JP3205084B2 - Method and apparatus for measuring film thickness of coating material - Google Patents
Method and apparatus for measuring film thickness of coating materialInfo
- Publication number
- JP3205084B2 JP3205084B2 JP27705392A JP27705392A JP3205084B2 JP 3205084 B2 JP3205084 B2 JP 3205084B2 JP 27705392 A JP27705392 A JP 27705392A JP 27705392 A JP27705392 A JP 27705392A JP 3205084 B2 JP3205084 B2 JP 3205084B2
- Authority
- JP
- Japan
- Prior art keywords
- absorbance
- coating material
- thickness
- base material
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、紙やフィルム等の基材
上にコート材を塗布した被測定物のコート材の膜厚を赤
外線を用いて測定する方法および装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the thickness of a coating material on an object to be measured, which is obtained by applying a coating material on a substrate such as paper or film, using infrared rays.
【0002】[0002]
【従来の技術】従来より、赤外線膜厚計を用いてコート
材の膜厚を測定することは公知である。従来公知のこの
種膜厚測定では、予め基材のみの吸光度を2〜3測定光
を用いて検出し、被測定物について測定した吸光度から
基材のみの吸光度を差し引いてコート成分の吸光度を求
め、求めた吸光度から予め求めた検量線により膜厚を検
出する。2. Description of the Related Art It is conventionally known to measure the thickness of a coating material using an infrared film thickness meter. In the conventionally known seed film thickness measurement, the absorbance of only the base material is detected in advance by using 2 to 3 measurement light, and the absorbance of the coat component is obtained by subtracting the absorbance of the base material only from the absorbance measured for the object to be measured. The film thickness is detected by a calibration curve previously obtained from the obtained absorbance.
【0003】[0003]
【発明が解決しようとする課題】上記従来の膜厚測定方
式は、基材の厚みに変動がないものとして基材のみの吸
光度を波長ごとに求めてこれを補正データとするもので
あり、基材の厚みが変動する場合には、その変動分がそ
のまま膜厚の測定誤差となる。基材となるフィルム等の
膜厚は、これを完全に一定とすることが製造上きわめて
困難であり多少の変動は避け難い。上記したように、こ
の種の変動は、コート成分の膜厚の測定誤差に直結する
ので、コート成分の膜厚を一定に管理することが不可能
となる。また、基材が紙である場合等は、基材の種類
(例えば、ケント紙、上質紙、クラフト紙等紙の種類)
によって紙の表面状態が異なり、光の紙への浸透深さが
異なり、またコーティングを施すことによって基材の表
面状態が変化することから、紙基材の吸光度は紙の種
類、コーティングの有無によって異なることになる。紙
の種類による吸光度の変化は、紙の種類ごとに検量線を
作成することによってある程度解消することができる
が、コーティングを施すことによって基材に生じる吸光
度の変化は、依然として解消できず、測定誤差を生ずる
一因となっている。The above conventional film thickness measuring method is based on the assumption that there is no change in the thickness of the base material, the absorbance of only the base material is determined for each wavelength, and this is used as correction data. In the case where the thickness of the material changes, the change is directly used as a measurement error of the film thickness. It is extremely difficult in production to make the film thickness of a film or the like as a substrate completely constant, and it is difficult to avoid some fluctuations. As described above, this kind of variation is directly related to the measurement error of the thickness of the coat component, and it is impossible to control the thickness of the coat component to be constant. When the base material is paper, the type of the base material (for example, the type of paper such as Kent paper, woodfree paper, and kraft paper)
The light absorption of the paper substrate depends on the type of paper and the presence or absence of the coating, since the surface condition of the paper varies depending on the paper, the penetration depth of the light into the paper varies, and the surface condition of the substrate changes by applying the coating. Will be different. The change in absorbance due to the type of paper can be eliminated to some extent by creating a calibration curve for each type of paper, but the change in absorbance that occurs on the substrate due to the coating cannot be eliminated, and the measurement error Is one of the causes.
