JP2000065536A - Method and instrument for measuring film thickness and optical constant - Google Patents

Method and instrument for measuring film thickness and optical constant

Info

Publication number
JP2000065536A
JP2000065536A JP10234585A JP23458598A JP2000065536A JP 2000065536 A JP2000065536 A JP 2000065536A JP 10234585 A JP10234585 A JP 10234585A JP 23458598 A JP23458598 A JP 23458598A JP 2000065536 A JP2000065536 A JP 2000065536A
Authority
JP
Japan
Prior art keywords
transparent substrate
sample
reflectance
thin film
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10234585A
Other languages
Japanese (ja)
Other versions
JP3790628B2 (en
Inventor
Makoto Okawachi
真 大川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Electronics Co Ltd
Original Assignee
Otsuka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co Ltd filed Critical Otsuka Electronics Co Ltd
Priority to JP23458598A priority Critical patent/JP3790628B2/en
Publication of JP2000065536A publication Critical patent/JP2000065536A/en
Application granted granted Critical
Publication of JP3790628B2 publication Critical patent/JP3790628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a method for measuring film thickness and optical constant which requires neither a reflection preventing process for a sample having a thin film formed on a transparent substrate nor a special optical element for removing reverse-surface reflected light and its adjustment for a measurement optical system. SOLUTION: The concept of a reverse-surface reflection coefficient (γ) showing in what rate the reflected light from the reverse surface of the transparent substrate 5 can be photo-detected in the state of focusing on the surface of the thin film 5b or transparent substrate 5a is introduced. The sample 6 having the thin film 5b formed on the transparent substrate 5s is used as a model, the intensity reflection factor (Ra) of the sample 6 is found as a theoretical expression according to the amplitude reflection factor (ra) of the sample 6 considering the reverse-surface reflection coefficient (γ) of the transparent substrate 5a, and fitting to the actually measured intensity reflection factor (Ra) of the sample is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明な基板上に形
成された薄膜に対して光を照射しその反射光を検出する
ことにより、薄膜の膜厚及び光学定数(屈折率、消衰係
数)を測定する膜厚及び光学定数の測定方法及び装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for irradiating a thin film formed on a transparent substrate with light and detecting the reflected light to obtain a film thickness and an optical constant (refractive index, extinction coefficient). ) And a method and apparatus for measuring the film thickness and optical constant.

【0002】[0002]

【従来の技術】透明基板上に形成された薄膜の膜厚、屈
折率、消衰係数(複素屈折率をn−jkと表したときの
k)を測定する場合、通常、透明基板の裏面からの不要
な反射光があるため、反射光強度を検出するだけでは、
測定値に誤差が出ることが分かっている。
2. Description of the Related Art When measuring the film thickness, refractive index, and extinction coefficient (k when the complex refractive index is represented by n-jk) of a thin film formed on a transparent substrate, it is usually measured from the back surface of the transparent substrate. Because there is unnecessary reflected light, simply detecting the reflected light intensity
It has been found that there are errors in the measured values.

【0003】従来、この問題に対して、(1)透明基板の
厚みを十分厚くしたり、裏面に粗面処理を施したり(特
開平3−215957号公報参照)、あるいは裏面に黒
色塗料を塗ったりすることにより裏面からの反射光を打
ち消していた。また、(2)光を斜めに入射し、透明基板
の厚みと屈折率を利用して表面反射光と裏面反射光とを
分離し、受光光学系のピンホールにより裏面反射光をカ
ットすることもあった(特開平3−231103号公報
参照)。さらに、(3)入射光を透明基板合うの薄膜に対
して垂直に入射する際にレンズにより絞り込み、透明基
板裏面からの反射光を同じレンズを通して受光し、入射
光と反射光とで焦点位置が違うことを利用して基板裏面
の反射光をカットすることもあった(特開平5−340
869号公報、特開平8−152404号公報参照)。
Conventionally, to solve this problem, (1) the thickness of the transparent substrate is made sufficiently thick, the back surface is roughened (see JP-A-3-215957), or the back surface is coated with black paint. To cancel the light reflected from the back surface. Also, (2) light can be obliquely incident, the front surface reflected light and the back surface reflected light can be separated by using the thickness and the refractive index of the transparent substrate, and the back surface reflected light can be cut by a pinhole of the light receiving optical system. (See JP-A-3-231103). Furthermore, (3) when the incident light is perpendicularly incident on the thin film of the transparent substrate, the aperture is narrowed down by a lens, and the reflected light from the rear surface of the transparent substrate is received through the same lens. The reflected light on the back surface of the substrate may be cut by utilizing the difference (Japanese Patent Laid-Open No. 5-340).
869, JP-A-8-152404).

【0004】[0004]

【発明が解決しようとする課題】前記(1)の方法では、
測定のために材料に何らかの処置を施さなければならな
いので実用性に欠ける。前記(2)の方法では、光を斜め
る入射する必要があり、そのために薄膜上における光束
径が大きくなり、半導体分野などで必要とされている微
少領域の測定ができない。
According to the method (1),
It is not practical because some measure must be taken on the material for the measurement. In the above method (2), it is necessary to make light obliquely incident, so that the luminous flux diameter on the thin film becomes large, so that it is impossible to measure a minute area required in the semiconductor field and the like.

【0005】前記(3)の方法では、垂直入射であるため
微少領域の測定が可能であっても、レンズの中心付近の
光束には必ず透明基板の裏面反射光が含まれ、この中心
付近の光束から基板裏面の反射光を除去することは物理
的に不可能である。このため、最も光量が豊富なレンズ
中心付近の光束を放棄するという効率の悪い測定法とな
る。
In the method (3), even when a minute area can be measured because the light is perpendicularly incident, the light flux near the center of the lens always includes the reflected light on the back surface of the transparent substrate. It is physically impossible to remove the reflected light from the back surface of the substrate from the light beam. For this reason, it is an inefficient measurement method of abandoning the light beam near the center of the lens, which has the largest amount of light.

【0006】そこで、本発明は、透明基板上に薄膜が形
成された試料に対して処理を必要とせず、測定光学系に
裏面反射光を除去するための特別な光学要素もその調整
も必要としない膜厚及び光学定数の測定方法及び装置を
実現することを目的とする。
Therefore, the present invention does not require processing for a sample in which a thin film is formed on a transparent substrate, and requires a special optical element for removing back-surface reflected light and adjustment of the measurement optical system. It is an object of the present invention to realize a method and an apparatus for measuring a film thickness and an optical constant that are not affected.

