state. Specular polishing of the sintered body is #
After rough polishing with 325 diamond whetstone, perform intermediate finishing polishing with # 2000 diamond abrasive grains.
Mirror finishing polishing was performed using 8000 diamond abrasive grains. In addition, the measurement of each characteristic was performed using the method normally used about a ceramic sintered compact. In addition, the surface was visually observed using a reflection microscope (metallurgical microscope).

【0014】[0014]

【表3】 [Table 3]

【0015】表3に示す結果から明らかなように、各試
験品(No.5は未焼結のため除く)は、密度および熱
伝導率がほとんど同程度であり、焼結が十分に行われて
いる。しかし、各試験品に鏡面研磨加工を施すと、試験
品1〜4(実施品)の研磨面から窒化アルミニウム粒子
の脱落は認められず、それにたいして試験品6〜9(比
較品)の研磨面からは窒化アルミニウム粒子の脱落が認
められた。そして、試験品1〜4(実施品)は全て最大
表面粗さRmaxが0.5μm以下であるのに対し、試
験品6〜9(比較品)は全て最大表面粗さRmaxが
4.2μm以上と顕著な差異が認められる。
As is clear from the results shown in Table 3, the test products (excluding No. 5 because it is unsintered) have almost the same density and thermal conductivity, and the sintering is performed sufficiently. ing. However, when each test product was mirror-polished, no aluminum nitride particles were found to have fallen off from the polished surfaces of test products 1 to 4 (implemented product), and the polished surfaces of test products 6 to 9 (comparative product) were not. It was confirmed that the aluminum nitride particles fell off. And, while the test products 1 to 4 (implemented products) all have a maximum surface roughness Rmax of 0.5 μm or less, the test products 6 to 9 (comparative products) all have a maximum surface roughness Rmax of 4.2 μm or more. And a remarkable difference is recognized.

【0016】また、実施品の代表例である試験品No.
1及び比較品の代表例である試験品No.6に関しては
その破面及び鏡面研磨面の結晶構造を走査電子顕微鏡に
より観察を行った。ここで、図1は実施品の破面の結晶
構造を示す写真であり、図2は実施品の鏡面研磨面の結
晶構造を示す写真である。また、図3は比較品の破面の
結晶構造を示す写真であり、図4は比較品の鏡面研磨面
の結晶構造を示す写真である。なお、図1〜4中の横線
は10μmの長さを表すものである。実施品は、窒化ア
ルミニウム結晶粒子(灰色部分)がアルミン酸イットリ
ウム(白色部分)により取り囲まれるように存在してお
り、窒化アルミニウム結晶粒子の脱落が認められない。
一方、比較品は窒化アルミニウム結晶粒子(灰色部分)
中にアルミン酸イットリウム(白色部分)がランダムな
状態で存在しており、明らかに窒化アルミニウム結晶粒
子の脱落(黒色部分)が認められる。
Further, a test product No. which is a typical example of the implemented products is used.
1 and a test product No. which is a typical example of the comparative product. Regarding No. 6, the crystal structures of the fractured surface and the mirror-polished surface were observed with a scanning electron microscope. Here, FIG. 1 is a photograph showing the crystal structure of the fractured surface of the practical product, and FIG. 2 is a photograph showing the crystal structure of the mirror-polished surface of the practical product. 3 is a photograph showing the crystal structure of the fractured surface of the comparative product, and FIG. 4 is a photograph showing the crystal structure of the mirror-polished surface of the comparative product. The horizontal lines in FIGS. 1 to 4 represent a length of 10 μm. In the embodied product, the aluminum nitride crystal particles (gray portion) are present so as to be surrounded by yttrium aluminate (white portion), and the aluminum nitride crystal particles do not fall off.
On the other hand, the comparative product is aluminum nitride crystal particles (gray part)
Yttrium aluminate (white portion) is present in a random state, and the dropout of the aluminum nitride crystal particles (black portion) is clearly observed.

【0017】すなわち、本発明に係る窒化アルミニウム
結晶粒子がアルミン酸イットリウム結晶により囲まれる
ように存在する微細構造を有する窒化アルミニウム焼結
体は、従来の窒化アルミニウム結晶粒子中にアルミン酸
イットリウムがランダムな状態で存在する構造の窒化ア
ルミニウム焼結体に比べて鏡面研磨加工を施したときの
研磨面からの窒化アルミニウム粒子の脱落がなくなり、
最大表面粗さRmax特性が約1桁程度も改善された。
That is, in the aluminum nitride sintered body having a fine structure in which the aluminum nitride crystal grains according to the present invention are surrounded by the yttrium aluminate crystals, yttrium aluminate is randomly distributed in the conventional aluminum nitride crystal grains. Compared with the aluminum nitride sintered body of the structure that exists in the state, the aluminum nitride particles do not fall off from the polished surface when mirror-polished.
The maximum surface roughness Rmax characteristic was improved by about one digit.