【0004】[0004]
【課題を解決するための手段】本発明は基材の厚みの変
動に影響されることなしにコート成分の膜厚を正確に求
めることができ、基材が紙のようにその紙の種類が種々
であってもその影響を実質的に極小化することができる
コート材の膜厚測定方法および装置を提供することを基
本的な目的としている。かかる目的を達成するため、本
発明は、基材にコーティングを施した被測定物のコート
材の膜厚を測定するに際して、コート材および基材の両
方に赤外線吸収がある波長λ1を有する第1測定光と、
基材のみに赤外線吸収がある波長λ2を有する第2測定
光と、コート材には赤外線吸収がなく基材について赤外
線吸収が小さいかない波長λ3を有する参照光とを用い
て、基材のみの吸光度A10,A20,A30を予め測定し
て、補正係数kを次式により算出しておき、 k=(A10−A30)/(A20−A30) 被測定物についてλ1,λ2,λ3での吸光度A1,A2,
A3を測定し、これら測定値から次式によりコート材の
みの吸光度Aを演算し、 A=A1−A3−k(A2−A3) 求めた吸光度Aを厚みに換算してコート材を膜厚を求め
るようにしたコート材の膜厚測定方法を提供する。SUMMARY OF THE INVENTION According to the present invention, the thickness of a coating component can be accurately determined without being affected by fluctuations in the thickness of a substrate. It is a basic object of the present invention to provide a method and an apparatus for measuring the thickness of a coating material capable of substantially minimizing the effects of various types. To achieve the above object, the present invention is first has the time to measure the film thickness of the coating material of the object to be measured which were coated substrate, the wavelength lambda 1 that has infrared absorption in both the coating material and the substrate One measuring light,
A second measuring beam having a wavelength lambda 2 that has infrared absorption only to the substrate, the coating material by using a reference beam having no wavelength lambda 3 or infrared absorption is small for the substrate without infrared absorption, the substrate only Absorbances A 10 , A 20 , and A 30 are measured in advance, and a correction coefficient k is calculated by the following equation. K = (A 10 −A 30 ) / (A 20 −A 30 ) Absorbances at 1 , λ 2 , λ 3 A 1 , A 2 ,
Measuring the A 3, and calculates the absorbance A of only the coating material from these measurements by the following equation, A = A 1 -A 3 -k (A 2 -A 3) the absorbance A was determined in terms of the thickness Court Provided is a method for measuring the thickness of a coating material in which the thickness of the material is determined.
【0005】基材が半透明であったり、着色されている
等散乱の影響が大きい場合には、参照波長を2つとし、
2つの参照光について得られる吸光度を結んで基準レベ
ルとし、これを基準として補正係数(比)を求める。即
ち、コート材および基材の両方に赤外線吸収がある波長
λ1を有する第1測定光と、基材のみに赤外線吸収があ
る波長λ2を有する第2測定光と、コート材と基材の両
方に赤外線吸収がない2つの波長λ3,λ4を有する第
1、第2参照光とを用いて、基材のみの吸光度A10,A
20,A30,A40を予め測定して、補正係数kを次式によ
り算出する。 k=(A10−A50)/(A20−A60) 但し、A50=A30+[(A40−A30)/(λ4−λ3)]×(λ1−λ3), A60=A30+[(A40−A30)/(λ4−λ3)]×(λ2−λ3) そして、被測定物についてλ1,λ2,λ3,λ4での吸光
度A1,A2,A3,A4を測定し、これら測定値から次式
によりコート材のみの吸光度Aを演算し、 A=A1−A5−k(A2−A6) 但し、A5=A3+[(A4−A3)/(λ4−λ3)]×(λ1−λ3), A6=A3+[(A4−A3)/(λ4−λ3)]×(λ2−λ3) 求めた吸光度Aを厚みに換算してコート材の膜厚を求め
る。[0005] When the influence of scattering is large such as when the base material is translucent or colored, two reference wavelengths are used,
The absorbances obtained for the two reference lights are connected to form a reference level, and a correction coefficient (ratio) is determined based on the reference level. That is, the first measurement light having a wavelength λ 1 having infrared absorption in both the coating material and the base material, the second measurement light having a wavelength λ 2 having infrared absorption only in the base material, Using the first and second reference lights having two wavelengths λ 3 and λ 4 , both of which have no infrared absorption, the absorbances A 10 and A of only the base material are used.
20 , A 30 , and A 40 are measured in advance, and the correction coefficient k is calculated by the following equation. k = (A 10 −A 50 ) / (A 20 −A 60 ) where A 50 = A 30 + [(A 40 −A 30 ) / (λ 4 −λ 3 )] × (λ 1 −λ 3 ) , A 60 = A 30 + [(A 40 −A 30 ) / (λ 4 −λ 3 )] × (λ 2 −λ 3 ) Then, for the measured object, λ 1 , λ 2 , λ 3 , λ 4 The absorbances A 1 , A 2 , A 3 , and A 4 are measured, and from these measured values, the absorbance A of only the coating material is calculated according to the following equation. A = A 1 -A 5 -k (A 2 -A 6 ) Where A 5 = A 3 + [(A 4 −A 3 ) / (λ 4 −λ 3 )] × (λ 1 −λ 3 ), A 6 = A 3 + [(A 4 −A 3 ) / ( λ 4 -λ 3)] × ( λ 2 -λ 3) the absorbance a was determined in terms of the thickness determine the thickness of the coating material.
