JPH0692739A - Aluminum nitride sintered compact - Google Patents

Aluminum nitride sintered compact

Info

Publication number
JPH0692739A
JPH0692739A JP4245136A JP24513692A JPH0692739A JP H0692739 A JPH0692739 A JP H0692739A JP 4245136 A JP4245136 A JP 4245136A JP 24513692 A JP24513692 A JP 24513692A JP H0692739 A JPH0692739 A JP H0692739A
Authority
JP
Japan
Prior art keywords
aln
sic
sintered body
sintered compact
aln sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4245136A
Other languages
Japanese (ja)
Inventor
Mitsuo Kasori
光男 加曽利
Akihiro Horiguchi
昭宏 堀口
Fumio Ueno
文雄 上野
Katsuyoshi Oishi
克嘉 大石
Akihiko Tsuge
章彦 柘植
Jun Monma
旬 門馬
Takashi Takahashi
孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4245136A priority Critical patent/JPH0692739A/en
Publication of JPH0692739A publication Critical patent/JPH0692739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain an AlN sintered compact having high strength and high heat conductivity, inhibiting exfoliation at the interface between the base material of a circuit board and a metal layer when used as the base material and enhancing the reliability of the circuit board by allowing SiC to enter into solid soln. in AlN crystal lattices. CONSTITUTION:This AlN sintered compact contains 0.01-0.5wt.% SiC allowed to enter into solid soln. in the AlN crystal lattices. In the case of 0.01wt.% SiC, a high strength AlN sintered compact cannot be obtd. In the case of >0.5wt.% SiC, the heat conductivity of the resulting AlN sintered compact is reduced. When this AIN sintered compact is produced, starting material prepd. by adding SiC and a sintering aid to AlN powder is compacted to form a compact and this compact is fired at 1,800-2,000 deg.C for >=1hr in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回路基板のベース材等
に使用される窒化アルミニウム(AlN)焼結体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride (AlN) sintered body used as a base material for circuit boards.

【0002】[0002]

【従来の技術】AlN焼結体は、熱伝導率がアルミナな
どに比べて高く、かつ熱膨張率がシリコン(Si)に近
似しているため、半導体実装用の放熱性基板として用い
られいる。また、高温下での高強度性、溶融金属との反
応性が乏しいなどの特性を合せ持つため、他の分野への
応用が広がりつつある。
2. Description of the Related Art An AlN sintered body is used as a heat-radiating substrate for semiconductor mounting because it has a higher thermal conductivity than alumina and a thermal expansion coefficient close to that of silicon (Si). Further, since it has properties such as high strength at high temperature and poor reactivity with molten metal, its application to other fields is expanding.

【0003】近年、AlN焼結体の高熱伝導率化の研究
が進み、200W/m・K級のものが随所で得られるよ
うになった。AlN焼結体を回路基板として用いる場
合、前記AlN焼結体からなる基材表面へのメタライズ
が必要である。メタライズ方法は、従来のアルミナ基材
で築かれた技術を基に、改良された方法が導入されてい
る。AlN焼結体からなる基材へのメタライズにおいて
根本的な技術課題は熱膨張率のミスマッチである。Al
N焼結体の熱膨張率は、約4.5×10-6/℃であり、
アルミナ焼結体のそれの約1/2である。また、殆どの
メタルの熱膨張率はAlN焼結体よりも大きい。その結
果、前記AlN焼結体からなる基材とメタライズ層の界
面近傍の基材側にはアルミナ焼結体を基材として用いた
場合よりも大きい応力が生じる。したがって、接合方法
自体が不備である場合を除く多くの場合、メタル層との
剥離は前記AlN焼結体かららなる基材側の破壊によっ
て起こる。また、前記接合界面における応力集中は、前
記接合面の剥離などによって前記回路基板に実装された
素子の信頼性の低下を招く。
In recent years, research on increasing the thermal conductivity of AlN sintered bodies has progressed, and 200 W / m · K grade materials have been obtained everywhere. When the AlN sintered body is used as a circuit board, it is necessary to metallize the surface of the base material made of the AlN sintered body. As for the metallizing method, an improved method has been introduced based on the technique built on the conventional alumina base material. A fundamental technical problem in the metallization of a base material made of an AlN sintered body is mismatch of thermal expansion coefficients. Al
The coefficient of thermal expansion of the N sintered body is about 4.5 × 10 −6 / ° C.,
It is about half that of the alumina sintered body. Moreover, the thermal expansion coefficient of most metals is larger than that of the AlN sintered body. As a result, a larger stress is generated on the base material side near the interface between the base material made of the AlN sintered body and the metallized layer than when the alumina sintered body is used as the base material. Therefore, in most cases except when the joining method itself is inadequate, the peeling from the metal layer is caused by the destruction of the base material side made of the AlN sintered body. Further, the stress concentration at the bonding interface leads to a reduction in reliability of the element mounted on the circuit board due to peeling of the bonding surface.