【0018】そして、本発明に係る改善された微細構造
を有する窒化アルミニウム焼結体に鏡面研磨加工を施し
て得られた半導体装置用基板は、その表面に微細配線パ
ターンを形成したときに粒子の脱落による断線,ショー
ト等の欠陥を生じることがなく、半導体装置用基板とし
ての信頼性が高められる。
The semiconductor device substrate obtained by subjecting the aluminum nitride sintered body having the improved fine structure according to the present invention to the mirror-polishing process produces a fine particle pattern when a fine wiring pattern is formed on the surface of the substrate. The reliability as a substrate for a semiconductor device is improved without causing defects such as disconnection and short circuit due to falling off.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施品(試験品No.1)に係る窒化
アルミニウム焼結体の破面の結晶構造を示す電子顕微鏡
写真である。
FIG. 1 is an electron micrograph showing a crystal structure of a fractured surface of an aluminum nitride sintered body according to an implementation product (test product No. 1) of the present invention.

【図2】同実施品に係る窒化アルミニウム焼結体の鏡面
研磨面の結晶構造を示す電子顕微鏡写真である。
FIG. 2 is an electron micrograph showing a crystal structure of a mirror-polished surface of an aluminum nitride sintered body according to the same product.

【図3】比較品(試験品No.6)に係る窒化アルミニ
ウム焼結体の破面の結晶構造を示す電子顕微鏡写真であ
る。
FIG. 3 is an electron micrograph showing a crystal structure of a fractured surface of an aluminum nitride sintered body according to a comparative product (test product No. 6).

【図4】同比較品に係る窒化アルミニウム焼結体の鏡面
研磨面の結晶構造を示す電子顕微鏡写真である。
FIG. 4 is an electron micrograph showing a crystal structure of a mirror-polished surface of an aluminum nitride sintered body according to the comparative product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神田 篤 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Kanda 14-18 Takatsuji-cho, Mizuho-ku, Nagoya City Nippon Special Ceramics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム結晶粒子と、該窒化ア
ルミニウム結晶粒子を囲むアルミン酸イットリウムとを
含むことを特徴とする窒化アルミニウム焼結体。
1. An aluminum nitride sintered body comprising aluminum nitride crystal grains and yttrium aluminate surrounding the aluminum nitride crystal grains.
【請求項2】 前記請求項1に記載の窒化アルミニウム
焼結体からなり、表面粗さRmaxが1.0μm以下で
あることを特徴とする半導体装置用基板。
2. A substrate for a semiconductor device comprising the aluminum nitride sintered body according to claim 1 and having a surface roughness Rmax of 1.0 μm or less.
JP4191587A 1992-06-25 1992-06-25 Aluminum nitride sintered product and semiconductor device substrate using the same Pending JPH069275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4191587A JPH069275A (en) 1992-06-25 1992-06-25 Aluminum nitride sintered product and semiconductor device substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4191587A JPH069275A (en) 1992-06-25 1992-06-25 Aluminum nitride sintered product and semiconductor device substrate using the same

Publications (1)

Publication Number Publication Date
JPH069275A true JPH069275A (en) 1994-01-18

Family

ID=16277128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4191587A Pending JPH069275A (en) 1992-06-25 1992-06-25 Aluminum nitride sintered product and semiconductor device substrate using the same

Country Status (1)

Country Link
JP (1) JPH069275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201072A (en) * 2000-12-27 2002-07-16 Toshiba Corp AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
WO2005098942A1 (en) * 2004-04-05 2005-10-20 Mitsubishi Materials Corporation Al/AlN JOINT MATERIAL, BASE PLATE FOR POWER MODULE, POWER MODULE AND PROCESS FOR PRODUCING Al/AlN JOINT MATERIAL
JP2009023908A (en) * 2000-12-04 2009-02-05 Toshiba Corp Manufacturing method of thin film substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023908A (en) * 2000-12-04 2009-02-05 Toshiba Corp Manufacturing method of thin film substrate
JP2002201072A (en) * 2000-12-27 2002-07-16 Toshiba Corp AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
WO2005098942A1 (en) * 2004-04-05 2005-10-20 Mitsubishi Materials Corporation Al/AlN JOINT MATERIAL, BASE PLATE FOR POWER MODULE, POWER MODULE AND PROCESS FOR PRODUCING Al/AlN JOINT MATERIAL
US7532481B2 (en) 2004-04-05 2009-05-12 Mitsubishi Materials Corporation Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material
US8164909B2 (en) 2004-04-05 2012-04-24 Mitsubishi Materials Corporation Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material

Similar Documents

Publication Publication Date Title
KR0168303B1 (en) Aluminum nitride sinter and process for the production thereof
JP4424659B2 (en) Aluminum nitride material and member for semiconductor manufacturing equipment
JP2007063122A (en) Substrate for semiconductor device
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JPWO2019235593A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP3593707B2 (en) Aluminum nitride ceramics and method for producing the same
KR100494188B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
JPH069275A (en) Aluminum nitride sintered product and semiconductor device substrate using the same
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPS6184037A (en) Aluminium nitride base ceramics substrate
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP2807430B2 (en) Aluminum nitride sintered body and method for producing the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JPH0196067A (en) Production of aluminum nitride sintered body
JP2000109367A (en) Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide
JPH08109069A (en) Aluminum nitride sintered compact
KR102139189B1 (en) Memufacturing method of conductivity AlN subtrate having thermal conductivity of 180 W/mk to 230 W/mk
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JPH04260669A (en) Production of silicon nitride composite material containing silicon carbide
JP3036207B2 (en) Method for producing silicon nitride sintered body
JP2890543B2 (en) Aluminum nitride substrate composition
JP2000191376A (en) Aluminum nitride sintered body and its production