【0006】さらに、本発明は、上記測定方法を実現す
る装置として、紙、フィルム等の基材上にコート成分を
塗布した被測定物のコート材の膜厚を測定する装置であ
って、赤外線光源と、コート材および基材の両方に赤外
線吸収がある波長を有する第1測定光と、基材のみに赤
外線吸収がある波長を有する第2測定光と、コート材お
よび基材の両方に赤外線吸収がない波長を有する参照光
を生成するフィルタ手段と、各光について吸光度を検出
する検出手段と、基材のみによる参照光の吸光度を基準
として、基材のみによる第1、第2測定光の吸光度の比
を求める補正係数演算手段と、被測定物について検出さ
れた吸光度を上記比に基いて補正する補正手段とを備
え、基材の変動による吸光度の変動を補正するようにし
たことを特徴とするコート材の膜厚測定装置を提供す
る。この場合にも、必要な場合には、参照波長を2波長
として、4波長測定とすることができる。Further, the present invention relates to an apparatus for realizing the above-mentioned measuring method, which is an apparatus for measuring a film thickness of a coating material of an object to be measured in which a coating component is applied on a substrate such as paper or film. A light source, a first measurement light having a wavelength having infrared absorption in both the coating material and the substrate, a second measurement light having a wavelength having infrared absorption only in the substrate, and an infrared light in both the coating material and the substrate. Filter means for generating reference light having a wavelength having no absorption, detection means for detecting the absorbance of each light, and first and second measurement lights of only the base material with reference to the absorbance of the reference light only by the base material. A correction coefficient calculating means for calculating a ratio of absorbance; and a correcting means for correcting the absorbance detected for the object to be measured based on the ratio, so that a change in absorbance due to a change in the base material is corrected. To be Providing the film thickness measuring device over preparative material. Also in this case, if necessary, the reference wavelength can be set to two wavelengths and four wavelengths can be measured.
【0007】[0007]
【作用・効果】本発明によれば、基材の吸光度の変化が
あったとしても、これに影響されない補正係数を用いて
吸光度を補正するため、基材の吸収の影響を受けない測
定が可能となり、コート材の真の厚みを正確に測定する
ことができる。According to the present invention, even if there is a change in the absorbance of the base material, the absorbance is corrected using the correction coefficient that is not affected by the change, so that the measurement can be performed without being affected by the absorption of the base material. And the true thickness of the coating material can be accurately measured.
【0008】[0008]
【実施例】以下、添付の図面の参照しながら、本発明の
実施例について具体的に説明する。図1は、本発明に使
用する赤外線膜厚測定装置の概略説明図であり、基材1
上にコート材2をコーティングしてなる測定サンプルに
対し、3ないし4波長の赤外線を照射して各吸光度を検
出する測光部10と、測光部10で検出された吸光度を
処理して最終的には、コート材2の膜厚を算出する信号
処理部30とで赤外線膜厚測定装置が構成されている。
上記測光部10には、赤外線の光源11が内蔵されてお
り、光源11から射出された赤外線は、集光レンズ1
2、第1ミラー13によって、回転式干渉フィルタ14
の所定位置に集光され、回転式干渉フィルタ14に組込
まれた1つの干渉フィルタ15によって特定の波長のみ
となった赤外線が、第2ミラー16を介して、測定サン
プル3に向けて照射されるようになっている。測定サン
プル3からの反射光は、凹面ミラー17によってその焦
点上に配置された赤外線検出器18に集められ測光され
る。なお、上記回転型干渉フィルタ14は、モータ19
によって回転駆動され、図2に示すように、本実施例で
は、第1〜第3干渉フィルタ15a,15b,15c
が、ディスク中心に関して120°の角度で組込まれて
おり、各干渉フィルタに対しては、一対一でタイミング
検出用の小穴15dが設けられ、各小穴15dをタイミ
ング検出器20(図1参照)で検出することにより、ど
の干渉フィルタ(どの波長の赤外線)を用いた測光かを
検出する。図3に図式的に示すように、上記第1干渉フ
ィルタ15aは測定サンプル3のコート材2と基材1の
両方において赤外線吸収がある波長λ1の赤外線のみ
を、第2干渉フィルタ15bは、基材1のみに赤外線吸
収がある波長λ2の赤外線のみを、第3干渉フィルタ1
5cはコート材2と基材1のいずれにも赤外線吸収がな
いか、基材1のみについて小さい赤外線吸収がある波長
λ3の赤外線のみを、夫々通過させるように調整されて
いる。Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 1 is a schematic explanatory view of an infrared film thickness measuring device used in the present invention,
A measurement sample formed by coating the coating material 2 thereon is irradiated with infrared rays of 3 to 4 wavelengths to detect each absorbance, and the absorbance detected by the photometry unit 10 is processed and finally processed. The signal processing unit 30 for calculating the film thickness of the coating material 2 constitutes an infrared film thickness measuring device.
The photometric unit 10 has a built-in infrared light source 11. The infrared light emitted from the light source 11 is
2. Rotary interference filter 14 by first mirror 13
Is focused at a predetermined position, and infrared light having a specific wavelength only by one interference filter 15 incorporated in the rotary interference filter 14 is irradiated toward the measurement sample 3 via the second mirror 16. It has become. The reflected light from the measurement sample 3 is collected by a concave mirror 17 to an infrared detector 18 disposed at the focal point thereof, and is measured. The rotary interference filter 14 is provided with a motor 19
As shown in FIG. 2, in this embodiment, the first to third interference filters 15a, 15b, 15c
Are mounted at an angle of 120 ° with respect to the center of the disk, and each interference filter is provided with a small hole 15d for timing detection on a one-to-one basis. Each small hole 15d is connected to the timing detector 20 (see FIG. 1). By detection, it is detected which interference filter (infrared light of which wavelength) is used for photometry. As schematically shown in FIG. 3, the first interference filter 15 a only emits infrared light having a wavelength λ 1 having infrared absorption in both the coating material 2 and the substrate 1 of the measurement sample 3, and the second interference filter 15 b Only the infrared light of wavelength λ 2 in which only the substrate 1 has infrared absorption is applied to the third interference filter 1.
5c is adjusted so that either the coating material 2 or the base material 1 has no infrared absorption or only the base material 1 passes only infrared light having a wavelength λ 3 having small infrared absorption.
【0009】次に、基本的にはマイクロコンピュータに
よって構成される信号処理部30を説明する。測光部1
0の赤外線検出器18の検出信号は、増幅器31および
A/D変換器32を介して信号分離回路33に入力さ
れ、タイミング検出器20から入力されるタイミング信
号に応じて、波長λ1,λ2,λ3毎に振り分けられ[以
下、λ1信号(=第1測定信号)、λ2信号(=第2測定
信号)、λ3信号(=参照測定信号)という]、以下の
処理が実行される。マイクロコンピュータによって実行
される信号処理を機能ブロックとして把握すると、以下
の4ブロックにまとめられる。Next, the signal processing section 30 basically constituted by a microcomputer will be described. Photometry unit 1
The detection signal of the infrared detector 18 of 0 is input to the signal separation circuit 33 via the amplifier 31 and the A / D converter 32, and according to the timing signal input from the timing detector 20, the wavelengths λ 1 , λ 2 and λ 3 [hereinafter referred to as λ 1 signal (= first measurement signal), λ 2 signal (= second measurement signal), λ 3 signal (= reference measurement signal)], and the following processing is executed. Is done. If the signal processing executed by the microcomputer is grasped as a functional block, it can be summarized into the following four blocks.
【0010】(i)補正係数演算回路34 補正係数演算回路34は、基材補正係数登録キイ35に
よって起動され、基材について吸光度に関する補正係数
kを以下の要領で求める。いま、測定サンプル3の位置
に基材1のみ、つまりコート材2をコーティングする前
の基材1をセットして測光を行なう。第1、第2測定波
長λ1,λ2および参照波長λ3について測定された基材
の吸光度をそれぞれA10,A20,A30とする。基材1の
光路長をtとすると、ランバート・ベールの法則により A10−A30=(a1−a3)t A20−A30=(a2−a3)t (a1,a2,a3;λ1,λ2,λ3における吸光係数)の
関係が成立するので、両式の比kをとると、 k=(A10−A30)/(A20−A30) =(a1−a3)t/(a2−a3)t =(a1−a3)/(a2−a3) となり、この比kはtに無関係の値となる。いま、コー
ト材2を基材1上にコーティングした測定サンプル3に
ついて測定した波長λ1,λ2,λ3の吸光度をA1,
A2,A3とすると、A3を基準として、コート材2によ
る吸光度Aが、 A=(A1−A3)−(A3を基準としたλ1での基材の吸
光度) で求めることができるが、第2項は実際上求めることは
できない。そこで、第2項については、ランバート・ベ
ールの法則が適用できると仮定すると、上記の式は次式
で表わされる。 A=A1−A3−k(A2−A3) これによって、コート材による吸光度Aを演算する。後
述の実験結果によれば、上記の仮定が正しいことが立証
された。(I) Correction coefficient calculation circuit 34 The correction coefficient calculation circuit 34 is started by a base material correction coefficient registration key 35, and obtains a correction coefficient k relating to the absorbance of the base material in the following manner. Now, only the substrate 1, that is, the substrate 1 before coating the coating material 2 is set at the position of the measurement sample 3, and photometry is performed. The absorbances of the base material measured at the first and second measurement wavelengths λ 1 and λ 2 and the reference wavelength λ 3 are defined as A 10 , A 20 and A 30 , respectively. When the optical path length of the base material 1 a and t, A 10 -A 30 = ( a 1 -a 3) by Lambert-Beer's law t A 20 -A 30 = (a 2 -a 3) t (a 1, a 2 , a 3 ; extinction coefficients at λ 1 , λ 2 , λ 3 ), and if the ratio k of both equations is taken, then k = (A 10 −A 30 ) / (A 20 −A 30 ) = (A 1 −a 3 ) t / (a 2 −a 3 ) t = (a 1 −a 3 ) / (a 2 −a 3 ), and the ratio k is a value irrelevant to t. Now, the absorbances of the wavelengths λ 1 , λ 2 , λ 3 measured for the measurement sample 3 in which the coating material 2 is coated on the substrate 1 are represented by A 1 ,