【0007】[0007]

【課題を解決するための手段】本発明の膜厚及び光学定
数の測定方法は、透明基板上に薄膜が形成された試料に
光源の光を集光する集光光学系、試料からの反射光を受
光する受光光学系、分光器及び光強度測定器を含むスペ
クトル測定光学系を使用して薄膜の膜厚及び光学定数を
測定する方法であって、請求項1記載の(b)から(e) まで
の手順を含むことを特徴とする。
The method for measuring the film thickness and the optical constant according to the present invention comprises a condensing optical system for condensing light from a light source on a sample having a thin film formed on a transparent substrate, and a reflected light from the sample. A method for measuring the film thickness and optical constant of a thin film using a light receiving optical system that receives light, a spectral measuring optical system including a spectrometer and a light intensity measuring device, wherein (b) to (e) according to claim 1 ).

【0008】試料の微少領域の測定をするために集光光
学系により試料に光源の光を集光するので、焦点の合っ
ていない試料裏面からの反射光は、すべてが受光光学系
によって受光されるとはかぎらない。そこで、薄膜又は
透明基板表面に焦点が合った状態で、透明基板の裏面か
らの反射光がどの程度の割合で受光できるのかを示す裏
面反射係数寄与率γという概念を導入する。
Since the light from the light source is condensed on the sample by the condensing optical system in order to measure a minute area of the sample, all the reflected light from the back of the sample which is out of focus is received by the light receiving optical system. Not always. Therefore, the concept of the back surface reflection coefficient contribution ratio γ, which indicates how much the reflected light from the back surface of the transparent substrate can be received with the focus on the thin film or the surface of the transparent substrate, is introduced.

【0009】透明基板に薄膜が形成されている試料をモ
デルとして、透明基板の裏面反射係数寄与率γを考慮し
た試料の振幅反射率raに基づいて試料の反射率(単に
「反射率」といえば光強度反射率のことをいう。以下同
じ)Raを理論式として求めておき、実際に測定された
試料の反射率Raとのフイッティングを行うことを試み
る。
Using a sample in which a thin film is formed on a transparent substrate as a model, the reflectance of the sample (hereinafter simply referred to as “reflectance”) based on the amplitude reflectance ra of the sample in consideration of the back surface reflection coefficient contribution ratio γ of the transparent substrate. Ra refers to a theoretical formula, and attempts to perform fitting with the measured reflectance Ra of the sample.

【0010】このために、手順(b)のように、薄膜が形
成されていない透明基板単独の状態で、前記測定光学系
を使用して反射率Rbを測定し、この反射率Rbと、別に
求められている透明基板の雰囲気層界面からの反射率R
c又は透明基板の屈折率Nsのいずれか、とを使って、透
明基板の裏面反射係数寄与率γを測定値として求めてお
く。そして、この裏面反射係数寄与率γを理論式の中の
裏面反射係数寄与率γに代入する。すると、理論式は、
試料薄膜の屈折率、消衰定数、膜厚を未知数とする式に
なる。後は、手順(c) により、透明基板に薄膜が形成さ
れている試料に対して、前記測定光学系を使用して反射
率Raを測定すれば、フイッティングにより、これらの
未知数を求めることができる。
For this purpose, as in the procedure (b), the reflectance Rb is measured using the above-mentioned measuring optical system in a state of the transparent substrate alone on which the thin film is not formed, and the reflectance Rb is separately measured. Required reflectance R from the interface of the atmosphere layer of the transparent substrate
By using either c or the refractive index Ns of the transparent substrate, the back surface reflection coefficient contribution ratio γ of the transparent substrate is obtained as a measured value. Then, the back surface reflection coefficient contribution ratio γ is substituted for the back surface reflection coefficient contribution ratio γ in the theoretical formula. Then, the theoretical formula is
It is an equation in which the refractive index, extinction constant, and film thickness of the sample thin film are unknown. After that, if the reflectance Ra is measured using the measurement optical system for the sample in which the thin film is formed on the transparent substrate by the procedure (c), these unknowns can be obtained by fitting. .

【0011】なお、透明基板の界面からの反射率Rc又
は透明基板の屈折率Ns (Rc又はNsは一方が分かれば
他方が分かる関係にある)は、請求項2記載のように、
薄膜が形成されていない透明基板の裏面からの反射をな
くす処理をした状態で、前記測定光学系を使用して透明
基板の空気界面からの反射率Rcを測定すれば求めるこ
とができる。もちろんこれに限られるものではなく、他
の公知の測定方法により求めてもよい。また、透明基板
の材質がわかっていれば文献から知ることもできる。
The reflectance Rc from the interface of the transparent substrate or the refractive index Ns of the transparent substrate (Rc or Ns is such that if one is known, the other is known),
In a state where the reflection from the back surface of the transparent substrate on which the thin film is not formed is eliminated, the reflectance Rc from the air interface of the transparent substrate can be measured by using the measurement optical system. Of course, the present invention is not limited to this, and may be obtained by another known measuring method. Also, if the material of the transparent substrate is known, it can be known from the literature.

【0012】前記反射率Ra(理論式)は、透明基板に
薄膜が2層以上形成されている試料をモデルとして、透
明基板の裏面反射係数寄与率γを考慮した試料の振幅反
射率raに基づいて計算することもできる(請求項
3)。理論的には、透明基板に薄膜が何層形成されてい
ても、反射率Ra(理論式)を算出することができる。
また、本発明の膜厚及び光学定数の測定装置は、試料を
設置する可動ステージと、試料に光源の光を集光する集
光光学系と、試料からの反射光を受光する受光光学系
と、分光器及び光強度測定器を含むスペクトル測定光学
系と、スペクトル信号に基づいて透明基板上に薄膜が形
成された試料の薄膜の膜厚及び光学定数を求める処理装
置とを備える測定装置であって、前記ステージは、反射
をなくす処理をした第1のサイト、及び当該処理をして
いない第2,第3のサイトを有し、前記処理装置は、請
求項4記載の(A)から (D)の各手段を含むものである
(請求項4)。
The reflectance Ra (theoretical formula) is based on the amplitude reflectance ra of the sample in which the back surface reflection coefficient contribution ratio γ of the sample is taken into account, using a sample in which two or more thin films are formed on a transparent substrate as a model. It can also be calculated (claim 3). In theory, the reflectance Ra (theoretical formula) can be calculated regardless of how many thin films are formed on the transparent substrate.
Further, the apparatus for measuring the film thickness and the optical constant of the present invention includes a movable stage on which a sample is placed, a condensing optical system for condensing light from a light source on the sample, and a light receiving optical system for receiving light reflected from the sample. , A spectrum measuring optical system including a spectroscope and a light intensity measuring device, and a processing device for determining a film thickness and an optical constant of a thin film of a sample having a thin film formed on a transparent substrate based on a spectrum signal. The stage has a first site that has performed a process of eliminating reflection, and second and third sites that have not performed the process, and the processing apparatus is configured such that: It includes the means of D) (claim 4).

【0013】この装置によれば、前記請求項1記載の膜
厚及び光学定数の測定方法を実施できるとともに、ステ
ージに第1,第2,第3の3つのサイトを備え、ステー
ジを移動させることにより、それらのサイトを交代で使
用することができる。したがって、測定を効率的に実施
することができる。
According to this apparatus, the method for measuring the film thickness and the optical constant according to claim 1 can be carried out, and the stage has first, second, and third sites, and the stage is moved. Allows them to be used alternately. Therefore, the measurement can be performed efficiently.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面を参照しながら詳細に説明する。図1は、膜厚及
び光学定数の測定方法を実施するための測定装置を示す
概略図である。白色光源1から出射した光は、ハーフミ
ラー2により反射され、レンズ3により試料6の微少領
域に垂直に照射される。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing a measuring apparatus for implementing a method for measuring a film thickness and an optical constant. Light emitted from the white light source 1 is reflected by the half mirror 2, and is irradiated perpendicularly to a small area of the sample 6 by the lens 3.

【0015】試料6は、透明基板5aの上に薄膜5bを
堆積したものである。透明基板5aは、測定しようとす
る波長において透明又は半透明であればよく、例えばガ
ラス、アルミナ、石英などの等方性物質、各種の異方性
物質があげられる。この領域の薄膜5bの表面からの反
射光、薄膜5bと透明基板5aとの界面からの反射光、
透明基板5aの裏面からの反射光は、合成されて、レン
ズ3を通り、ハーフミラー2を通過して分光器7に入射
される。そして分光器7で分光された後、CCDなどの
撮像素子を使用した検出器8によりスペクトルを検出
し、スペクトル信号を処理装置9に入力する。
Sample 6 is obtained by depositing a thin film 5b on a transparent substrate 5a. The transparent substrate 5a may be transparent or translucent at the wavelength to be measured, and examples thereof include isotropic substances such as glass, alumina, and quartz, and various anisotropic substances. Reflected light from the surface of the thin film 5b in this region, reflected light from the interface between the thin film 5b and the transparent substrate 5a,
Light reflected from the back surface of the transparent substrate 5a is synthesized, passes through the lens 3, passes through the half mirror 2, and enters the spectroscope 7. After being separated by the spectroscope 7, the spectrum is detected by the detector 8 using an image pickup device such as a CCD, and the spectrum signal is input to the processing device 9.

【0016】図2は、試料6を設置する前後左右に移動
可能なステージ4を示す斜視図、図3は断面図である。
ステージ4には、3つのサイト4C,4B,4Aがあ
る。サイト4Cには試料6を設置し、サイト4Bには透
明基板5aのみを設置する。サイト4Aにも透明基板5
aを設置するが、サイト4Aには、図3(b) に示すよう
に、透明基板5aを透過してきた光を吸収する逆円錐構
造のトラップ41があり、このトラップ41には、透明
基板5aとほぼ同じ屈折率を有する液体、ゲル又は固体
物質を充填する。そうすると、サイト4C,4Bにおい
ては、図3(a) に示すように透明基板の裏面からの反射
光bが観測されるが、サイト4Aにおいては、透明基板
の裏面からの反射光は観測されず、その透過光はトラッ
プ41に吸収される。
FIG. 2 is a perspective view showing a stage 4 on which a sample 6 is placed and which can be moved back and forth and right and left, and FIG. 3 is a sectional view.
Stage 4 has three sites 4C, 4B and 4A. The sample 6 is set on the site 4C, and only the transparent substrate 5a is set on the site 4B. Site 4A also has a transparent substrate 5
As shown in FIG. 3B, a trap 41 having an inverted conical structure that absorbs light transmitted through the transparent substrate 5a is provided at the site 4A. Fill a liquid, gel or solid substance with a refractive index approximately the same as. Then, at sites 4C and 4B, reflected light b from the back surface of the transparent substrate is observed as shown in FIG. 3A, but at site 4A, reflected light from the back surface of the transparent substrate is not observed. The transmitted light is absorbed by the trap 41.

【0017】次に膜厚及び光学定数の測定手順を説明す
る。 <1>サイト4Aに置かれた透明基板を照射スポット下
に移動させて、反射光強度スペクトルRcを測定する
(以下、強度スペクトルのことを単に「スペクトル」と
いう)。この反射光スペクトルRcには、前述したサイ
ト4Aの構造により裏面からの反射光が含まれていない
ので、透明基板と空気界面のみの反射率となり、透明基
板の屈折率Nsは次式により求めることができる。
Next, a procedure for measuring the film thickness and the optical constant will be described. <1> The transparent substrate placed on the site 4A is moved below the irradiation spot, and the reflected light intensity spectrum Rc is measured (hereinafter, the intensity spectrum is simply referred to as “spectrum”). Since the reflected light spectrum Rc does not include the reflected light from the back surface due to the structure of the site 4A described above, the reflectance becomes only the interface between the transparent substrate and the air, and the refractive index Ns of the transparent substrate is obtained by the following equation. Can be.

【0018】 Ns=(√Rc+1)/(1−√Rc) (1) <2>次にサイト4Bに置かれた透明基板のみの試料を
照射スポット下に移動させて反射光スペクトルRbを測
定する。この反射光スペクトルRbは透明基板裏面から
の反射光を含む。もし、透明基板に対する照射光束、受
光光束が基板表面や裏面と垂直であり、透明基板の表
面、裏面からの反射光が全部受光できるならば、透明基
板の反射率は、透明基板と空気界面の反射率Rcを使っ
て、2Rc/(1+Rc)と表される。
Ns = (√Rc + 1) / (1-√Rc) (1) <2> Next, the sample of only the transparent substrate placed on the site 4B is moved under the irradiation spot, and the reflected light spectrum Rb is measured. . This reflected light spectrum Rb includes light reflected from the back surface of the transparent substrate. If the irradiation light beam and the received light beam to the transparent substrate are perpendicular to the front and back surfaces of the substrate and all the reflected light from the front and back surfaces of the transparent substrate can be received, the reflectance of the transparent substrate will be the interface between the transparent substrate and the air interface. It is expressed as 2Rc / (1 + Rc) using the reflectance Rc.

【0019】この式は、空気−透明基板−空気の三層に
おける繰り返し干渉を考慮した反射率を求め、透明基板
が干渉を起こさないほど厚いとして、前記反射率に含ま
れる干渉位相角βについて0から2πまで積分して2π
で割って平均をとれば導くことができる。しかしなが
ら、実際の光学系は、薄膜上の微少なスポットを測定す
るためにレンズ等で薄膜表面に集光しているため、上式
のようにならず、レンズの焦点が合っている薄膜又は透
明基板の表面からの反射光に比べて、焦点のずれている
透明基板の裏面からの反射光のほうが弱い。
This equation calculates the reflectance in consideration of the repetitive interference in the three layers of air-transparent substrate-air. Assuming that the transparent substrate is thick enough to cause no interference, the interference phase angle β included in the reflectance is set to 0. From 2 to 2π
You can derive by dividing by and taking the average. However, the actual optical system focuses on the surface of the thin film with a lens or the like in order to measure a minute spot on the thin film. Reflected light from the back surface of the transparent substrate, which is out of focus, is weaker than reflected light from the front surface of the substrate.

【0020】そこで、薄膜又は透明基板表面に焦点が合
った状態で、透明基板の裏面からの反射光がどの程度の
割合で受光できるのかを示す「裏面反射係数寄与率」と
いう概念を導入する。以下、単に「寄与率」という。こ
の寄与率をγで表すと、 γ=[(Rb−Rc)/(Rc−2Rc2+RbRc2)]1/2 (2) という関係が導かれる。Rbは実測される反射率であ
る。
Therefore, the concept of “back surface reflection coefficient contribution ratio” is introduced, which indicates how much the reflected light from the back surface of the transparent substrate can be received when the thin film or the surface of the transparent substrate is in focus. Hereinafter, it is simply referred to as “contribution rate”. If this contribution is represented by γ, the following relationship is derived: γ = [(Rb−Rc) / (Rc−2Rc 2 + RbRc 2 )] 1/2 (2) Rb is the measured reflectance.

【0021】この(2)式の導き方を説明すると、空気−
透明基板−空気の三層における繰り返し干渉を考慮した
振幅反射率rbを表す式(r0s は空気−透明基板界面
の振幅反射率、rs0は透明基板−空気の振幅反射率) rb=(r0s+rs0-j2β)/(1+r0ss0
-j2β) のrs0の代わりに、γrs0と置いた式、、 rb=(r0s+γrs0-j2β)/(1+r0sγrs0
-j2β) を用いて、その絶対値の2乗を求め、透明基板が干渉を
起こさないほど厚いとして、干渉位相角βについて0か
ら2πまで積分して2πで割って平均をとれば導くこと
ができる。その結果、r0s=−rs0,|r0s2=Rcで
あることを考慮して、 Rb=[Rc+γ2Rc−2γ2Rc2]/[1−γ2Rc2] (3) が導かれ、この(3)式から、前記(2)式が導かれる。
The way of deriving the equation (2) is as follows.
Transparent substrate - formula (r 0 s air - transparent substrate interface amplitude reflectance, r s0 transparent substrate - amplitude reflectance of the air) that represents the amplitude reflectance r b Considering repetitive interference in three layers of air r b = (R 0s + r s0 e -j2 β) / (1 + r 0s r s0 e
-j2β ) instead of r s0 , γr s0 , r b = (r 0s + γr s0 e -j2 β) / (1 + r 0s γr s0 e
Use -j2β ) to calculate the square of its absolute value, and assuming that the transparent substrate is thick enough not to cause interference, integrate the interference phase angle β from 0 to 2π, divide by 2π, and derive the average. Can be. As a result, considering that r 0s = −rs 0 , | r 0s | 2 = Rc, Rb = [Rc + γ 2 Rc−2γ 2 Rc 2 ] / [1-γ 2 Rc 2 ] (3) From the equation (3), the above equation (2) is derived.

【0022】以上をまとめると、裏面反射を除いた空気
−基板界面の反射率Rcを測定し、次に、測定系の焦点
位置、レンズ等の条件を全く変えずに実際の薄膜を形成
する基板と同じ基板(薄膜を除いたもの)を測定して空
気−基板界面の反射率Rbを測定することにより、寄与
率γを決定することができる。この寄与率γは、振幅反
射率(フレネル係数)に対する割合から導いた係数であ
るので、透明基板上の薄膜層数が複数になっても適応が
可能である。
In summary, the reflectance Rc of the air-substrate interface excluding the backside reflection is measured, and then the substrate on which the actual thin film is formed without changing the conditions such as the focal position and the lens of the measurement system at all. By measuring the same substrate (excluding the thin film) as above and measuring the reflectance Rb at the air-substrate interface, the contribution ratio γ can be determined. Since the contribution ratio γ is a coefficient derived from the ratio to the amplitude reflectance (Fresnel coefficient), adaptation is possible even when the number of thin film layers on the transparent substrate is plural.

【0023】<3>サイト4Cに置かれた、透明基板上
に薄膜を形成した試料を照射スポット下に移動させて、
反射光スペクトルRaを測定する。このとき、従来の技
術と異なり、試料の裏面からの反射光を除去する手段は
一切使用していないことに留意すべきである。透明基板
上に形成した薄膜の厚さは、透明基板の厚さに比較すれ
ば無視できるほどなので、前記(2)式で求めた寄与率γ
を、そのままRaの解析にも適用する。
<3> The sample placed on the site 4C and having the thin film formed on the transparent substrate is moved under the irradiation spot,
The reflected light spectrum Ra is measured. At this time, it should be noted that, unlike the conventional technique, no means for removing the reflected light from the back surface of the sample is used. Since the thickness of the thin film formed on the transparent substrate is negligible compared to the thickness of the transparent substrate, the contribution γ obtained by the above equation (2)
Is applied to the analysis of Ra as it is.

【0024】例として透明基板上に1層の薄膜が形成し
てある試料について説明すると、この試料は、透明基板
も1つの層と考え、最下層を雰囲気層である空気と考え
る。その層モデル、すなわち空気層−薄膜層−透明基板
−空気層における振幅反射率raは、寄与率γを考慮し
て、次のように表される。 ra=[(r0f+rfs-j2βf)+(r0fγrfs+e-j2βf)γrs0-j2βs ] /[(1+r0ffs-j2βf)+(rfs+r0f-j2βf)γrs0-j2βs ](4) ここで、r0fは空気−薄膜界面、rfsは薄膜−透明基板
界面、rs0は透明基板−空気界面の振幅反射率である。
βfは薄膜層における干渉位相角、βsは透明基板層にお
ける干渉位相角(いずれも膜厚の関数)である。このr
aの絶対値の2乗をとり、βs について積分すれば、R
aの理論式が分かる(βfについては、薄膜層は干渉を
起こすほど薄い層であるので、積分することはしない。
むしろこの薄膜層の膜厚を求めるのが発明の目的であ
る)。
As an example, a sample in which one layer of thin film is formed on a transparent substrate will be described. In this sample, the transparent substrate is considered to be one layer, and the lowermost layer is considered to be air which is an atmosphere layer. The layer model, namely air layer - thin layer - transparent substrate - amplitude reflectance r a in an air layer, taking into account the contribution of gamma, is expressed as follows. r a = [(r 0f + r fs e -j2 β f) + (r 0f γr fs + e -j2 β f) γr s0 e -j2 β s] / [(1 + r 0f r fs e -j2 β f) + ( r fs + r 0f e -j2 β f ) γ r s0 e -j2 β s ] (4) where r 0f is the air-thin film interface, r fs is the thin film-transparent substrate interface, and r s0 is the transparent substrate-air interface. The amplitude reflectance.
β f is the interference phase angle in the thin film layer, and β s is the interference phase angle in the transparent substrate layer (all are functions of the film thickness). This r
Taking the square of the absolute value of a and integrating over β s gives R
The theoretical expression of a can be understood. (For β f , since the thin film layer is a layer thin enough to cause interference, it is not integrated.
It is rather the purpose of the invention to determine the thickness of this thin film layer).

【0025】なお、ここではRaの理論式の形は、非常
に複雑になると思われるので、解析的に求めていない。
実際に計算するときは、数値計算で積分を実行した。こ
の計算で、γは、サイト4Bでの測定で求めたものを使
用し、rs0はサイト4Aの測定で求めた透明基板の屈折
率Nsから求めた。この理論式の中の未知のパラメータ
は、薄膜の屈折率、消衰係数、膜厚のみとなる。
Here, since the form of the theoretical formula of Ra seems to be very complicated, it is not analytically obtained.
When actually calculating, integration was performed by numerical calculation. In this calculation, γ was determined from the measurement at the site 4B, and r s0 was determined from the refractive index Ns of the transparent substrate determined from the measurement at the site 4A. The unknown parameters in this theoretical equation are only the refractive index, extinction coefficient, and film thickness of the thin film.

【0026】したがって、それらの未知のパラメータに
ついて、理論式の値を、実測値のRaに対して最小2乗法
などの公知の手法によるフィッティングを行うと、薄膜
の膜厚、屈折率、消衰係数を求めることができる。な
お、本発明は、前記の実施例に限定されるものではな
い。裏面反射係数寄与率は、振幅反射率から考慮してい
るので、「反射率」の測定だけでなく、エリプソメータ
(偏光解析装置)によるエリプソパラメータの測定にも
そのまま応用できる。すなわち、偏光解析で求まるエリ
プソパラメータはΨ(電場ベクトルが入射面に垂直な成
分であるs波の反射率と、平行な成分であるp波の反射
率の比),Δ(位相差)という一対のパラメータなの
で、請求項1,2のRa,Rb,Rcに代えて、それぞれ
ΨaとΔa ,ΨbとΔb,ΨcとΔcを測定しても、同様に
裏面反射を含んだままで、裏面反射係数寄与率γを考慮
して、膜厚等を求めることが可能である。
Therefore, for these unknown parameters, the values of the theoretical formulas are fitted to the measured values of Ra by a known method such as the least square method, and the film thickness, refractive index, and extinction coefficient of the thin film are obtained. Can be requested. Note that the present invention is not limited to the above embodiment. Since the back surface reflection coefficient contribution rate is considered from the amplitude reflectance, it can be applied to not only the measurement of “reflectance” but also the measurement of ellipsometric parameters by an ellipsometer (polarization analyzer). That is, the ellipsometric parameter obtained by the ellipsometry is a pair of Ψ (the ratio of the reflectance of the s-wave whose electric field vector is perpendicular to the plane of incidence to the reflectance of the p-wave which is a parallel component) and Δ (phase difference). Therefore, even if Ψa and Δa, Ψb and Δb, and Ψc and Δc are measured instead of Ra, Rb, and Rc in claims 1 and 2, respectively, the back reflection coefficient contribution is still included while the back reflection is included. The film thickness and the like can be obtained in consideration of the ratio γ.

【0027】[0027]

【実施例】<比較例1>ポリイミド配向膜(厚さ70n
m)とITO膜(厚さ300nm)とをガラス基板上に
積層した二層膜試料について、ガラス基板の裏面を黒く
塗り、反射率を調べた。公知の理論式と、実測値との比
較を試みた結果、図4に示すように、よくフィットし
た。ポリイミド配向膜の膜厚は70.2nm、ITOの
膜厚は295.5nmという結果が得られた。ガラス基
板の裏面の反射を防止したため、理論式とよく一致した
と考えられる。 <比較例2>同じ試料について、ガラス基板の裏面処理
をせずに、反射率を調べた。比較例1で使った理論式
と、実測値との比較を試みた結果、当然ながら、図5に
示すように、うまくフィットしなかった。ポリイミド配
向膜の膜厚は74.9nm、ITOの膜厚は288.4
nmという不正確な結果が得られた。ガラス基板の裏面
の反射を防止しなかったため、理論式とずれたものと考
えられる。 <実施例>同じ試料について、ガラス基板の裏面処理を
せずに、反射率を調べた。前述した(5)式と、実測値と
の比較を試みた結果、図6に示すように、よくフィット
した。ポリイミド配向膜の膜厚は69.1nm、ITO
の膜厚は296.5nmという結果が得られた。ガラス
基板の裏面の反射を防止しなかったが、本発明の理論式
を使ったため、よく一致したと考えられる。
<Comparative Example 1> Polyimide alignment film (thickness: 70 n)
m) and an ITO film (thickness: 300 nm) were laminated on a glass substrate, and the back surface of the glass substrate was painted black, and the reflectance was examined. As a result of an attempt to compare a known theoretical formula with an actually measured value, a good fit was obtained as shown in FIG. The result was that the thickness of the polyimide alignment film was 70.2 nm and the thickness of ITO was 295.5 nm. It is considered that since the reflection on the back surface of the glass substrate was prevented, the result was in good agreement with the theoretical formula. <Comparative Example 2> The reflectance of the same sample was examined without performing the back surface treatment of the glass substrate. As a result of the comparison between the theoretical formula used in Comparative Example 1 and the actually measured value, as a matter of course, as shown in FIG. The thickness of the polyimide alignment film is 74.9 nm, and the thickness of ITO is 288.4.
An inaccurate result of nm was obtained. Since the reflection on the back surface of the glass substrate was not prevented, it is considered that this deviated from the theoretical formula. <Example> The reflectance of the same sample was examined without performing the back surface treatment of the glass substrate. As a result of comparison between the above-described equation (5) and the actual measurement value, a good fit was obtained as shown in FIG. The thickness of the polyimide alignment film is 69.1 nm, ITO
The result that the film thickness of 296.5 nm was obtained. Although the reflection on the back surface of the glass substrate was not prevented, it is considered that the values agreed well because the theoretical formula of the present invention was used.

【0028】[0028]

【発明の効果】以上のように本発明の膜厚及び光学定数
の測定方法によれば、透明基板の裏面反射光が含まれた
反射光強度スペクトル又は反射光偏光特性スペクトルを
測定解析し、膜厚、屈折率、消衰係数などを測定解析す
ることができる。
As described above, according to the method for measuring the film thickness and optical constant of the present invention, the reflected light intensity spectrum or the reflected light polarization characteristic spectrum including the reflected light on the back surface of the transparent substrate is measured and analyzed. The thickness, refractive index, extinction coefficient, etc. can be measured and analyzed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜厚及び光学定数の測定方法を実施す
るための測定装置を示す概略図である。
FIG. 1 is a schematic view showing a measuring apparatus for carrying out a method for measuring a film thickness and an optical constant according to the present invention.

【図2】試料を設置する前後左右に移動可能なステージ
4を示す斜視図である。
FIG. 2 is a perspective view showing a stage 4 that can be moved back and forth and right and left on which a sample is placed.

【図3】ステージの断面図である。(a) はサイト4B、
(b) はサイト4Aの断面図である。
FIG. 3 is a sectional view of a stage. (a) Site 4B,
(b) is a sectional view of the site 4A.

【図4】ガラス基板の裏面の反射を防止した試料につい
ての、反射スペクトルの実測値と公知の方法で求めた理
論値との比較を示すグラフである。
FIG. 4 is a graph showing a comparison between a measured value of a reflection spectrum and a theoretical value obtained by a known method for a sample in which reflection on the back surface of a glass substrate is prevented.

【図5】ガラス基板の裏面の反射を防止しない試料につ
いて、反射スペクトルの実測値と公知の方法で求めた理
論値との比較を示すグラフである。
FIG. 5 is a graph showing a comparison between a measured value of a reflection spectrum and a theoretical value obtained by a known method for a sample that does not prevent reflection on the back surface of a glass substrate.

【図6】ガラス基板の裏面の反射を防止しない試料につ
いて、反射スペクトルの実測値と本発明の方法で求めた
理論値との比較を示すグラフである。
FIG. 6 is a graph showing a comparison between a measured value of a reflection spectrum and a theoretical value obtained by the method of the present invention for a sample that does not prevent reflection on the back surface of a glass substrate.

【符号の説明】[Explanation of symbols]

1 白色光源 2 ハーフミラー 3 レンズ 4 ステージ 4A,4B,4C サイト 5a 薄膜 5b 透明基板 6 試料 7 分光器 8 検出器 9 処理装置 DESCRIPTION OF SYMBOLS 1 White light source 2 Half mirror 3 Lens 4 Stage 4A, 4B, 4C Site 5a Thin film 5b Transparent substrate 6 Sample 7 Spectrometer 8 Detector 9 Processing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】透明基板上に薄膜が形成された試料に光源
の光を集光する集光光学系、試料からの反射光を受光す
る受光光学系、分光器及び光強度測定器を含むスペクト
ル測定光学系を使用して薄膜の膜厚及び光学定数を測定
する方法であって、 (b) 薄膜が形成されていない透明基板単独の状態で、前
記スペクトル測定光学系を使用して反射率Rbを測定
し、この反射率Rbと、別に求められている透明基板の
雰囲気層界面からの反射率Rc又は透明基板の屈折率Ns
のいずれかとを使って、透明基板の裏面反射係数寄与率
γを求める手順、 (c) 透明基板に薄膜が形成されている試料に対して、前
記スペクトル測定光学系を使用して反射率Raを測定す
る手順、 (d)透明基板に薄膜が形成されている試料をモデルとし
て、透明基板の裏面反射係数寄与率γを考慮した試料の
振幅反射率raに基づいて計算された反射率Raの理論式
の中のγに、前記(b) で求められた裏面反射係数寄与率
γを代入し、その代入後の理論式に、前記(c) で測定さ
れた反射率Raを各波長に対してフィッティングさせる
手順、 (e) 前記フィッティングの結果、試料薄膜の屈折率、消
衰定数、膜厚を求める手順を含むことを特徴とする膜厚
及び光学定数の測定方法。
1. A spectrum including a condensing optical system for condensing light from a light source on a sample having a thin film formed on a transparent substrate, a light receiving optical system for receiving light reflected from the sample, a spectroscope, and a light intensity measuring device. A method for measuring the film thickness and optical constant of a thin film using a measuring optical system, comprising: (b) in a state of a transparent substrate alone on which no thin film is formed, a reflectance Rb using the spectrum measuring optical system; And the reflectance Rb and the reflectance Rc from the atmosphere layer interface of the transparent substrate or the refractive index Ns of the transparent substrate, which are separately determined, are determined.
(C) for a sample having a thin film formed on a transparent substrate, using the spectrum measurement optical system to determine the reflectance Ra. (D) Theory of the reflectance Ra calculated based on the amplitude reflectance ra of the sample in consideration of the reflection coefficient contribution ratio γ of the back surface of the transparent substrate using the sample in which the thin film is formed on the transparent substrate as a model. Substituting the back surface reflection coefficient contribution ratio γ obtained in the above (b) into γ in the equation, the reflectance Ra measured in the above (c) is applied to the theoretical formula after the substitution for each wavelength. (E) a method for measuring a film thickness and an optical constant, comprising: a step of obtaining a refractive index, an extinction constant, and a film thickness of a sample thin film as a result of the fitting.
【請求項2】前記(b)の手順の前に、 (a)薄膜が形成されていない透明基板の裏面からの反射
をなくす処理をした状態で、前記測定光学系を使用して
透明基板の空気界面からの反射率Rc又は透明基板の屈
折率Nsを求める手順を実行することを特徴とする請求
項1記載の膜厚及び光学定数の測定方法。
2. Before the step (b), (a) the transparent substrate having no thin film formed thereon is subjected to a treatment for eliminating reflection from the back surface, and the transparent substrate is measured using the measuring optical system. 2. The method according to claim 1, wherein the step of determining the reflectance Rc from the air interface or the refractive index Ns of the transparent substrate is performed.
【請求項3】透明基板に薄膜が2層以上形成されてい
て、前記反射率Raは、透明基板に2層以上の薄膜が形成
されている試料をモデルとして、透明基板の裏面反射係
数寄与率γを考慮した試料の振幅反射率raに基づいて
計算されたものであることを特徴とする請求項1記載の
膜厚及び光学定数の測定方法。
3. The reflectance Ra is obtained by using a sample in which two or more thin films are formed on a transparent substrate as a model, and using the sample in which two or more thin films are formed on the transparent substrate as a model. 2. The method for measuring a film thickness and an optical constant according to claim 1, wherein the method is calculated based on the amplitude reflectance ra of the sample in consideration of γ.
【請求項4】試料を設置する可動ステージと、試料に光
源の光を集光する集光光学系と、試料からの反射光を受
光する受光光学系と、分光器及び光強度測定器を含むス
ペクトル測定光学系と、スペクトル信号に基づいて透明
基板上に薄膜が形成された試料の薄膜の膜厚及び光学定
数を求める処理装置とを備える測定装置であって、 前記ステージは、透明基板の裏面からの反射をなくす処
理をした第1のサイト、及び当該処理をしていない第
2,第3のサイトを有し、 前記処理装置は、 (A)第1のサイトに設置された薄膜が形成されていない
透明基板の裏面からの反射をなくす処理をした状態で、
前記測定光学系を使用して測定された透明基板の空気界
面からの反射率Rc又は透明基板の屈折率Nsを記憶する
手段、 (B) 第2のサイトに設置された薄膜が形成されていない
透明基板単独の状態で、前記測定光学系を使用して測定
された反射率Rbと、記憶している透明基板の界面から
の反射率Rc又は透明基板の屈折率Nsのいずれかとを使
って、透明基板の裏面反射係数寄与率γを求めて記憶す
る手段、 (C)透明基板に薄膜が形成されている試料をモデルとし
て、透明基板の裏面反射係数寄与率γを考慮した試料の
振幅反射率raに基づいて計算された反射率Raの理論式
の中のγに、前記記憶された裏面反射係数寄与率γを代
入し、その代入後の理論式に、第3のサイトに設置され
た透明基板に薄膜が形成されている試料に対して、前記
測定光学系を使用して測定された反射率Raを各波長に
対してフィッティングさせる手段、 (D)前記フィッティングの結果、試料薄膜の屈折率、消
衰定数、膜厚を求める手段を含むことを特徴とする膜厚
及び光学定数の測定装置。
4. A movable stage on which a sample is placed, a focusing optical system for focusing light from a light source on the sample, a light receiving optical system for receiving light reflected from the sample, a spectroscope and a light intensity measuring device. A measurement apparatus comprising: a spectrum measurement optical system; and a processing device for obtaining a film thickness and an optical constant of a thin film of a sample in which a thin film is formed on a transparent substrate based on a spectrum signal, wherein the stage includes a back surface of the transparent substrate. And a second site and a third site that have not been subjected to the reflection from the first and second sites. The processing apparatus includes: (A) a thin film provided on the first site is formed. In a state where the reflection from the back surface of the transparent substrate that has not been
Means for storing the reflectance Rc of the transparent substrate from the air interface or the refractive index Ns of the transparent substrate measured using the measurement optical system, (B) the thin film provided at the second site is not formed In the state of the transparent substrate alone, using the reflectance Rb measured using the measurement optical system, and using either the stored reflectance Rc from the interface of the transparent substrate or the refractive index Ns of the transparent substrate, Means for calculating and storing the rear surface reflection coefficient contribution ratio γ of the transparent substrate, (C) the amplitude reflectance of the sample in consideration of the rear surface reflection coefficient contribution ratio γ of the transparent substrate, using a sample in which a thin film is formed on the transparent substrate as a model The stored rear surface reflection coefficient contribution ratio γ is substituted for γ in the theoretical formula of the reflectance Ra calculated based on the ra, and the theoretical formula after the substitution is substituted into the transparent formula installed at the third site. The measurement optical system is used for a sample having a thin film formed on a substrate. Means for fitting the reflectance Ra measured for each wavelength using: (D) a film comprising means for determining the refractive index, extinction constant, and film thickness of the sample thin film as a result of the fitting. A device for measuring thickness and optical constants.
JP23458598A 1998-08-20 1998-08-20 Method and apparatus for measuring film thickness and optical constant Expired - Lifetime JP3790628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23458598A JP3790628B2 (en) 1998-08-20 1998-08-20 Method and apparatus for measuring film thickness and optical constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23458598A JP3790628B2 (en) 1998-08-20 1998-08-20 Method and apparatus for measuring film thickness and optical constant

Publications (2)

Publication Number Publication Date
JP2000065536A true JP2000065536A (en) 2000-03-03
JP3790628B2 JP3790628B2 (en) 2006-06-28

Family

ID=16973337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23458598A Expired - Lifetime JP3790628B2 (en) 1998-08-20 1998-08-20 Method and apparatus for measuring film thickness and optical constant

Country Status (1)

Country Link
JP (1) JP3790628B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081916A (en) * 2000-09-08 2002-03-22 Omron Corp Film thickness measuring method and film thickness sensor using the same
JP2002277215A (en) * 2001-03-14 2002-09-25 Omron Corp Film thickness measuring method and film thickness sensor using the same
JP2002277218A (en) * 2001-03-22 2002-09-25 Sharp Corp Film thickness measuring device and method thereof
JP2005069822A (en) * 2003-08-22 2005-03-17 Horiba Ltd Excitation light selecting unit for sulfur dioxide analysis device
JP2005140726A (en) * 2003-11-10 2005-06-02 Omron Corp Method for measuring thin film and apparatus for measuring thin film
JP2008292296A (en) * 2007-05-24 2008-12-04 Toray Eng Co Ltd Method for measuring film thickness of transparency film and its apparatus
JP2010237219A (en) * 2010-06-09 2010-10-21 Lasertec Corp Film thickness measuring instrument and method of measuring film thickness
JP4871435B1 (en) * 2011-04-12 2012-02-08 株式会社ニレコ Film thickness measuring apparatus and film thickness measuring method
US8582124B2 (en) 2011-08-12 2013-11-12 Otsuka Electronics Co., Ltd. Optical characteristic measuring apparatus and optical characteristic measuring method
CN103575223A (en) * 2012-08-09 2014-02-12 北京智朗芯光科技有限公司 Method of measuring silicon-based solar cell antireflection film through reflection spectrum
CN103712568A (en) * 2013-12-11 2014-04-09 浙江工商大学 Machine vision-based plastic pallet light reflective feature detection system and method
KR20160114080A (en) 2014-01-30 2016-10-04 하마마츠 포토닉스 가부시키가이샤 Film thickness measurement method and film thickness measurement device
CN106198568A (en) * 2015-05-24 2016-12-07 上海微电子装备有限公司 The measurement apparatus of a kind of thin film with transparent substrates and measuring method
KR20180047762A (en) * 2016-11-01 2018-05-10 서강대학교산학협력단 System and method for measuring thickness of 2-dimensional materials
JP2018179536A (en) * 2017-04-04 2018-11-15 パナソニックIpマネジメント株式会社 Liquid droplet measurement method and liquid droplet measuring apparatus
JP2019184393A (en) * 2018-04-09 2019-10-24 三菱電機株式会社 Film thickness measuring device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575663B (en) * 2012-08-07 2016-06-29 中国科学院大连化学物理研究所 A kind of scaling method of metal and semiconductor film material optical constant
CN103575703B (en) * 2012-08-09 2016-03-09 中国科学院微电子研究所 Utilize the method for reflective spectral measure monocrystalline silicon base solar surface anti-reflection film
JP2023009410A (en) * 2021-07-07 2023-01-20 東京エレクトロン株式会社 Film thickness measuring method, film thickness measuring apparatus, and film forming system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215957A (en) * 1990-01-22 1991-09-20 Sony Corp Measurement of film thickness
JPH03231103A (en) * 1990-02-07 1991-10-15 Mizojiri Kogaku Kogyosho:Kk Optical measuring method for coated thin film of transparent plate
JPH04301506A (en) * 1991-03-29 1992-10-26 Ulvac Seimaku Kk Measuring method and measuring apparatus for optical constant and film thickness in vapor deposition apparatus
JPH05340869A (en) * 1992-06-04 1993-12-24 Olympus Optical Co Ltd Thin film measuring instrument
JPH08152404A (en) * 1994-11-29 1996-06-11 Toray Ind Inc Method and device for measuring optical constant
JPH08152307A (en) * 1994-11-29 1996-06-11 Toray Ind Inc Method and apparatus for measuring optical constants
JPH09133517A (en) * 1995-09-06 1997-05-20 Seiko Epson Corp Distribution measuring device
JPH10122824A (en) * 1996-10-24 1998-05-15 Dainippon Screen Mfg Co Ltd Film thickness measuring method
JPH11230860A (en) * 1998-02-12 1999-08-27 Fujitsu Ltd Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215957A (en) * 1990-01-22 1991-09-20 Sony Corp Measurement of film thickness
JPH03231103A (en) * 1990-02-07 1991-10-15 Mizojiri Kogaku Kogyosho:Kk Optical measuring method for coated thin film of transparent plate
JPH04301506A (en) * 1991-03-29 1992-10-26 Ulvac Seimaku Kk Measuring method and measuring apparatus for optical constant and film thickness in vapor deposition apparatus
JPH05340869A (en) * 1992-06-04 1993-12-24 Olympus Optical Co Ltd Thin film measuring instrument
JPH08152404A (en) * 1994-11-29 1996-06-11 Toray Ind Inc Method and device for measuring optical constant
JPH08152307A (en) * 1994-11-29 1996-06-11 Toray Ind Inc Method and apparatus for measuring optical constants
JPH09133517A (en) * 1995-09-06 1997-05-20 Seiko Epson Corp Distribution measuring device
JPH10122824A (en) * 1996-10-24 1998-05-15 Dainippon Screen Mfg Co Ltd Film thickness measuring method
JPH11230860A (en) * 1998-02-12 1999-08-27 Fujitsu Ltd Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081916A (en) * 2000-09-08 2002-03-22 Omron Corp Film thickness measuring method and film thickness sensor using the same
JP2002277215A (en) * 2001-03-14 2002-09-25 Omron Corp Film thickness measuring method and film thickness sensor using the same
JP2002277218A (en) * 2001-03-22 2002-09-25 Sharp Corp Film thickness measuring device and method thereof
JP2005069822A (en) * 2003-08-22 2005-03-17 Horiba Ltd Excitation light selecting unit for sulfur dioxide analysis device
JP2005140726A (en) * 2003-11-10 2005-06-02 Omron Corp Method for measuring thin film and apparatus for measuring thin film
JP2008292296A (en) * 2007-05-24 2008-12-04 Toray Eng Co Ltd Method for measuring film thickness of transparency film and its apparatus
JP2010237219A (en) * 2010-06-09 2010-10-21 Lasertec Corp Film thickness measuring instrument and method of measuring film thickness
US8736851B2 (en) 2011-04-12 2014-05-27 Nireco Corporation Film thickness measuring device and film thickness measuring method
JP4871435B1 (en) * 2011-04-12 2012-02-08 株式会社ニレコ Film thickness measuring apparatus and film thickness measuring method
WO2012140693A1 (en) * 2011-04-12 2012-10-18 株式会社ニレコ Film thickness measuring device and film thickness measuring method
US8582124B2 (en) 2011-08-12 2013-11-12 Otsuka Electronics Co., Ltd. Optical characteristic measuring apparatus and optical characteristic measuring method
KR101841776B1 (en) 2011-08-12 2018-03-23 오츠카 일렉트로닉스 가부시키가이샤 Optical characteristic measuring apparatus and optical characteristic measuring method
CN103575223A (en) * 2012-08-09 2014-02-12 北京智朗芯光科技有限公司 Method of measuring silicon-based solar cell antireflection film through reflection spectrum
CN103712568A (en) * 2013-12-11 2014-04-09 浙江工商大学 Machine vision-based plastic pallet light reflective feature detection system and method
KR20160114080A (en) 2014-01-30 2016-10-04 하마마츠 포토닉스 가부시키가이샤 Film thickness measurement method and film thickness measurement device
US9846028B2 (en) 2014-01-30 2017-12-19 Hamamatsu Photonics K.K. Film thickness measurement method and film thickness measurement device
CN106198568A (en) * 2015-05-24 2016-12-07 上海微电子装备有限公司 The measurement apparatus of a kind of thin film with transparent substrates and measuring method
CN106198568B (en) * 2015-05-24 2019-03-12 上海微电子装备(集团)股份有限公司 A kind of measuring device and measuring method of the film with transparent substrates
US10823663B2 (en) 2015-05-24 2020-11-03 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Measurement device and measurement method for thin film provided with transparent substrate
KR20180047762A (en) * 2016-11-01 2018-05-10 서강대학교산학협력단 System and method for measuring thickness of 2-dimensional materials
KR101899067B1 (en) * 2016-11-01 2018-09-14 서강대학교산학협력단 System and method for measuring thickness of 2-dimensional materials
JP2018179536A (en) * 2017-04-04 2018-11-15 パナソニックIpマネジメント株式会社 Liquid droplet measurement method and liquid droplet measuring apparatus
JP2019184393A (en) * 2018-04-09 2019-10-24 三菱電機株式会社 Film thickness measuring device

Also Published As

Publication number Publication date
JP3790628B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP3790628B2 (en) Method and apparatus for measuring film thickness and optical constant
EP0397388A2 (en) Method and apparatus for measuring thickness of thin films
JP3337252B2 (en) Method and apparatus for determining thin film thickness
JP4140737B2 (en) Broadband spectral rotation compensator ellipsometer
US5543919A (en) Apparatus and method for performing high spatial resolution thin film layer thickness metrology
US5337150A (en) Apparatus and method for performing thin film layer thickness metrology using a correlation reflectometer
JPH0224502A (en) Film-thickness measuring method
US20100245819A1 (en) Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)
JPH06101505B2 (en) Method and apparatus for semiconductor ion implantation dose level evaluation
JP2020517093A (en) Advanced advanced optical sensor, system and method for etching process monitoring
US20070187606A1 (en) Overlay metrology using the near infra-red spectral range
JPH06103252B2 (en) High resolution ellipsometer apparatus and method
JPH06317408A (en) Determination of characteristic value of transparent layer using polarization analysis method
JP2002098591A (en) Spectral oval polarimeter provided with refractive lighting optical system
JP2003509667A (en) Method and apparatus for optical measurement of layer and surface properties
JPH0915140A (en) Elliptic polarization measuring method, elliptic polarimeterand device for controlling formation of layer using method and device thereof
TWI798614B (en) Combined ocd and photoreflectance apparatus, system and method
KR102195132B1 (en) Method for measuring the light intensity of continuous rotation of a polarizer
JP3520379B2 (en) Optical constant measuring method and device
JP2002286632A (en) Method for optically evaluating sample to be measured and device therefor
JPH07208937A (en) Equipment and method for measuring film thickness and permittivity
JPH11101739A (en) Ellipsometry apparatus
JP2917938B2 (en) Polarization analysis method and polarization analyzer
JPH07159132A (en) Device for measuring temperature of semiconductor surface and thickness of film formed on the surface
JP2522480B2 (en) Refractive index measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150407

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term