JPH0719820A - Optical film thickness monitor - Google Patents

Optical film thickness monitor

Info

Publication number
JPH0719820A
JPH0719820A JP33410991A JP33410991A JPH0719820A JP H0719820 A JPH0719820 A JP H0719820A JP 33410991 A JP33410991 A JP 33410991A JP 33410991 A JP33410991 A JP 33410991A JP H0719820 A JPH0719820 A JP H0719820A
Authority
JP
Japan
Prior art keywords
light
film formation
chamber
film
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33410991A
Other languages
Japanese (ja)
Inventor
Naoji Moriya
直司 森谷
Akihiro Kawabata
章裕 川端
Hiroshi Mizushima
洋 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33410991A priority Critical patent/JPH0719820A/en
Publication of JPH0719820A publication Critical patent/JPH0719820A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical film thickness monitor which can monitor film forming state accurately without any influence such as optical changes in a film formation chamber. CONSTITUTION:A light emitted from a light source 1 is divided into two fluxes of light, and one flux of light is made to transmit a sample in a film formation chamber 6, while the other flux of light is made to transmit simply in the film formation chamber, then the two fluxes of light are discriminated and received by the same light receiver 8. When a detection signal of the latter is R, a detection signal of the light which transmits a film formation substrate 7 within the chamber 6 is S, and a detection signal of light quantity at the time when the two fluxes of light are shielded just before they are made incident to the chamber 6 is D, the following formula is obtained; F(t)=(S-D)/(R-D). According to the measuring value F(t), the film thickness in the film formation chamber is observed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成膜装置において、成
膜室内に2光束を入射し、膜厚の観測をする光学式膜厚
モニターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical film thickness monitor for observing the film thickness of a film forming apparatus by injecting two light beams into the film forming chamber.

【0002】[0002]

【従来の技術】真空蒸着,陰極スパッタリング等による
基板上の成膜法で、膜厚の光学的測定法として、膜の表
裏両面からの反射光の相互干渉による膜面の反射率或は
透過率の変化を検出する方法がある。従来光学式膜厚モ
ニターにおいては、単一光束で測定する場合と、2光束
で測定する場合の両方がある。光束を分割することなし
に、単一光束にて測定を行う場合においては、光源の輝
度変化の影響や成膜室内の光学的変化の影響を測定値か
ら除く事は、原理的に不可能であり、精度的に問題が大
きかった。そこで、従来においても、光束を2光束に分
割するダブルビーム方式が用いられるが、従来のダブル
ビーム方式では、サンプル光は成膜室内の成膜基板に照
射されているが、リファレンス光はファイバー等を用
い、成膜室外を通過させているだけなので、光源の輝度
変化の影響を除けるとしても、成膜室内の光学的変化
(発光・吸光等の現象)や真空ポンプ等の振動による光
学系の光軸の変化により受光素子への入射光量が変化し
た場合、その影響を測定値から除去することは出来ない
ために、成膜室内で光学的変化が発生した場合や、振動
による受光量の変化等によって、正確な膜厚の観測がで
きないと言う問題があった。
2. Description of the Related Art A film forming method on a substrate by vacuum vapor deposition, cathode sputtering, etc., is used as an optical measuring method of the film thickness, in which the reflectance or transmittance of the film surface due to mutual interference of reflected light from both front and back surfaces of the film. There is a method to detect the change of. In the conventional optical film thickness monitor, there are both a case of measuring with a single light beam and a case of measuring with two light beams. In the case of measuring with a single light flux without splitting the light flux, it is theoretically impossible to exclude the influence of the brightness change of the light source and the influence of the optical change in the deposition chamber from the measured value. There was a big problem in terms of accuracy. Therefore, the double beam method of splitting a light flux into two light fluxes is also used in the related art. In the conventional double beam method, the sample light is applied to the film formation substrate in the film formation chamber, but the reference light is a fiber or the like. Since it is only passed through the outside of the film formation chamber by using the optical system, even if the influence of the change in the brightness of the light source can be eliminated, the If the amount of light incident on the light receiving element changes due to changes in the optical axis, the effect cannot be removed from the measured value. Therefore, there is a problem that the film thickness cannot be accurately measured.

【0003】[0003]

【発明が解決しようとする課題】本発明は、成膜室内に
おける光学的変化の影響を受けずに成膜状態を正確にモ
ニターできる光学式膜厚モニターを提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical film thickness monitor capable of accurately monitoring a film forming state without being affected by an optical change in a film forming chamber.

【0004】[0004]

【課題を解決するための手段】光学式膜厚モニターとし
て、光源からの光を透過光と反射光と遮光とに時系列的
に2分割するセクターミラーと、上記反射光及び透過光
を成膜室を透過させる手段と、上記反射光と透過光と遮
光時の光を同一受光器に分別して受光させる手段とを設
け、成膜室内を単に透過した光の検出信号をR、成膜室
内の成膜基板を透過した光の検出信号をS、遮光時にお
ける成膜室内からの光の検出信号をDとした時に、 F(t)=(S−D)/(R−D) なる測定値F(t)によって、成膜室内の膜厚を観測す
るようにした。上記装置において、2光束分類の周波数
νを装置に対する外乱(振動)の周波数ν0 よりも高く
する。
As an optical film thickness monitor, a sector mirror that divides light from a light source into transmitted light, reflected light, and light shielding in time series, and a film of the reflected light and the transmitted light are formed. A means for transmitting the chamber and a means for separately receiving the reflected light, the transmitted light, and the light at the time of blocking in the same light receiver are provided, and the detection signal of the light simply transmitted through the film forming chamber is R, When the detection signal of the light transmitted through the film formation substrate is S and the detection signal of the light from the film formation chamber when the light is shielded is D, a measured value F (t) = (SD) / (RD) The film thickness in the film forming chamber was observed by F (t). In the above device, the frequency ν of two-beam classification is set higher than the frequency ν 0 of the disturbance (vibration) with respect to the device.

【0005】[0005]

【作用】セクターミラーで光源からの光を2光束と遮光
時とに時系列的に3分割し、透過・反射の2光束を共に
成膜室内に入射させ、成膜基板を透過した光(サンプル
光)Sと成膜室内を単に透過した光(リファレンス光)
Rと遮光時における受光器出力Dとを同一受光器で検出
すると、このDなる信号は成膜室内で発生した光の検出
信号であり、成膜室内における光学的変化や振動による
受光量変化はどの検出信号においても同じ影響を受け
る。成膜状態のモニターは成膜基板における透過率の変
化によって把握することから、モニター用の測定値とし
て、F(t)=(S−D)/(R−D)を用いる場合に
おける成膜室内の発光・吸光及び振動による光軸の変化
の影響を考察すると(但し、SはS光の検出信号強度、
RはR光の検出信号強度、DはD光の検出信号強度とす
る。)、成膜室内で発光現象が起きた場合におけるF
(t)への影響は、夫々の光の検出信号の変化として
は、発光による光量の増加分βが全検出信号において増
加するので、F(t)=[(S+β)−(D+β)]/
[(R+β)−(D+β)]=(S−D)/(R−D)
となり、測定値F(t)には発光現象による影響は表れ
ないことが分る。次に吸光や振動による光軸のズレがあ
った場合、即ち、成膜室内における吸光率が変化した場
合や光軸ズレによる受光量の減少があった場合を考える
と、吸光率の変化は、夫々の光の検出信号を一定の割合
で減少させる。即ち、成膜室内の吸光率がα倍になった
とすると、全信号強度がα倍となり、また、光軸ズレに
よる受光量の減少も、2光束分離の周波数が振動周波数
より充分高い場合には、信号減少率はサンプル光・リフ
ァレンス光に対して同じ値となるため、上記同様に減少
率をαとすると、全信号強度がα倍となり、測定値F
(t)は、F(t)=(αS−αD)/(αR−αD)
=α(S−D)/α(R−D)=(S−D)/(R−
D)となり、測定値F(t)には吸光現象や光軸ズレに
よる影響は表れないことが分る。以上のように同一光源
の光を2光束と遮光とに時系列的に3分割し、その3光
の検出信号を演算処理することで、成膜室内における発
光・吸光等の影響を、モニター監視用測定値から除去す
ることができる。
Operation: The sector mirror splits the light from the light source into two light beams and the time when the light is shielded, and divides the light beams into three in time series. (Light) S and light that has simply passed through the deposition chamber (reference light)
When R and the photodetector output D when the light is shielded are detected by the same photodetector, the signal D is a detection signal of the light generated in the film forming chamber, and an optical change in the film forming chamber or a change in the received light amount due to vibration does not occur. The same effect is applied to any detection signal. Since the monitor of the film formation state is grasped by the change in the transmittance of the film formation substrate, the film formation chamber when F (t) = (SD) / (RD) is used as the measurement value for the monitor. Considering the influence of the change of the optical axis due to the emission / absorption of light and the vibration (where S is the detection signal intensity of S light,
Let R be the detection signal intensity of the R light and D be the detection signal intensity of the D light. ), F when a light emission phenomenon occurs in the film forming chamber
As for the influence on (t), as the change of the detection signal of each light, the increase β of the light amount due to the emission increases in all the detection signals, so that F (t) = [(S + β) − (D + β)] /
[(R + β)-(D + β)] = (SD) / (RD)
It can be seen that the measured value F (t) is not affected by the light emission phenomenon. Next, if there is a shift in the optical axis due to absorption or vibration, that is, if the absorbance in the deposition chamber changes or if the amount of received light decreases due to the optical axis shift, the change in the absorbance is The detection signal of each light is reduced at a constant rate. That is, assuming that the absorptance in the film forming chamber becomes α times, the total signal intensity also becomes α times, and the amount of received light due to the optical axis shift is also reduced when the frequency of two light beam separation is sufficiently higher than the vibration frequency. Since the signal reduction rate is the same for the sample light and the reference light, if the reduction rate is α as in the above case, the total signal intensity will be α times, and the measured value F
(T) is F (t) = (αS−αD) / (αR−αD)
= Α (SD) / α (RD) = (SD) / (R-
Therefore, it can be seen that the measurement value F (t) is not affected by the light absorption phenomenon or the optical axis shift. As described above, the light of the same light source is divided into two light fluxes and light shields in time series, and the detection signals of the three lights are arithmetically processed to monitor and monitor the effects of light emission and absorption in the film formation chamber. Can be removed from the measured value.

【0006】[0006]

【実施例】図1に本発明の一実施例の光学系構成図を示
す。1は光源、2は光源1からの光を2光束に分割する
セクターミラーで、詳細を図2に示す。セクターミラー
2は円形のマスク2Aに扇状の窓2Cが設けられてあ
り、その上に扇形の回転ミラー2Bが取付けλれてあ
る。窓2Cの大きさは扇形角60°、回転ミラー2Bの
大きさも扇形角60°であり、従って、マスク2Aも扇
形角は60°で、セクターミラー2を回転させることに
より、光源1からの光は、セクターミラー2の窓2Cを
通過する光と、回転ミラー2Bで反射される光と、マス
ク2Aで遮光される光とに、分割される。セクターミラ
ー2の窓2Cを通過した光は、ミラー3で反射され、成
膜室6内に設置されている成膜基板7を透過し、セクタ
ーミラー5で反射されて受光器8で受光される。セクタ
ーミラー2の回転ミラー2Bで反射された光は、ミラー
4で反射され、成膜室6内を透過し、セクターミラー5
の窓5Cを通過して受光器8で受光される。セクターミ
ラー5の詳細は、図3に示すように、窓5Cの大きさは
60°でセクターミラー2と同じであるが、回転ミラー
5Bの大きさは120°と2倍の大きさとなっていて、
マスク2Aに相当する部分がない。セクターミラー5と
セクターミラー2とを、セクターミラー2の回転ミラー
2Bとセクターミラー5の窓5Cが、同時に夫々の測定
光路上にあるように同期させて回転させることにより、
セクターミラー2で反射された光は、セクターミラー5
の窓5Cを通過し、セクターミラー2の窓2Cを通過し
た光は、セクターミラー5で反射されて、受光器8に入
射し、セクターミラー2のマスク2Aが光路上にあると
きも、セクターミラー5の回転ミラー5Cが光路上にあ
る期間が得られて、受光器8では、図4に示すような信
号が得られる。図4のダーク光信号Dとは、セクターミ
ラー2のマスク2Aと、セクターミラー5の回転ミラー
5Cとが共に光路上にあるときの、受光器8の出力信号
で、光源1からの光が、成膜室6内に入射していない状
態の光量、即ち、成膜室内自身で発生した光の光量を表
わす信号である。このような光は真空蒸着の際の熱源か
らの発光とか陰極スパッタリングにおけるグロー放電の
光である。図4のサンプル光信号Sとは、光源1からの
光が成膜室6内の成膜基板7を透過した光の光量を表し
た信号である。図4のリファレンス光信号Rとは、光源
1からの光が成膜室6内を透過した光の光量を表した信
号である。信号処理系9では、3つの検出信号S,R,
Dから、 F(t)=(S−D)/(R−D)……………(1) なる式(1)で測定値F(t)を求め、F(t)の値に
より成膜状態をモニターしている。このF(t)は成膜
基板7の吸光率を表している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a block diagram of an optical system of an embodiment of the present invention. Reference numeral 1 is a light source, and 2 is a sector mirror that splits the light from the light source 1 into two light beams, the details of which are shown in FIG. The sector mirror 2 has a circular mask 2A provided with a fan-shaped window 2C, and a fan-shaped rotating mirror 2B is mounted on the window 2C. The window 2C has a fan angle of 60 °, and the rotating mirror 2B also has a fan angle of 60 °. Therefore, the mask 2A also has a fan angle of 60 °, and the sector mirror 2 is rotated so that the light from the light source 1 is emitted. Is split into light that passes through the window 2C of the sector mirror 2, light that is reflected by the rotating mirror 2B, and light that is shielded by the mask 2A. The light passing through the window 2C of the sector mirror 2 is reflected by the mirror 3, transmitted through the film formation substrate 7 installed in the film formation chamber 6, reflected by the sector mirror 5, and received by the light receiver 8. . The light reflected by the rotating mirror 2B of the sector mirror 2 is reflected by the mirror 4, passes through the inside of the film forming chamber 6, and is reflected by the sector mirror 5.
The light passes through the window 5C and is received by the light receiver 8. As for the details of the sector mirror 5, as shown in FIG. 3, the size of the window 5C is 60 °, which is the same as that of the sector mirror 2, but the size of the rotating mirror 5B is twice as large as 120 °. ,
There is no portion corresponding to the mask 2A. By rotating the sector mirror 5 and the sector mirror 2 in synchronization so that the rotating mirror 2B of the sector mirror 2 and the window 5C of the sector mirror 5 are on the respective measurement optical paths at the same time,
The light reflected by the sector mirror 2 is reflected by the sector mirror 5.
The light which has passed through the window 5C of the sector mirror 2 and passed through the window 2C of the sector mirror 2 is reflected by the sector mirror 5 and enters the photodetector 8, and even when the mask 2A of the sector mirror 2 is on the optical path. The period in which the rotating mirror 5C of 5 is on the optical path is obtained, and the light receiver 8 obtains a signal as shown in FIG. The dark optical signal D in FIG. 4 is the output signal of the light receiver 8 when the mask 2A of the sector mirror 2 and the rotating mirror 5C of the sector mirror 5 are both on the optical path, and the light from the light source 1 is This is a signal that represents the amount of light that has not entered the film forming chamber 6, that is, the amount of light that is generated within the film forming chamber itself. Such light is light emitted from a heat source during vacuum deposition or glow discharge light during cathode sputtering. The sample optical signal S in FIG. 4 is a signal representing the amount of light from the light source 1 that has passed through the film formation substrate 7 in the film formation chamber 6. The reference light signal R in FIG. 4 is a signal that represents the amount of light from the light source 1 that has passed through the film formation chamber 6. In the signal processing system 9, the three detection signals S, R,
From D, F (t) = (S−D) / (R−D) ………… (1) The measured value F (t) is obtained by the formula (1), and the value of F (t) Membrane condition is monitored. This F (t) represents the absorptance of the film formation substrate 7.

【0007】この光学系における成膜室6内においてガ
ス等の影響で吸光率が増加した場合、或は振動による光
軸ズレで受光量が一定比率で減少した場合、即ち、信号
強度がα(0<α<1)倍になった場合でも、上記式
(1)は、 F(t)=(αS−αD)/(αR−αD)=(S−
D)/(R−D) となり、測定値F(t)は変化しない。また、何らかの
発光現象が起きた場合、即ち、信号強度が一律にβだけ
増加した場合、上記式(1)は、 F(t)=[(S+β)−(D+β)]/[(R+β)
−(D+β)]=(S−D)/(R−D) となり、同じく、測定値F(t)は変化しない。このよ
うに成膜室内において、発光・吸光・光軸ズレ等による
光学的変化が起きても、測定値F(t)にその影響が及
ばない。この構成において、2つのセクターミラーのう
ち、どちらか片方がハーフミラーであり、残るセクター
ミラーが図2の形式をとる場合も、更に、図5に示す、
変形実施例に示すように、2つともハーフミラー12,
15として、図6に示す構成のチョッパー10と組み合
わせた場合でも、信号強度は落ちるものの効果は同様で
あることは言うまでもない。
In the film forming chamber 6 of this optical system, when the absorptivity increases due to the influence of gas or the like, or when the amount of received light decreases at a constant rate due to optical axis deviation due to vibration, that is, the signal intensity is α ( Even if it becomes 0 <α <1) times, F (t) = (αS−αD) / (αR−αD) = (S−
D) / (RD), and the measured value F (t) does not change. Further, when some kind of light emission phenomenon occurs, that is, when the signal intensity uniformly increases by β, the above formula (1) is expressed by F (t) = [(S + β) − (D + β)] / [(R + β)
− (D + β)] = (SD) / (RD), and similarly, the measured value F (t) does not change. Thus, even if an optical change due to light emission, light absorption, optical axis shift, or the like occurs in the film forming chamber, the measured value F (t) is not affected. In this configuration, when one of the two sector mirrors is a half mirror and the remaining sector mirrors take the form of FIG. 2, it is further shown in FIG.
As shown in the modified embodiment, both of them are half mirrors 12,
Needless to say, even when the chopper 10 having the structure shown in FIG. 6 is combined as 15, the effect is the same although the signal strength is reduced.

【0008】[0008]

【発明の効果】本発明によれば、成膜室内において、発
光・吸光・光軸ズレ等による光学的変化が起きても、測
定値F(t)にその影響が及ばないようになったこと
で、測定値の精度が一段と増し、成膜状態のモニターが
より正確に行うことができるようになった。セクターミ
ラーは、真空系の回転ポンプにより高速回転が可能であ
るから、真空系の振動の影響も容易に除くことができ
る。
According to the present invention, even if an optical change due to light emission, light absorption, optical axis shift or the like occurs in the film forming chamber, the measured value F (t) is not affected. With this, the accuracy of the measured value is further increased, and the film formation state can be monitored more accurately. Since the sector mirror can be rotated at a high speed by a vacuum system rotary pump, the influence of vacuum system vibration can be easily eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の光学系構成図FIG. 1 is a configuration diagram of an optical system according to an embodiment of the present invention.

【図2】上記実施例のセクターミラー2の平面図FIG. 2 is a plan view of the sector mirror 2 of the above embodiment.

【図3】上記実施例のセクターミラー5の平面図FIG. 3 is a plan view of the sector mirror 5 of the above embodiment.

【図4】上記実施例の検出信号図FIG. 4 is a detection signal diagram of the above embodiment.

【符号の説明】[Explanation of symbols]

1 光源 2 セクターミラー 3 ミラー 4 ミラー 5 セクターミラー 6 成膜室 7 成膜基板 8 受光器 9 処理系 1 Light Source 2 Sector Mirror 3 Mirror 4 Mirror 5 Sector Mirror 6 Film Forming Chamber 7 Film Forming Substrate 8 Photo Receiver 9 Processing System

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月4日[Submission date] September 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の光学系構成図FIG. 1 is a configuration diagram of an optical system according to an embodiment of the present invention.

【図2】上記実施例のセクターミラー2の平面図FIG. 2 is a plan view of the sector mirror 2 of the above embodiment.

【図3】上記実施例のセクターミラー5の平面図FIG. 3 is a plan view of the sector mirror 5 of the above embodiment.

【図4】上記実施例の検出信号図FIG. 4 is a detection signal diagram of the above embodiment.

【図5】本発明の変形実施例の光学系構成図FIG. 5 is an optical system configuration diagram of a modified example of the present invention.

【図6】上記実施例のチョッパー10の平面図FIG. 6 is a plan view of the chopper 10 of the above embodiment.

【符号の説明】 1 光源 2 セクターミラー 3 ミラー 4 ミラー 5 セクターミラー 6 成膜室 7 成膜基板 8 受光器 9 処理系[Explanation of reference numerals] 1 light source 2 sector mirror 3 mirror 4 mirror 5 sector mirror 6 film forming chamber 7 film forming substrate 8 light receiver 9 processing system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源からの光を2光束に分割する手段と、
上記2光束を成膜室内に入射させ、1方の光束は試料を
透して成膜室を透過させ他方の光束は単に成膜室を透過
させる手段と、上記2光束と遮光時における成膜室内の
光とを同一受光器に分別して受光させる手段とを設け、
成膜室内を単に透過した光の検出信号をR、成膜室内の
成膜基板を透過した光の検出信号をS、遮光時における
成膜室内の光の検出信号をDとした時に、 F(t)=(S−D)/(R−D) なる測定値F(t)によって、成膜室内の膜厚を観測す
ることを特徴とする光学式膜厚モニター。
1. A means for splitting light from a light source into two light fluxes,
Means for allowing the two light beams to enter the film forming chamber, one light beam passing through the sample and the film forming chamber, and the other light beam simply passing through the film forming chamber; And a means for separately receiving the light in the room into the same light receiver,
Let R be the detection signal of the light that has simply passed through the film formation chamber, S be the detection signal of the light that has passed through the film formation substrate inside the film formation chamber, and D be the detection signal of the light inside the film formation chamber when the light is blocked. t) = (S−D) / (R−D) An optical film thickness monitor characterized by observing the film thickness in the film forming chamber by a measured value F (t).
JP33410991A 1991-11-22 1991-11-22 Optical film thickness monitor Pending JPH0719820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33410991A JPH0719820A (en) 1991-11-22 1991-11-22 Optical film thickness monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33410991A JPH0719820A (en) 1991-11-22 1991-11-22 Optical film thickness monitor

Publications (1)

Publication Number Publication Date
JPH0719820A true JPH0719820A (en) 1995-01-20

Family

ID=18273628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33410991A Pending JPH0719820A (en) 1991-11-22 1991-11-22 Optical film thickness monitor

Country Status (1)

Country Link
JP (1) JPH0719820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684574A (en) * 1994-11-01 1997-11-04 Matsushita Electric Industrial Co., Ltd. In-process film thickness monitoring system
KR20020005314A (en) * 2000-07-10 2002-01-17 김영동 Revised method for surface photoabsorption measurement
US7050262B2 (en) 2002-08-05 2006-05-23 Funai Electric Co., Ltd. Magnetic recording/reproducing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684574A (en) * 1994-11-01 1997-11-04 Matsushita Electric Industrial Co., Ltd. In-process film thickness monitoring system
KR20020005314A (en) * 2000-07-10 2002-01-17 김영동 Revised method for surface photoabsorption measurement
US7050262B2 (en) 2002-08-05 2006-05-23 Funai Electric Co., Ltd. Magnetic recording/reproducing apparatus

Similar Documents

Publication Publication Date Title
FI69370B (en) FOERFARANDE FOER MAETNING AV EGENSKAPERNA HOS ETT PLASTSKIKT MED HJAELP AV INFRAROED STRAOLNING
GB1348978A (en) Infrared technique for measuring a parameter eg thickness of a thin film
GB1382081A (en) Transmission spectra
US4743775A (en) Absorption gauge for determining the thickness, moisture content or other parameter of a film of coating
JPH0719820A (en) Optical film thickness monitor
US3459951A (en) Photometric analyzer for comparing absorption of wavelength of maximum absorption with wavelength of minimum absorption
US6549291B1 (en) Process for continuous determination of the optical layer thickness of coatings
JP2004138499A (en) Gas concentration detection sensor
US3863071A (en) Infrared measuring system with channel spectra negation
JP3205084B2 (en) Method and apparatus for measuring film thickness of coating material
JPH1038688A (en) Spectrophotometer
JPH0648244B2 (en) Infrared moisture meter that reduces the effect of basis weight
JPS6128843A (en) Infrared gas analyser
JPS5813435Y2 (en) Tokakoushikikemurikanchiki
JPH02163603A (en) Transmission light quantum measuring sensor with correcting system
JPH0565023B2 (en)
JPH05215519A (en) Optical film thickness monitor
JPH06273330A (en) Turbidimeter
JPH0458139A (en) Infrared optical device
JPH07128135A (en) Optical measuring apparatus
WO1990002936A1 (en) Transmissometer
JPS61120003A (en) Infrared thickness measuring instrument
JPH10185816A (en) Infrared analyzer
JPH07181016A (en) Method and apparatus for measuring film thickness
JPH01196523A (en) Laser apparatus