【0004】[0004]

【発明が解決しようとする課題】本発明は、高強度で高
熱伝導性を有し、回路基板の基材に適用した際、メタル
層との界面での剥離発生を抑制して前記回路基板の信頼
性の向上を図ることが可能なAlN焼結体を提供しよう
とするものである。
DISCLOSURE OF THE INVENTION The present invention has high strength and high thermal conductivity, and when applied to the base material of a circuit board, suppresses the occurrence of peeling at the interface with the metal layer, thereby suppressing the occurrence of peeling of the circuit board. It is intended to provide an AlN sintered body which can improve reliability.

【0005】[0005]

【課題を解決するための手段】本発明に係わるAlN焼
結体は、AlN結晶格子内にSiCが0.01〜0.5
重量%固溶したことを特徴とするものである。
In the AlN sintered body according to the present invention, SiC is 0.01 to 0.5 in the AlN crystal lattice.
It is characterized in that it forms a solid solution by weight percent.

【0006】前記AlN結晶格子内への前記SiCの固
溶量(0.01〜0.5重量%)は、格子定数の測定に
よるa軸が3.1111〜3.1116、C軸が4.9
803/10-10 m〜4.9809/10-10 mである
ことに相当するものである。
The solid solution amount (0.01 to 0.5% by weight) of the SiC in the AlN crystal lattice is 3.1111 to 3.1116 on the a-axis and 4.10 on the C-axis according to the measurement of the lattice constant. 9
This is equivalent to 803/10 -10 m to 4.9809 / 10 -10 m .

【0007】前記AlN結晶格子内に固溶させるSiC
量を限定したのは、次のような理由によるものである。
前記SiC量を0.01重量%未満にすると、高強度の
AlN焼結体を得ることができなくなる。一方、前記S
iC量が0.5重量%を超えるとAlN焼結体の熱伝導
率が低下する。前記SiCのより好ましい固溶量は、
0.02〜0.3重量%である。
SiC dissolved in the AlN crystal lattice
The reason for limiting the amount is as follows.
If the amount of SiC is less than 0.01% by weight, a high-strength AlN sintered body cannot be obtained. On the other hand, the S
If the iC amount exceeds 0.5% by weight, the thermal conductivity of the AlN sintered body decreases. A more preferable solid solution amount of SiC is
0.02 to 0.3% by weight.

【0008】前記SiCは、前記AlN結晶格子内に固
溶することが必要であるが、前記結晶格子内のみなら
ず、粒界相として存在することを許容する。ただし、前
記粒界相として存在するSiC量は、0.2重量%以下
であることが望ましい。
Although it is necessary for the SiC to form a solid solution in the AlN crystal lattice, it is allowed to exist not only in the crystal lattice but also as a grain boundary phase. However, the amount of SiC existing as the grain boundary phase is preferably 0.2% by weight or less.

【0009】前記AlN焼結体には、焼結助剤に起因す
る粒界相を0.01〜10重量%含むことを許容する。
前記焼結助剤としてはCa、Ba、Srなどのアルカリ
土類金属およびその酸化物、Y、La、Ceなどの希土
類元素およびその酸化物等を挙げることができる。
The AlN sintered body is allowed to contain 0.01 to 10% by weight of a grain boundary phase derived from a sintering aid.
Examples of the sintering aid include alkaline earth metals such as Ca, Ba and Sr and oxides thereof, rare earth elements such as Y, La and Ce and oxides thereof.

【0010】前記AlN焼結体には、遷移金属およびそ
の化合物を0.01〜2重量%含むことを許容する。前
記遷移金属としては、例えばTi、W、Mo、Ta、N
b等を挙げることができる。
The AlN sintered body may contain 0.01 to 2% by weight of a transition metal and its compound. Examples of the transition metal include Ti, W, Mo, Ta, N
b etc. can be mentioned.

【0011】本発明に係わるAlN焼結体は、例えば次
のような方法により製造される。
The AlN sintered body according to the present invention is manufactured, for example, by the following method.

【0012】まず、AlN粉末にSiCと焼結助剤を添
加した原料を、成形して成形体を作製する。つづいて、
前記成形体を非酸化性雰囲気中、1800〜2000℃
で1時間以上焼成することによりAlN焼結体を製造す
る。
First, a raw material obtained by adding SiC and a sintering aid to AlN powder is molded to produce a molded body. Continuing,
The molded body is heated at 1800 to 2000 ° C. in a non-oxidizing atmosphere.
The AlN sintered body is manufactured by firing at 1 hour or more.

【0013】前記AlN粉末としては、不純物酸素量が
0.1〜2.5重量%、より好ましくは0.4〜1.5
重量%含み、かつ平均一次粒子径が1.5μm以下、よ
り好ましくは0.05〜1.2μmのものを用いること
が望ましい。
The AlN powder has an impurity oxygen content of 0.1 to 2.5% by weight, more preferably 0.4 to 1.5.
It is desirable to use those having an amount of 1 wt% and an average primary particle diameter of 1.5 μm or less, more preferably 0.05 to 1.2 μm.

【0014】前記焼結助剤としてはCa、Ba、Srな
どのアルカリ土類金属および/またはY、La、Ceな
どの希土類元素の酸化物、炭化物、フッ化物、炭酸塩、
シュウ酸塩、硝酸塩、アルコキシド等を用いることがで
きる。これら焼結助剤の配合量は0.5〜10重量%の
範囲にすることが望ましい。
As the sintering aid, oxides, carbides, fluorides and carbonates of alkaline earth metals such as Ca, Ba and Sr and / or rare earth elements such as Y, La and Ce,
Oxalate, nitrate, alkoxide and the like can be used. The mixing amount of these sintering aids is preferably in the range of 0.5 to 10% by weight.

【0015】前記成形体の作製に際しては、前記AlN
粉末、SiCおよび焼結助剤の他に、必要に応じて着色
化、高強度化のためにTi、W、Mo、Ta、Nbなど
の遷移金属の酸化物、炭化物、フッ化物、炭酸塩、シュ
ウ酸塩、硝酸塩を0.01〜3重量%の範囲で配合する
ことを許容する。また、焼結温度の低減化のために酸化
アルミニウム、フッ化アルミニウムなどのアルミニウム
化合物や酸化珪素、窒化珪素などの珪素化合物を1重量
%以下の範囲で配合することを許容する。
In producing the molded body, the AlN
In addition to powders, SiC and sintering aids, oxides, carbides, fluorides, carbonates, etc. of transition metals such as Ti, W, Mo, Ta, and Nb for coloring and strengthening, if necessary, It is allowed to mix oxalate and nitrate in the range of 0.01 to 3% by weight. Further, in order to reduce the sintering temperature, an aluminum compound such as aluminum oxide or aluminum fluoride or a silicon compound such as silicon oxide or silicon nitride is allowed to be blended in a range of 1% by weight or less.

【0016】また、本発明に係わるAlN焼結体は前述
した常圧焼結法の他に、前記AlN粉末にSiCと焼結
助剤を添加した原料をホットプレスすることによって製
造される。
The AlN sintered body according to the present invention is manufactured by hot pressing a raw material obtained by adding SiC and a sintering aid to the AlN powder, in addition to the above-mentioned pressureless sintering method.

【0017】[0017]

【作用】本発明によれば、AlN結晶格子内にSiCを
0.01〜0.5重量%の範囲で固溶することによっ
て、高い熱伝導性を有すると共に高強度のAlN焼結体
を得ることができる。このようなAlN焼結体の高強度
化のメカニズムは明らかではないが、前記SiCを前記
AlN結晶格子内に所定量固溶することによって、Al
N結晶粒子間の結合強度が変化するためであると推定さ
れる。
According to the present invention, by solid-solving SiC in the AlN crystal lattice in the range of 0.01 to 0.5% by weight, an AlN sintered body having high thermal conductivity and high strength can be obtained. be able to. Although the mechanism for increasing the strength of the AlN sintered body is not clear, it is possible to form a solid solution of the SiC in the AlN crystal lattice to form a solid solution of Al.
It is presumed that this is because the bond strength between N crystal grains changes.

【0018】したがって、前記高強度のAlN焼結体を
回路基板の基材に適用した場合、メタル層との界面での
剥離発生を抑制できるため、信頼性の高い回路基板を実
現できる。
Therefore, when the high-strength AlN sintered body is applied to the base material of the circuit board, the occurrence of peeling at the interface with the metal layer can be suppressed, so that a highly reliable circuit board can be realized.

【0019】[0019]

【実施例】以下、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0020】実施例1 まず、不純物酸素量が1.0重量%、平均一次粒子径
0.6μmのAlN粉末100重量部に対して、添加物
として平均粒径0.1μm、純度99.9%のY2 3
粉末3重量部と純度99%のSiC(不純物酸素量0.
8重量%)0.45重量部を加え、ボールミル用いて解
粉、混合して原料粉末を調製した。つづいて、この原料
粉末にアクリル系バインダ5重量%を添加した造粒した
後、この造粒粉末を500kg/cm2 の一軸加圧下で
成形して圧粉体とした。ひきつづき、この圧粉体を窒素
ガス雰囲気中、700℃まで加熱してアクリル系バイン
ダを除去した。次いで、前記圧粉体をh−BN製容器内
にセットし、グラファイト製ヒータ炉内にて1気圧の窒
素ガス雰囲気、1900℃で3時間焼成してAlN焼結
体を製造した。
Example 1 First, with respect to 100 parts by weight of AlN powder having an amount of impurity oxygen of 1.0% by weight and an average primary particle size of 0.6 μm, an additive has an average particle size of 0.1 μm and a purity of 99.9%. Of Y 2 O 3
3 parts by weight of powder and 99% pure SiC (impurity oxygen content 0.
(8 wt%) 0.45 part by weight was added, and the mixture was pulverized and mixed using a ball mill to prepare a raw material powder. Subsequently, 5% by weight of an acrylic binder was added to the raw material powder and granulated, and the granulated powder was molded under a uniaxial pressure of 500 kg / cm 2 to obtain a green compact. Subsequently, the green compact was heated to 700 ° C. in a nitrogen gas atmosphere to remove the acrylic binder. Next, the green compact was set in an h-BN container and fired in a graphite heater furnace at 1 atm in a nitrogen gas atmosphere at 1900 ° C. for 3 hours to produce an AlN sintered body.

【0021】得られた実施例1のAlN焼結体は、白色
を呈した。
The obtained AlN sintered body of Example 1 was white in color.

【0022】前記AlN焼結体の密度をアルキメデス法
により測定した。その結果、3.28g/cm3 と十分
に緻密化していた。
The density of the AlN sintered body was measured by the Archimedes method. As a result, it was sufficiently densified to 3.28 g / cm 3 .

【0023】前記AlN焼結体から直径10mm、厚さ
3mmの円板を切り出し、21℃±2℃の室温下、レー
ザフラッシュ法により熱伝導率を測定した。その結果、
210W/m・Kと高い熱伝導性を有することが確認さ
れた。
A disk having a diameter of 10 mm and a thickness of 3 mm was cut out from the AlN sintered body, and the thermal conductivity was measured by a laser flash method at room temperature of 21 ° C. ± 2 ° C. as a result,
It was confirmed to have a high thermal conductivity of 210 W / m · K.

【0024】前記AlN焼結体の一片を粉砕した後、X
線回折により構成相を調べた。その結果、AlN以外の
構成相はY2 3 、Y4 Al2 9 および微量の未知相
であった。
After crushing one piece of the AlN sintered body, X
The constituent phases were investigated by line diffraction. As a result, the constituent phases other than AlN were Y 2 O 3 , Y 4 Al 2 O 9 and a trace amount of unknown phase.

【0025】同様に粉砕しした前記AlN焼結体とNB
S製標準Siを用いて、内部標準法によりAlN焼結体
の格子定数を測定した。その結果、a軸が3.111
2、c軸が4.9808/10-10 mであり、通常のA
lN焼結体の格子定数に比べてc軸長が長く、a軸長が
短くなっており、SiCがAlN結晶格子に固溶したも
のであることが確認された。また、IPC法で前記Al
N焼結体中のSi量を分析した。その結果、0.25重
量%であった。
The above-mentioned AlN sintered body and NB which were similarly crushed
Using standard Si manufactured by S, the lattice constant of the AlN sintered body was measured by the internal standard method. As a result, the a-axis is 3.111.
2 、 c-axis is 4.9808 / 10 -10 m, the normal A
It was confirmed that the c-axis length was longer and the a-axis length was shorter than the lattice constant of the 1N sintered body, and that SiC was a solid solution in the AlN crystal lattice. In addition, the above-mentioned Al by the IPC method
The amount of Si in the N sintered body was analyzed. As a result, it was 0.25% by weight.

【0026】さらに、前記AlN焼結体から3mm×4
mm×40mmの角棒を切り出し、3点曲げにより強度
を測定した。その結果、測定数10点の平均値は55k
g/mm2 とSiCが結晶格子内に固溶されていない従
来のAlN焼結体の平均強度45kg/mm2 に比べて
高強度であることが確認された。
Further, 3 mm × 4 from the AlN sintered body
A square bar of mm × 40 mm was cut out and the strength was measured by three-point bending. As a result, the average of 10 measurements is 55k.
It was confirmed that the strength was higher than the average strength of 45 kg / mm 2 of the conventional AlN sintered body in which g / mm 2 and SiC were not solid-dissolved in the crystal lattice.

【0027】実施例2 SiC(不純物酸素量0.8重量%)の配合量が0.1
重量部である以外、実施例1と同様な原料粉末を用い、
実施例1同様な手順によりAlN焼結体を製造した。
Example 2 The compounding amount of SiC (impurity oxygen amount 0.8% by weight) was 0.1.
Using the same raw material powder as in Example 1 except for the parts by weight,
An AlN sintered body was manufactured by the same procedure as in Example 1.

【0028】得られた実施例2のAlN焼結体につい
て、実施例1と同様な方法で熱伝導率、構成相、格子定
数および3点曲げ強度を評価した。その結果、熱伝導率
は215W/m・K、AlN以外の構成相はY2 3
4 Al2 9 、格子定数はa軸が3.1113、c軸
が4.9807/10-10 m、3点曲げ強度は48kg
/mm2 であった。
With respect to the obtained AlN sintered body of Example 2, the thermal conductivity, constituent phase, lattice constant and three-point bending strength were evaluated in the same manner as in Example 1. As a result, the thermal conductivity was 215 W / mK, the constituent phases other than AlN were Y 2 O 3 ,
Y 4 Al 2 O 9 , the lattice constant is 3.1113 on the a-axis, 4.9807 / 10 -10 m on the c-axis, and the 3-point bending strength is 48 kg.
/ Mm 2 .

【0029】実施例3 SiC(不純物酸素量0.8重量%)の配合量が0.0
1重量部である以外、実施例1と同様な原料粉末を用
い、実施例1同様な手順によりAlN焼結体を製造し
た。
Example 3 The compounding amount of SiC (impurity oxygen amount 0.8% by weight) was 0.0
An AlN sintered body was manufactured by using the same raw material powder as in Example 1 except that the amount was 1 part by weight and following the same procedure as in Example 1.

【0030】得られた実施例3のAlN焼結体につい
て、実施例1と同様な方法で熱伝導率、構成相、格子定
数および3点曲げ強度を評価した。その結果、熱伝導率
は213W/m・K、AlN以外の構成相はY2 3
4 Al2 9 、格子定数はa軸が3.1113、c軸
が4.9807/10-10 m、3点曲げ強度は48kg
/mm2 であった。
With respect to the obtained AlN sintered body of Example 3, the thermal conductivity, constituent phase, lattice constant and three-point bending strength were evaluated in the same manner as in Example 1. As a result, the thermal conductivity was 213 W / mK, the constituent phases other than AlN were Y 2 O 3 ,
Y 4 Al 2 O 9 , the lattice constant is 3.1113 on the a-axis, 4.9807 / 10 -10 m on the c-axis, and the 3-point bending strength is 48 kg.
/ Mm 2 .

【0031】実施例4 実施例1と同様な原料粉末を窒素ガス雰囲気中、180
0℃、2時間、500kg/cm2 の圧力下の条件でホ
ットプレスすることによりAlN焼結体を製造した。
Example 4 The same raw material powder as in Example 1 was subjected to 180 ° C. in a nitrogen gas atmosphere.
An AlN sintered body was manufactured by hot pressing at 0 ° C. for 2 hours under a pressure of 500 kg / cm 2 .

【0032】得られた実施例4のAlN焼結体につい
て、実施例1と同様な方法で熱伝導率、構成相、格子定
数および3点曲げ強度を評価した。その結果、熱伝導率
は180W/m・K、AlN以外の構成相は微量の未知
相、格子定数はa軸が3.1113、c軸が4.980
6/10-10 m、3点曲げ強度は56kg/mm2 であ
った。
With respect to the obtained AlN sintered body of Example 4, the thermal conductivity, constituent phase, lattice constant and three-point bending strength were evaluated in the same manner as in Example 1. As a result, the thermal conductivity was 180 W / m · K, the constituent phases other than AlN were a small amount of unknown phase, and the lattice constants were 3.1113 on the a-axis and 4.980 on the c-axis.
6/10 −10 m, 3-point bending strength was 56 kg / mm 2 .

【0033】[0033]

【発明の効果】以上詳述したように本発明に係わる窒化
アルミニウム焼結体によれば、高強度で高熱伝導性を有
し、回路基板の基材に適用した際、メタル層との界面で
の剥離発生を抑制して前記回路基板の信頼性の向上を図
ることができる等顕著な効果を奏する。
As described above in detail, according to the aluminum nitride sintered body of the present invention, it has high strength and high thermal conductivity, and when it is applied to the base material of the circuit board, it is formed at the interface with the metal layer. There is a remarkable effect such that the occurrence of peeling can be suppressed and the reliability of the circuit board can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大石 克嘉 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 柘植 章彦 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 門馬 旬 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内総合研究所内 (72)発明者 高橋 孝 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsuyoshi Oishi 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Research Institute Ltd. (72) Inventor Akihiko Tsuge, Komukai-Toshiba, Kawasaki-shi, Kanagawa 1-City, Ltd. In Toshiba Research Laboratories, Inc. (72) Inventor Shun Kadoma, 4-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture In-house Research Laboratories, Keihin Works, Toshiba Corp. (72) Takashi Takahashi, Tsurumi, Yokohama-shi, Kanagawa Prefecture 2-4 Suehiro-cho, Tokyo Inside Keihin Office of Toshiba Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム結晶格子内にSiCが
0.01〜0.5重量%固溶したことを特徴とする窒化
アルミニウム焼結体。
1. An aluminum nitride sintered body characterized in that 0.01 to 0.5% by weight of SiC is solid-solved in an aluminum nitride crystal lattice.
JP4245136A 1992-09-14 1992-09-14 Aluminum nitride sintered compact Pending JPH0692739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245136A JPH0692739A (en) 1992-09-14 1992-09-14 Aluminum nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245136A JPH0692739A (en) 1992-09-14 1992-09-14 Aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH0692739A true JPH0692739A (en) 1994-04-05

Family

ID=17129171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245136A Pending JPH0692739A (en) 1992-09-14 1992-09-14 Aluminum nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH0692739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013899A1 (en) * 2004-08-03 2006-02-09 Tokuyama Corporation Package for storing light emitting element and method for producing package for storing light emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013899A1 (en) * 2004-08-03 2006-02-09 Tokuyama Corporation Package for storing light emitting element and method for producing package for storing light emitting element
JPWO2006013899A1 (en) * 2004-08-03 2008-05-01 株式会社トクヤマ Light emitting element storage package and method for manufacturing light emitting element storage package
US7737461B2 (en) 2004-08-03 2010-06-15 Tokuyama Corporation Package for storing light emitting element and method for producing package for storing light emitting element
JP5094118B2 (en) * 2004-08-03 2012-12-12 株式会社トクヤマ Light emitting element storage package and method for manufacturing light emitting element storage package

Similar Documents

Publication Publication Date Title
JP2022522814A (en) High-purity, low-aluminum spherical β-silicon nitride powder, its manufacturing method and applications
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH0717453B2 (en) Aluminum nitride sintered body and method for manufacturing the same
JP2000128643A (en) Highly heat conductive silicon nitride-based sintered compact and its production
JPH0692739A (en) Aluminum nitride sintered compact
JPH09268069A (en) Highly heat conductive material and its production
JP3561145B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP3145519B2 (en) Aluminum nitride sintered body
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JPH02184572A (en) Silicon nitride ceramic having devitrified inner granular phase and preparation thereof
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2938153B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6317210A (en) Production of aluminum nitride powder
JP2541150B2 (en) Aluminum nitride sintered body
JP2524185B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH09175867A (en) Aluminum nitride sintered product
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
KR960006249B1 (en) Process for producing an aluminium sintered product
JP2536448B2 (en) Aluminum nitride sintered body
JP2000178072A (en) Aluminum nitride matter sintered compact