When A 2, A 3, based on the A 3, the absorbance A by coating material 2, A = (A 1 -A 3 ) - determined by (absorbance of the substrate at lambda 1 relative to the A 3) The second term cannot be determined practically. Therefore, assuming that Lambert-Beer's law can be applied to the second term, the above equation is expressed by the following equation. A = A 1 −A 3 −k (A 2 −A 3 ) From this, the absorbance A by the coating material is calculated. The experimental results described below have proved that the above assumptions are correct.
【0011】(ii)補正係数記憶回路36 上記補正係数演算回路34により演算された補正係数k
をメモリする。なお、この補正係数kは、基材1の種類
によって異なるので、各基材ごとに、例えば基材が紙で
ある場合には、上質紙、クラフト紙、ケント紙といった
ように、求める必要があり、したがって、補正係数記憶
回路36は、基材の種類ごとに補正係数kをメモリす
る。(Ii) Correction coefficient storage circuit 36 The correction coefficient k calculated by the correction coefficient calculation circuit 34
Memory. Since the correction coefficient k varies depending on the type of the base material 1, it is necessary to obtain, for each base material, for example, when the base material is paper, such as high-quality paper, kraft paper, Kent paper, and the like. Therefore, the correction coefficient storage circuit 36 stores the correction coefficient k for each type of base material.
【0012】(iii)吸光度演算回路37 この吸光度演算回路37は、厚み測定キイ38が操作さ
れると、補正係数記憶回路36から補正係数kを読み出
し、測定サンプル3について得られた3つの吸光度
A1,A2,A3から、コート材2のみの吸光度Aを前述
の式A=A1−A3−k(A2−A3)によって求める。(Iii) Absorbance calculation circuit 37 When the thickness measurement key 38 is operated, the absorbance calculation circuit 37 reads out the correction coefficient k from the correction coefficient storage circuit 36, and obtains three absorbances A obtained for the measurement sample 3. 1, a 2, from a 3, determined by the equation absorbance a of only the coating material 2 described above a = a 1 -A 3 -k ( a 2 -A 3).
【0013】(iv)厚み換算回路39 前もって、吸光度と膜厚との関係式(回帰式)を実験的
に求めておき(図5参照)、吸光度演算回路37によっ
て求められた吸光度Aが入力されると、上記の関係式か
ら厚みを求め、その値を表示器40に出力して表示す
る。 <実験例>測定サンプルとして、紙質の異なる3種類の
紙、すなわち上質紙、クラフト紙、ケント紙上にそれぞ
れポリプロピレンをコートしたものを用いた。コート材
の厚み範囲は3〜30g/m2で、上質紙は厚みの異な
る7点、クラフト紙は14点、ケント紙は17点につい
て測定を行った。紙とポリプロピレンの赤外線吸収特性
は図4に示す通りであるので、λ1,λ2,λ3として
は、2360,2510,2190nmを選択した。補正
係数kは、上質紙、クラフト紙、ケント紙でそれぞれ、
0.461,0.454,0.414であった。比較のた
め、従来方法による計測も行った。波長は、λ1=23
60nm,λ2=2600nm,λ3=2190nmを選択し
た。従来方法は、上記補正係数kを0.5とすることに
相当する[A=A1−0.5(A20+A30)]。図5には
本発明方法による実験結果を、図6には従来方法による
実験結果を夫々示す。図中、●,○,□は、それぞれ上
質紙、クラフト紙、ケント紙を示す。実験結果を、分散
値2σで評価した。結果は、表1に示す通りであった。(Iv) Thickness conversion circuit 39 A relational expression (regression equation) between the absorbance and the film thickness is obtained experimentally in advance (see FIG. 5), and the absorbance A obtained by the absorbance calculation circuit 37 is input. Then, the thickness is obtained from the above relational expression, and the value is output to the display 40 and displayed. <Experimental Example> Three types of papers having different paper qualities, that is, high quality paper, kraft paper, and Kent paper coated with polypropylene were used as measurement samples. The thickness range of the coating material was 3 to 30 g / m 2 , and the measurement was performed for 7 points of different thicknesses for high quality paper, 14 points for kraft paper, and 17 points for Kent paper. Since the infrared absorption characteristics of paper and polypropylene are as shown in FIG. 4, 2360, 2510, and 2190 nm were selected as λ 1 , λ 2 , and λ 3 . The correction coefficient k is high-quality paper, kraft paper, and Kent paper, respectively.
0.461, 0.454, and 0.414. For comparison, measurement was also performed by a conventional method. The wavelength is λ 1 = 23
60 nm, λ 2 = 2600 nm, and λ 3 = 2190 nm were selected. The conventional method is equivalent to setting the correction coefficient k to 0.5 [A = A 1 −0.5 (A 20 + A 30 )]. FIG. 5 shows the experimental results by the method of the present invention, and FIG. 6 shows the experimental results by the conventional method. In the figure, ●, ○, and □ indicate high quality paper, kraft paper, and Kent paper, respectively. The experimental results were evaluated with a variance of 2σ. The results were as shown in Table 1.
【0014】[0014]
【表1】 [Table 1]
【0015】図5と図6との比較および表1から明らか
なように、本発明方法によれば、測定精度を従来方法に
比して大幅に向上することができる。とりわけ注目すべ
きことは、本発明では、上質紙、クラフト紙、ケント紙
について一本の検量線を用いることができるのに対し、
従来方法では到底不可能であることである。したがっ
て、本発明によれば、基材の品種毎に検量線を作成する
必要がないので検量線作成に要する労力および時間を大
幅に軽減することができる。なお、上記実施例では、波
長ごとに吸光度を測定するようにしたが、特定の波数ご
とに吸光度を測定し、それから真の厚みを演算するよう
にしてもよいことはいうまでもない。As is clear from the comparison between FIG. 5 and FIG. 6 and Table 1, according to the method of the present invention, the measurement accuracy can be greatly improved as compared with the conventional method. Of particular note is that, in the present invention, a single calibration curve can be used for fine paper, kraft paper, and Kent paper,
This is impossible with the conventional method. Therefore, according to the present invention, since it is not necessary to create a calibration curve for each type of substrate, the labor and time required for creating a calibration curve can be greatly reduced. In the above embodiment, the absorbance is measured for each wavelength. However, it is needless to say that the absorbance may be measured for each specific wave number, and then the true thickness may be calculated.
【図1】 本発明にかかる赤外線厚み測定装置の概略ブ
ロック図である。FIG. 1 is a schematic block diagram of an infrared thickness measuring apparatus according to the present invention.
【図2】 回転式干渉フィルタの正面図である。FIG. 2 is a front view of a rotary interference filter.
【図3】 コート材と基材の赤外線吸収特性を示すグラ
フである。FIG. 3 is a graph showing infrared absorption characteristics of a coating material and a substrate.
【図4】 基材としての紙とコート材としてのポリプロ
ピレンの赤外線吸収特性を示すグラフである。FIG. 4 is a graph showing infrared absorption characteristics of paper as a base material and polypropylene as a coating material.
【図5】 本発明にかかる厚み測定の実験結果を示すグ
ラフである。FIG. 5 is a graph showing experimental results of thickness measurement according to the present invention.
【図6】 従来方法による厚み測定の実験結果を示すグ
ラフである。FIG. 6 is a graph showing an experimental result of thickness measurement by a conventional method.
10 測光部 11 光源 15 干渉フィルタ 17 凹面鏡 18 赤外線検出器 30 信号処理部 33 信号分離回路 34 補正係数演算回路 37 吸光度演算回路 39 厚み算出回路 Reference Signs List 10 photometry unit 11 light source 15 interference filter 17 concave mirror 18 infrared detector 30 signal processing unit 33 signal separation circuit 34 correction coefficient calculation circuit 37 absorbance calculation circuit 39 thickness calculation circuit
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−226610(JP,A) 特開 昭61−120004(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 102 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-226610 (JP, A) JP-A-61-120004 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30 102
Claims (4)
コート材の膜厚を測定するに際して、 コート材および基材の両方に赤外線吸収がある波長λ1
を有する第1測定光と、基材のみに赤外線吸収がある波
長λ2を有する第2測定光と、コート材には赤外線吸収
がなく基材について赤外線吸収が小さいかない波長λ3
を有する参照光とを用いて、基材のみの吸光度A10,A
20,A30を予め測定して、補正係数kを次式により算出
しておき、 k=(A10−A30)/(A20−A30) 被測定物についてλ1,λ2,λ3での吸光度A1,A2,
A3を測定し、これら測定値から次式によりコート材の
みの吸光度Aを演算し、 A=A1−A3−k(A2−A3) 求めた吸光度Aを厚みに換算してコート材を膜厚を求め
るようにしたコート材の膜厚測定方法。When measuring the thickness of a coating material of an object to be measured having a substrate coated thereon, a wavelength λ 1 at which both the coating material and the substrate have infrared absorption.
A first measuring beam having the second measuring beam and the wavelength lambda 3 or no infrared absorption is small for the substrate no infrared absorbing the coating material having a wavelength lambda 2 that has infrared absorption only the substrate
Absorbance A 10 , A of only the substrate using the reference light having
20, and previously measured A 30, the correction coefficient k previously calculated by the following equation, k = (A 10 -A 30 ) / (A 20 -A 30) λ 1 for the measured object, lambda 2, lambda Absorbance at 3 , A 1 , A 2 ,
Measuring the A 3, and calculates the absorbance A of only the coating material from these measurements by the following equation, A = A 1 -A 3 -k (A 2 -A 3) the absorbance A was determined in terms of the thickness Court A method for measuring the thickness of a coated material in which the thickness of the material is determined.
コート材の膜厚を測定するに際して、 コート材および基材の両方に赤外線吸収がある波長λ1
を有する第1測定光と、基材のみに赤外線吸収がある波
長λ2を有する第2測定光と、コート材と基材の両方に
赤外線吸収がない2つの波長λ3,λ4を有する第1、第
2参照光とを用いて、基材のみの吸光度A10,A20,A
30,A40を予め測定して、補正係数kを次式により算出
しておき、 k=(A10−A50)/(A20−A60) 但し、A50=A30+[(A40−A30)/(λ4−λ3)]×(λ1−λ3), A60=A30+[(A40−A30)/(λ4−λ3)]×(λ2−λ3) 被測定物についてλ1,λ2,λ3,λ4での吸光度A1,
A2,A3,A4を測定し、これら測定値から次式により
コート材のみの吸光度Aを演算し、 A=A1−A5−k(A2−A6) 但し、A5=A3+[(A4−A3)/(λ4−λ3)]×(λ1−λ3), A6=A3+[(A4−A3)/(λ4−λ3)]×(λ2−λ3) 求めた吸光度Aを厚みに換算してコート材の膜厚を求め
るようにしたコート材の膜厚測定方法。2. When measuring the thickness of a coating material of an object to be measured having a substrate coated, a wavelength λ 1 at which both the coating material and the substrate have infrared absorption.
A second measurement light having a wavelength λ 2 having infrared absorption only in the base material, and a second measurement light having two wavelengths λ 3 and λ 4 having no infrared absorption in both the coating material and the base material. Using the first and second reference lights, the absorbances A 10 , A 20 , A of only the substrate
30, previously measured A 40, the correction coefficient k previously calculated by the following equation, k = (A 10 -A 50 ) / (A 20 -A 60) However, A 50 = A 30 + [ (A 40 −A 30 ) / (λ 4 −λ 3 )] × (λ 1 −λ 3 ), A 60 = A 30 + [(A 40 −A 30 ) / (λ 4 −λ 3 )] × (λ 2 −λ 3 ) Absorbance A 1 at λ 1 , λ 2 , λ 3 , λ 4 for the DUT
A 2 , A 3 , and A 4 were measured, and from these measured values, the absorbance A of only the coating material was calculated according to the following equation: A = A 1 −A 5 −k (A 2 −A 6 ) where A 5 = A 3 + [(A 4 −A 3 ) / (λ 4 −λ 3 )] × (λ 1 −λ 3 ), A 6 = A 3 + [(A 4 −A 3 ) / (λ 4 −λ 3) )] × (λ 2 −λ 3 ) A method for measuring the thickness of a coating material by converting the obtained absorbance A into a thickness to obtain the thickness of the coating material.
塗布した被測定物のコート材の膜厚を測定する装置であ
って、 赤外線光源と、 コート材および基材の両方に赤外線吸収がある波長を有
する第1測定光と、基材のみに赤外線吸収がある波長を
有する第2測定光と、コート材および基材の両方に赤外
線吸収がない波長を有する参照光を生成するフィルタ手
段と、 各光について吸光度を検出する検出手段と、 基材のみによる参照光の吸光度を基準として、基材のみ
による第1、第2測定光の吸光度の比を求める補正係数
演算手段と、 被測定物について検出された吸光度を上記比に基いて補
正する補正手段とを備え、 基材の変動による吸光度の変動を補正するようにしたこ
とを特徴とするコート材の膜厚測定装置。3. An apparatus for measuring the thickness of a coating material of an object to be measured in which a coating component is applied on a base material such as paper or film, wherein an infrared light source and infrared light are absorbed by both the coating material and the base material. Filter means for generating a first measurement light having a certain wavelength, a second measurement light having a wavelength having infrared absorption only in the base material, and a reference light having a wavelength having no infrared absorption in both the coating material and the base material Detecting means for detecting the absorbance of each light; correction coefficient calculating means for calculating the ratio of the absorbance of the first and second measurement lights only by the base material based on the absorbance of the reference light only by the base material; A correction means for correcting the absorbance detected for the object based on the ratio, wherein the fluctuation of the absorbance due to the fluctuation of the base material is corrected.
の参照光であり、第1、第2参照光の基材による吸光度
を基準レベルとして、上記比を求めることを特徴とする
請求項3記載のコート材の膜厚測定装置。4. The first and second reference light beams having different wavelengths.
The coating material thickness measuring apparatus according to claim 3, wherein the ratio is determined using the absorbance of the first and second reference lights by the base material as a reference level.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27705392A JP3205084B2 (en) | 1992-10-15 | 1992-10-15 | Method and apparatus for measuring film thickness of coating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27705392A JP3205084B2 (en) | 1992-10-15 | 1992-10-15 | Method and apparatus for measuring film thickness of coating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06129817A JPH06129817A (en) | 1994-05-13 |
JP3205084B2 true JP3205084B2 (en) | 2001-09-04 |
Family
ID=17578133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27705392A Expired - Fee Related JP3205084B2 (en) | 1992-10-15 | 1992-10-15 | Method and apparatus for measuring film thickness of coating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3205084B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009250783A (en) * | 2008-04-07 | 2009-10-29 | Sonac Kk | Method for measuring thickness of multilayer thin film |
-
1992
- 1992-10-15 JP JP27705392A patent/JP3205084B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06129817A (en) | 1994-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4748329A (en) | Method for on-line thickness monitoring of a transparent film | |
US4999014A (en) | Method and apparatus for measuring thickness of thin films | |
US4085326A (en) | Radiation reflection method and apparatus particularly for gauging materials exhibiting broadband absorption or scattering, or similar effects | |
JPS6217167B2 (en) | ||
US6281498B1 (en) | Infrared measuring gauges | |
JP2000065536A (en) | Method and instrument for measuring film thickness and optical constant | |
JPH095038A (en) | Chromate treatment steel plate and chromate film thickness measuring method and apparatus | |
US3870884A (en) | Apparatus for negating effect of scattered signals upon accuracy of dual-beam infrared measurements | |
US5612782A (en) | Calibration method and calibration unit for calibrating a spectrometric device based upon two calibration samples | |
JPS58103604A (en) | Method and device for measuring thickness of film | |
JP3205084B2 (en) | Method and apparatus for measuring film thickness of coating material | |
JPH0781840B2 (en) | Optical film thickness measuring device | |
JPH07260680A (en) | Infrared ray sensor | |
JPS6217166B2 (en) | ||
JPH04313007A (en) | Film inspecting device | |
JPS6175203A (en) | Apparatus for measuring thickness of film | |
JP4260683B2 (en) | Ellipsometer, polarization state acquisition method and light intensity acquisition method | |
JP2001513880A (en) | Method for measuring components of a coating on a moving substrate | |
JP3047563B2 (en) | X-ray diffraction method for measuring film thickness | |
JPH0850007A (en) | Method and apparatus for evaluating film thickness | |
JPH01124703A (en) | Method and device for noncontact measurement of film characteristic | |
JPS60257136A (en) | Film thickness measuring device for photoresist | |
JPS5960203A (en) | Device for measuring change in film thickness | |
JPS63292043A (en) | Apparatus for analyzing film thickness and composition at the same time | |
JPS63235805A (en) | Method and apparatus for measuring thickness of film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080629 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080629 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080629 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080629 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080629 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090629 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090629 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110629 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |