JPH0689450B2 - Device for monitoring evaporation rate and film thickness in vacuum deposition equipment - Google Patents

Device for monitoring evaporation rate and film thickness in vacuum deposition equipment

Info

Publication number
JPH0689450B2
JPH0689450B2 JP30103086A JP30103086A JPH0689450B2 JP H0689450 B2 JPH0689450 B2 JP H0689450B2 JP 30103086 A JP30103086 A JP 30103086A JP 30103086 A JP30103086 A JP 30103086A JP H0689450 B2 JPH0689450 B2 JP H0689450B2
Authority
JP
Japan
Prior art keywords
film thickness
light
wavelength
monitoring
evaporation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30103086A
Other languages
Japanese (ja)
Other versions
JPS63153269A (en
Inventor
雄志 塚田
Original Assignee
株式会社コパル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コパル filed Critical 株式会社コパル
Priority to JP30103086A priority Critical patent/JPH0689450B2/en
Publication of JPS63153269A publication Critical patent/JPS63153269A/en
Publication of JPH0689450B2 publication Critical patent/JPH0689450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は真空蒸着装置における蒸発速度及び膜厚の監視
装置、特に例えば、レンズやガラス基板上に光学的薄膜
たるTiO2、SiO2等の透明絶縁薄膜を多層に形成する真空
蒸着装置に用いて好適な蒸発速度及び膜厚の監視装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a device for monitoring the evaporation rate and film thickness in a vacuum evaporation system, and in particular, for example, a thin film such as TiO 2 or SiO 2 which is an optical thin film on a lens or a glass substrate. The present invention relates to an evaporation rate and film thickness monitoring apparatus suitable for use in a vacuum vapor deposition apparatus for forming transparent insulating thin films in multiple layers.

<従来技術> 第3図はこの種光学的多層薄膜を形成するための従来の
真空蒸着装置を示している。
<Prior Art> FIG. 3 shows a conventional vacuum deposition apparatus for forming such an optical multilayer thin film.

第3図において、1はベルジャー、2は、電子ビームに
より蒸着材料をターゲットに向けて蒸発させる蒸発源、
3は、光学的薄膜を被着されるべきレンズ、ガラス基板
等の製品である。4は回転モニターホルダーで、膜厚モ
ニター用の多数のモニターガラス(透明ガラス板)5が
等間隔に取り付けてあり、光学的薄膜の1層形成毎にモ
ニターガラス5群中のモニターガラス5の1つを、択一
的に蒸着ターゲット領域に位置付けるようになってい
る。6は、上記ターゲット領域にあるモニターガラス5
に照射される一定波長の計測光で、該計測光6はモニタ
ーガラス5を透過した後ミラー7を介して受光器8に導
かれ、該受光器8の出力は適宜増幅器を介して膜厚演算
回路9に送出されるようになっている。即ち、透明単層
膜の膜厚は公知のように光干渉を利用して計測可能で、
受光器8の出力は光学的膜厚を横軸とし光強度を縦軸と
した時第2図実線図示の如くsin2θのカーブを描き、従
ってこの受光器8の出力を取り込み、変換・格納・演算
処理することによって膜厚が監視できる。
In FIG. 3, 1 is a bell jar, 2 is an evaporation source for evaporating an evaporation material toward a target by an electron beam,
3 is a product such as a lens or a glass substrate to be coated with an optical thin film. A rotary monitor holder 4 is provided with a large number of monitor glasses (transparent glass plates) 5 for film thickness monitoring, which are attached at equal intervals, and one of the monitor glasses 5 in the monitor glass group 5 is formed every time one optical thin film is formed. One of them is selectively positioned in the vapor deposition target area. 6 is a monitor glass 5 in the target area
The measurement light 6 is a measurement light having a constant wavelength, which is transmitted to the laser beam, is transmitted through the monitor glass 5 and then guided to the photodetector 8 via the mirror 7, and the output of the photodetector 8 is subjected to film thickness calculation via an amplifier as appropriate. The signal is sent to the circuit 9. That is, the film thickness of the transparent single layer film can be measured by utilizing optical interference as is known,
The output of the light receiver 8 draws a curve of sin 2 θ as shown by the solid line in FIG. 2 when the optical film thickness is on the horizontal axis and the light intensity is on the vertical axis. Therefore, the output of this light receiver 8 is fetched, converted and stored. -The film thickness can be monitored by performing arithmetic processing.

10は、蒸発(蒸着)速度モニター用の公知のATカットさ
れた「厚みすべり振動」をする水晶振動子で、該水晶振
動子10に蒸着される膜厚の多寡に所定範囲内で比例する
発振周波数を出力し、蒸発速度演算回路11はこれを取り
込んで変換・収納・演算することによって、蒸発(蒸
着)速度を監視するようになっている。12は、蒸着工程
を制御するプロセスコントローラで、前記膜厚演算回路
9、蒸発速度演算回路11等からの情報によって蒸着速
度、蒸着タイミング等を制御するようになっている。即
ち、プロセスコントローラ12は、蒸発源電源13を介して
電子ビーム制御を行なって、蒸発速度をコントロール
し、また、シャッタ駆動源14を介して、蒸発源2を開閉
するシャッタ15を制御して蒸発開始・終了タイミングを
コントロールするようになっている。
Reference numeral 10 is a known AT-cut "thickness-shear vibration" quartz oscillator for evaporation (vapor deposition) rate monitor, which is proportional to the thickness of the deposited quartz crystal 10 within a predetermined range. The frequency is output, and the evaporation rate calculation circuit 11 monitors the evaporation (evaporation) rate by taking in, converting, storing and calculating the frequency. Reference numeral 12 denotes a process controller for controlling the vapor deposition process, which controls the vapor deposition rate, the vapor deposition timing, etc. based on the information from the film thickness computing circuit 9, the evaporation rate computing circuit 11 and the like. That is, the process controller 12 performs electron beam control via the evaporation source power source 13 to control the evaporation rate, and via the shutter drive source 14 controls the shutter 15 for opening / closing the evaporation source 2 to perform evaporation. It is designed to control the start / end timing.

ここで、上述のように被着される光学的薄膜の各層毎の
膜厚以外に蒸着速度をモニターする理由は、光学的薄膜
の屈折率が第4図示のように蒸着(蒸発)速度に依存す
るからである。
Here, the reason why the vapor deposition rate is monitored in addition to the film thickness of each optical thin film deposited as described above is that the refractive index of the optical thin film depends on the vapor deposition (evaporation) speed as shown in FIG. Because it does.

<発明が解決しようとする問題点> 上述のように前記モニターガラス5を1層毎に取り替え
て行われる膜厚の光学的モニター精度は相当に良好で、
実用上充分な膜厚制御を行うことができる。ところが、
前記水晶振動子10による蒸着速度のモニター精度は蒸着
される光学的薄膜が10層程度以上の多層になると劣化し
勝ちで、精度良く蒸発速度を制御することを困難にし、
従って光学的薄膜の屈折率を所期のものに保証しがたい
という問題点を生じた。これは、水晶振動子10における
堆積膜厚に比例すると保証するに足る発振周波数レンジ
が或る一定範囲内であるため、光学的薄膜が多層に堆積
されて膜厚が厚くなるにしたがって、水晶振動子10の発
振が不安定になって正確な蒸発速度のモニターを不能に
するからで、遂には発振を停止してしまうという事態を
も招来した。よって、例えば20〜50層に光学多層薄膜を
全自動で作成することの大きなネックとなるものであっ
た。この点を解消するために前記水晶振動子10を多数個
設けてターゲット領域に切り替えて曝すことも考えられ
るが、蒸着装置に相当の改造を必要とし、スペースファ
クター的に見ても好ましいものではない。
<Problems to be Solved by the Invention> As described above, the optical monitoring accuracy of the film thickness performed by replacing the monitor glass 5 layer by layer is considerably good,
Practically sufficient film thickness control can be performed. However,
The monitor accuracy of the vapor deposition rate by the crystal oscillator 10 is apt to deteriorate when the optical thin film to be vapor deposited becomes a multilayer of about 10 layers or more, which makes it difficult to control the vapor deposition rate accurately.
Therefore, it is difficult to guarantee the desired refractive index of the optical thin film. This is because the oscillation frequency range that is guaranteed to be proportional to the deposited film thickness in the crystal oscillator 10 is within a certain fixed range. Therefore, as the optical thin films are deposited in multiple layers and the film thickness increases, the crystal vibration increases. Since the oscillation of the child 10 becomes unstable and it becomes impossible to accurately monitor the evaporation rate, the situation where the oscillation is finally stopped has also been brought about. Therefore, for example, it is a major obstacle to fully automatically forming an optical multilayer thin film with 20 to 50 layers. In order to solve this point, it is conceivable to provide a large number of the crystal oscillators 10 and switch and expose them in the target region, but it requires considerable modification of the vapor deposition device and is not preferable in terms of space factor. .

<発明の目的> 従って、本発明の解決すべき技術的課題は上記従来欠点
の解消にあり、その目的とするところは、作成・被着さ
れる光学的薄膜の膜層数が多くなっても信頼性の高い蒸
発速度の計測・制御が可能であると共に、比較的簡便な
構成でこれが達成可能な真空蒸着装置における蒸発速度
及び膜厚の監視装置を提供するにある。
<Object of the Invention> Therefore, the technical problem to be solved by the present invention is to solve the above-mentioned conventional drawbacks, and an object thereof is that even if the number of film layers of an optical thin film to be produced / deposited is large. An object of the present invention is to provide a device for monitoring the evaporation rate and the film thickness in a vacuum evaporation system, which can measure and control the evaporation rate with high reliability and can achieve this with a relatively simple structure.

<問題点を解決するための手段> 本発明の上記目的は、真空蒸着装置のベルジャー内に光
学的薄膜を多層に被着されるべき製品と共に、光学的薄
膜の1層形成毎に蒸着ターゲット領域に切り替えて曝さ
れる複数枚のモニターガラスと、前記ターゲット領域に
あるモニターガラスに対し同時に照射される、膜厚監視
用の短波長の計測光、並びに該短波長の計測光の略数倍
の波長とされた蒸発速度監視用の長波長の計測光と、前
記モニターガラスを透過した前記短波長の計測光と長波
長の計測光を各々分離して受光するための、短波長用の
第1の受光器並びに長波長用の第2の受光器と、前記第
1の受光器の出力によって膜厚を演算・監視する第1の
演算手段と、前記第2の受光器の出力によって蒸発速度
を演算・監視する第2の演算手段と、前記第1の演算手
段並びに前記第2の演算手段の出力を受け蒸発プロセス
を制御するプロセスコントローラとを、備えた真空蒸着
装置における蒸発速度及び膜厚の監視装置によって達成
される。
<Means for Solving the Problems> The above object of the present invention is to provide a product in which a plurality of optical thin films are to be deposited in a bell jar of a vacuum deposition apparatus, and a deposition target area for each formation of the optical thin film. A plurality of monitor glasses that are exposed by switching to, and a short-wavelength measuring light for film thickness monitoring, which is simultaneously irradiated to the monitor glass in the target area, and a measurement light of approximately several times the short-wavelength measuring light. A long-wavelength measuring light for monitoring the evaporation rate, which has a wavelength, and a short-wavelength measuring light for separating and receiving the short-wavelength measuring light and the long-wavelength measuring light transmitted through the monitor glass, respectively. Light receiving device and a second light receiving device for long wavelength, a first calculating means for calculating and monitoring the film thickness by the output of the first light receiving device, and an evaporation rate by the output of the second light receiving device. Second computing means for computing and monitoring It is achieved by a device for monitoring the evaporation rate and the film thickness in a vacuum evaporation system, which is provided with a process controller that controls the evaporation process by receiving the outputs of the first calculating device and the second calculating device.

<作用> モニターガラスに対し短波長の計測光と長波長の計測光
とを同時に照射し、一方の短波長の計測光によって従前
と同等の手法によって膜厚のモニターがなされる。ま
た、他方の長波長の計測光の波長は短波長の計測光のそ
れの略数倍とされているので、長波長の計測光を選択的
に受光する前記第2の受光器の光干渉出力波形(光学的
膜厚−光強度)は、前記第1の受光器の光干渉出力波形
の略1/数分の周期をもつなだらかなカーブを描き所望の
膜厚の範囲内では直線に近似できて、これを微分するこ
とによって蒸発速度のモニターがなされる。
<Operation> The monitor glass is irradiated with short-wavelength measurement light and long-wavelength measurement light at the same time, and one of the short-wavelength measurement lights is used to monitor the film thickness by the same method as before. Further, since the wavelength of the other long-wavelength measuring light is approximately several times that of the short-wavelength measuring light, the optical interference output of the second light receiver for selectively receiving the long-wavelength measuring light. The waveform (optical film thickness-light intensity) can be approximated to a straight line within a desired film thickness range by drawing a gentle curve having a period of about 1 / several minutes of the optical interference output waveform of the first light receiver. The evaporation rate is monitored by differentiating this.

<実施例> 以下本発明を第1図に示した実施例によって説明する。
なお、第1図において前記従来構成と同一もしくは均等
なものには同一符号を付し、その一部については重複を
避けるため説明を割愛する。
<Example> The present invention will be described below with reference to the example shown in FIG.
In FIG. 1, the same or equivalent parts as those of the conventional structure are designated by the same reference numerals, and some of them will not be described to avoid duplication.

第1図において、16は、前記製品3…を保持したホルダ
ーで、その孔16aを通して前記回転モニターホルダー4
に取り付けられた多数枚の前記モニターガラス5…群中
の1枚だけが、光学的薄膜の1層形成毎に切り替えられ
て択一的にターゲット領域に曝される(前記蒸発源2に
対して曝される)ようになっている。上記モニターガラ
ス5の数は、少なくとも製品3上に形成する光学的薄膜
の膜層数に見合うだけ準備されていて、また、ターゲッ
ト領域に曝されたモニターガラス5は、製品3…群と略
同一条件で光学的薄膜が被着されるようにその位置が設
定されている。
In FIG. 1, reference numeral 16 denotes a holder holding the products 3, ... Through the hole 16a, the rotary monitor holder 4
Only one of the plurality of monitor glasses 5 attached to the monitor glass 5 is selectively exposed to the target region by switching each time one layer of the optical thin film is formed (with respect to the evaporation source 2). Exposed). The number of the monitor glasses 5 is prepared so as to correspond to at least the number of optical thin film layers formed on the product 3, and the monitor glasses 5 exposed to the target region are substantially the same as the product 3 group. The position is set so that the optical thin film is deposited under the conditions.

17、18は前記ベルジャー1に取り付けられたガラスシー
ル、19、20はハーフミラーであって、上記ハーフミラー
19、ガラスシール17、孔16a、ターゲット領域にあるモ
ニターガラス5、ガラスシール18、ハーフミラー20は、
図示下から順に一直線上(同一光路上)にあるように位
置付けられている。
17 and 18 are glass seals attached to the bell jar 1, 19 and 20 are half mirrors,
19, glass seal 17, hole 16a, monitor glass 5 in the target area, glass seal 18, half mirror 20,
They are positioned so as to be on a straight line (on the same optical path) from the bottom in the figure.

6は、前記従来例と均等な膜厚監視用の短波長の計測
光、21は、該計測光6の略数倍(該実施例では3倍)の
波長に設定された蒸発速度監視用の長波長の計測光で、
両計側光6、21は適宜の光発生・照射手段によって前記
ハーフミラー19に照射され、一方はハーフミラー19で反
射して他方はハーフミラー19を透過して、両計測光6、
21は前記孔16a、ターゲット領域にあるモニターガラス
5を通過して該光路上にある前記いま一方のハーフミラ
ー20に導かれる。
6 is a measuring light of a short wavelength for film thickness monitoring, which is equivalent to that of the conventional example, and 21 is an evaporation rate monitoring light set to a wavelength which is approximately several times (three times in the embodiment) the measuring light 6. With long-wavelength measuring light,
Both meter side lights 6 and 21 are irradiated to the half mirror 19 by appropriate light generation / irradiation means, one of which is reflected by the half mirror 19 and the other of which is transmitted through the half mirror 19, and both of the measurement light 6 and
21 passes through the hole 16a and the monitor glass 5 in the target area and is guided to the other half mirror 20 on the optical path.

22は第1のフィルターで、上述のハーフミラー20を透過
した両計測光6、21の中の短波長の計測光6のみを選択
的に透過させるようになっている。8は、該第1のフィ
ルター22を通過した短波長の計測光6が導かれる第1の
受光器で、前記した従来例の受光器8と均等なものであ
るが該実施例においては便宜上第1の受光器と称してい
る。そして、この第1の受光器8の出力はアンプ23を介
して前記従来例と均等の膜厚演算回路9に供給され、第
2図に実線図示し前述したようにsin2θのカーブを描く
第1の受光器の出力を、変換・格納・演算処理すること
によって膜厚をモニターするようになっている。即ち、
第1の受光器8の出力レベル(光強度)を各時点でデジ
タル変換して格納すると共に、出力波形の上下ピーク値
とその数とを格納し、これらの取り込み情報と予め与え
られた演算プログラムに基づき最新時点の光学的膜厚が
時々認知されるようになっており、この膜厚演算回路9
の膜厚モニター情報が、前記した従来構成のものと略々
均等なプロセスコントローラ12に供給される。
Reference numeral 22 denotes a first filter, which selectively transmits only the measuring light 6 having a short wavelength of the measuring lights 6 and 21 transmitted through the half mirror 20. Reference numeral 8 is a first photodetector through which the short-wavelength measurement light 6 that has passed through the first filter 22 is guided, and is equivalent to the photodetector 8 of the conventional example described above, but in the present embodiment, it is the It is referred to as the No. 1 light receiver. Then, the output of the first photodetector 8 is supplied to the film thickness arithmetic circuit 9 equivalent to that of the conventional example through the amplifier 23, and the curve of sin 2 θ is drawn as shown in the solid line in FIG. The film thickness is monitored by converting, storing, and processing the output of the first light receiver. That is,
The output level (light intensity) of the first light receiver 8 is digitally converted and stored at each time point, and the upper and lower peak values of the output waveform and the number thereof are also stored, and the acquisition information and the calculation program given in advance are stored. The optical film thickness at the latest point is sometimes recognized based on this.
The film thickness monitor information is supplied to the process controller 12, which is substantially equivalent to the above-mentioned conventional structure.

24は第2のフィルターで、前記ハーフミラー20によって
反射された前記両計測光6、21の中の長波長の計測光21
のみを選択的に透過させるようになっている。25は、該
第2のフィルター24を通過した長波長の計測光21が導か
れる第2の受光器で、該第2の受光器25の出力はアンプ
26を介して蒸発速度演算回路27に送出される。上記第2
の受光器25の出力は光干渉効果によって、前記計測光21
の波長が前記計測光6のそれの3倍に設定されているた
め、光学的膜厚を横軸とし光強度を縦軸にとると第2図
点線図示のように、前記した第1の受光器8の出力波形
の略1/3の周期を持つなだらかなsin2αのカーブを描
く。この第2の受光器25の出力カーブは、光学的薄膜の
1層の膜厚ストップ点が通常光学的膜厚の3/4λ以下で
あるので、この範囲内においては直線に近似でき、従っ
て、この第2の受光器25の出力を前記蒸発速度演算回路
27が取り込んで微分することによって蒸発(蒸着)速度
を時々認知しており、この蒸発速度モニター情報が前記
プロセスコントローラ12に供給される。
Reference numeral 24 denotes a second filter, which is the long-wavelength measuring light 21 of the two measuring lights 6 and 21 reflected by the half mirror 20.
Only the selective transmission is made. Reference numeral 25 is a second light receiver through which the long-wavelength measurement light 21 that has passed through the second filter 24 is guided. The output of the second light receiver 25 is an amplifier.
It is sent to the evaporation rate calculation circuit 27 via 26. Second above
The output of the light receiver 25 of the
Is set to be three times that of the measuring light 6, so that when the optical film thickness is plotted on the horizontal axis and the light intensity is plotted on the vertical axis, the above-mentioned first light reception is obtained as shown by the dotted line in FIG. Draw a gentle sin 2 α curve with a period of about 1/3 of the output waveform of the unit 8. The output curve of the second optical receiver 25 can be approximated to a straight line within this range because the film thickness stop point of one layer of the optical thin film is usually 3 / 4λ or less of the optical film thickness, and therefore, The output of the second light receiver 25 is used as the evaporation rate calculation circuit.
27 takes in and differentiates to sometimes recognize the evaporation rate, and this evaporation rate monitor information is supplied to the process controller 12.

そして、プロセスコントローラ12は、前記膜厚演算回路
9、蒸発速度演算回路27、図示せぬ各種センサ等からの
情報に基づき、前記従来例と同様に、蒸発源電源13およ
びシャッタ駆動源14をコントロールしつつ、予め定めら
れたシーケンスにのっとり各層形成毎に膜厚及び蒸発速
度を所期値に制御しつつ光学多層薄膜を製品3上に形成
させることとなる。
Then, the process controller 12 controls the evaporation source power supply 13 and the shutter drive source 14 based on information from the film thickness calculation circuit 9, the evaporation rate calculation circuit 27, various sensors (not shown) and the like, as in the conventional example. At the same time, the optical multilayer thin film is formed on the product 3 while controlling the film thickness and the evaporation rate to the desired values for each layer formation in accordance with the predetermined sequence.

上記光学的検出手法による蒸発速度モニター情報は、前
記した如くモニターガラス5が1層形成毎に切り替えら
れるので、製品3上の光学的薄膜が数十層になって全体
の膜厚が増しても、常に精度の良いものを保証でき、従
って、光学的薄膜の各層の屈折率を所期値に制御可能と
なる。また、膜厚と蒸発速度とを同一のモニターガラス
5にて計測しているので、真空蒸着装置内の改造は不要
で従前装置をそのまま利用できる。更にまた、従来例の
ように水晶振動子10とモニターガラス5とが別個の場所
に設置されていないので、設置場所の相違を考慮した補
正・比較計算も不要となる。
As described above, the evaporation rate monitor information obtained by the optical detection method is switched every time one layer of the monitor glass 5 is formed. Therefore, even if the optical thin film on the product 3 has several tens of layers, the total film thickness increases. As a result, it is possible to always ensure that the accuracy is high, and thus it is possible to control the refractive index of each layer of the optical thin film to a desired value. Further, since the film thickness and the evaporation rate are measured by the same monitor glass 5, the vacuum evaporation apparatus need not be modified and the conventional apparatus can be used as it is. Furthermore, unlike the conventional example, since the crystal unit 10 and the monitor glass 5 are not installed in separate places, correction / comparison calculation considering the difference in installation place is also unnecessary.

<効果> 以上のように本発明によれば、作成・被着される光学的
薄膜の膜層数が多くなっても信頼性の高い蒸発速度の計
測・制御が可能であると共に、比較的簡便な構成でこれ
が達成可能な真空蒸着装置における蒸発速度及び膜厚の
監視装置を提供でき、その産業的価値は大きい。
<Effect> As described above, according to the present invention, it is possible to measure and control the evaporation rate with high reliability even when the number of optical thin films to be formed and deposited is large, and it is relatively simple. With such a configuration, it is possible to provide a device for monitoring the evaporation rate and film thickness in a vacuum vapor deposition device that can achieve this, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の実施例に係り、第1図は真
空蒸着装置における蒸発速度及び膜厚の監視装置の説明
図、第2図は第1図及び第2の受光器の出力波形の説明
図、第3図は従来構成の説明図、第4図は蒸着速度の屈
折率の関係を示すグラフ図である。 1……ベルジャー 2……蒸発源 3……製品 4……回転モニターホルダー 5……モニターガラス 6……短波長の計測光 8……第1の受光器 9……膜厚演算回路 12……プロセスコントローラ 13……蒸発駆動源 14……シャッタ駆動源 15……シャッタ 16……ホルダー 17、18……ガラスシール 19、20……ハーフミラー 21……長波長の計測光 22……第1のフィルター 23、26……アンプ 24……第2のフィルター 25……第2の受光器 27……蒸発速度演算回路
1 and 2 relate to an embodiment of the present invention. FIG. 1 is an explanatory view of a device for monitoring evaporation rate and film thickness in a vacuum vapor deposition apparatus, and FIG. FIG. 3 is an explanatory diagram of an output waveform, FIG. 3 is an explanatory diagram of a conventional configuration, and FIG. 4 is a graph showing a relationship between a vapor deposition rate and a refractive index. 1 …… Bell jar 2 …… Evaporation source 3 …… Product 4 …… Rotating monitor holder 5 …… Monitor glass 6 …… Short wavelength measuring light 8 …… First light receiver 9 …… Film thickness calculation circuit 12 …… Process controller 13 …… Evaporation drive source 14 …… Shutter drive source 15 …… Shutter 16 …… Holder 17, 18 …… Glass seal 19,20 …… Half mirror 21 …… Long wavelength measurement light 22 …… First Filter 23, 26 ...... Amplifier 24 ...... Second filter 25 ...... Second light receiver 27 ...... Evaporation rate calculation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空蒸着装置のベルジャー内に光学的薄膜
を多層に被着されるべき製品と共に、光学的薄膜の1層
形成毎に蒸着ターゲット領域に切り替えて曝される複数
枚のモニターガラスと、 前記ターゲット領域にあるモニターガラスに対し同時に
照射される、膜厚監視用の短波長の計測光、並びに該短
波長の計測光の略数倍の波長とされた蒸発速度監視用の
長波長の計測光と、 前記モニターガラスを透過した前記短波長の計測光と長
波長の計測光を各々分離して受光するための、短波長用
の第1の受光器並びに長波長用の第2の受光器と、 前記第1の受光器の出力によって膜厚を演算・監視する
第1の演算手段と、 前記第2の受光器の出力によって蒸発速度を演算・監視
する第2の演算手段と、 前記第1の演算手段並びに前記第2の演算手段の出力を
受け蒸発プロセスを制御するプロセスコントローラと
を、 備えたことを特徴とする真空蒸着装置における蒸発速度
及び膜厚の監視装置。
1. A product to be coated with a plurality of optical thin films in a bell jar of a vacuum vapor deposition apparatus, and a plurality of monitor glasses exposed by switching to a vapor deposition target region for each formation of one optical thin film. , A short-wavelength measuring light for film thickness monitoring, which is simultaneously irradiated to the monitor glass in the target region, and a long-wavelength measuring light for evaporation rate monitoring, which has a wavelength of approximately several times the short-wavelength measuring light. A first light receiver for short wavelength and a second light receiver for long wavelength for separately receiving the measurement light, the measurement light of the short wavelength and the measurement light of the long wavelength that have passed through the monitor glass. A first calculating means for calculating and monitoring the film thickness by the output of the first light receiving device, a second calculating means for calculating and monitoring the evaporation rate by the output of the second light receiving device, First computing means and the second performance And a process controller for controlling the evaporation process receives the output means, the evaporation rate and the film thickness of the monitoring device in the vacuum vapor deposition apparatus characterized by comprising.
JP30103086A 1986-12-17 1986-12-17 Device for monitoring evaporation rate and film thickness in vacuum deposition equipment Expired - Fee Related JPH0689450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30103086A JPH0689450B2 (en) 1986-12-17 1986-12-17 Device for monitoring evaporation rate and film thickness in vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30103086A JPH0689450B2 (en) 1986-12-17 1986-12-17 Device for monitoring evaporation rate and film thickness in vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JPS63153269A JPS63153269A (en) 1988-06-25
JPH0689450B2 true JPH0689450B2 (en) 1994-11-09

Family

ID=17892002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30103086A Expired - Fee Related JPH0689450B2 (en) 1986-12-17 1986-12-17 Device for monitoring evaporation rate and film thickness in vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JPH0689450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19929615C1 (en) 1999-06-28 2001-04-19 Fraunhofer Ges Forschung Device and use of the device for monitoring deliberate or unavoidable layer deposits

Also Published As

Publication number Publication date
JPS63153269A (en) 1988-06-25

Similar Documents

Publication Publication Date Title
JPS5845643B2 (en) How to determine the etching rate of an opaque layer
SU938754A3 (en) Method for determining flour brightness index
JP3308135B2 (en) In-process film thickness monitoring apparatus and method
JPH0689450B2 (en) Device for monitoring evaporation rate and film thickness in vacuum deposition equipment
US2547545A (en) Means for measuring the optical properties of films
JPH0798993B2 (en) Film thickness control method
JPH01320408A (en) Thin film monitor using laser and film thickness measuring method
JPS54110938A (en) Method and apparatus for controlling film thickness
JP2970020B2 (en) Method of forming coating thin film
JPH0625851A (en) Device for controlling thickness of formed film
JPH08262138A (en) Instrument for measuring distance by light wave and light quantity control method therefor
JPS63176462A (en) Vapor depositing device by laser beam
JPS6015502A (en) Thick-film monitoring method
JPS6034046B2 (en) Thin film generation device
JPH1030171A (en) Electron beam vacuum depositing device
JPH01240655A (en) Thin film-forming equipment
JPH01306560A (en) Method for controlling vapor-deposited film thickness
GB2135776A (en) Film thickness measurement
JPH07159132A (en) Device for measuring temperature of semiconductor surface and thickness of film formed on the surface
JPS63157861A (en) Vapor deposition apparatus by laser
JPH0325123Y2 (en)
JPH0719820A (en) Optical film thickness monitor
JPH04168311A (en) Quartz film thickness detector
JP2759114B2 (en) Measurement device for third-order nonlinear optical characteristics
JPH01278013A (en) Sputtering apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees