JPH11230860A - Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device - Google Patents

Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device

Info

Publication number
JPH11230860A
JPH11230860A JP2943498A JP2943498A JPH11230860A JP H11230860 A JPH11230860 A JP H11230860A JP 2943498 A JP2943498 A JP 2943498A JP 2943498 A JP2943498 A JP 2943498A JP H11230860 A JPH11230860 A JP H11230860A
Authority
JP
Japan
Prior art keywords
thin film
light
sample
container
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2943498A
Other languages
Japanese (ja)
Inventor
Shigeru Okamura
茂 岡村
Hiroshi Arimoto
宏 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2943498A priority Critical patent/JPH11230860A/en
Publication of JPH11230860A publication Critical patent/JPH11230860A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the physical amount of a thin film formed on the surface of a transparent base material, by preventing reflected light from the back surface of the transparent base material from being superimposed on measuring light without any complicated operation. SOLUTION: In an optical thin film measuring method, the surface of a sample 10 in which a thin film 12 is formed on the surface of a transparent substrate 11 is irradiated with a light beam, and reflected light from an irradiation point is detected to measure the physical amount of the thin film 12. A liquid 26 with the approximately same refractive index as that of the substrate 11 is housed in a container to bring the back surface of the substrate 11 into contact with the liquid 26, and light transmitted through the sample 10 and incident into the liquid 26 is absorbed to a light absorbing body 24. In another constitution, a knife edge plate is arranged in the vicinity of the sample without shielding reflected light from the irradiation point so as to shield the light beam reflected at the back surface of the substrate and transmitted through the thin film, and the knife edge of the knife edge plate is located on the side of the reflected light with respect to the irradiation point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏光面の変化、干
渉又は吸光等の光学的変化を検出して薄膜の厚み、屈折
率又はスペクトル等の物理量を計測する方法及び装置並
びにこの装置に用いられる光学的薄膜計測妨害光除去装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a physical quantity such as a thickness, a refractive index or a spectrum of a thin film by detecting a change in a polarization plane, an optical change such as interference or absorption, and an apparatus used in the apparatus. The present invention relates to an optical thin film measurement interference light removing device to be used.

【0002】[0002]

【従来の技術】例えば液晶表示パネルの製造において
は、ガラス基板表面に透明導電膜やアモルファスシリコ
ン膜が形成され、これが所望形状に微細加工されて表示
素子が形成される。この薄膜の厚さや屈折率は、エリプ
ソメータで測定することができる。しかし、薄膜の表面
と裏面での反射光の干渉光である測定光に、ガラス基板
裏面からの反射光が重畳されるので、計測精度が悪くな
る。
2. Description of the Related Art In the manufacture of a liquid crystal display panel, for example, a transparent conductive film or an amorphous silicon film is formed on the surface of a glass substrate, and this is finely processed into a desired shape to form a display element. The thickness and refractive index of this thin film can be measured with an ellipsometer. However, since the reflected light from the back surface of the glass substrate is superimposed on the measurement light which is the interference light of the reflected light on the front surface and the back surface of the thin film, the measurement accuracy deteriorates.

【0003】そこで、特開平3−215957号公報で
は、ガラス基板裏面を粗面にすることで乱反射させて、
その影響を1桁程度減らしている。しかし、ガラス基板
裏面からの反射光そのものを無くすることができないの
で、高精度の計測が要求される場合には不適当である。
また、特開平6−34523号公報では、上記測定光が
ガラス基板裏面からの反射光と干渉しないと仮定した理
論式に基づいて測定精度を向上させているが、1nm程
度の高精度で膜厚を測定するには不適当である。
In Japanese Patent Laid-Open Publication No. Hei 3-215957, the back surface of the glass substrate is roughened so that it is irregularly reflected.
The effect has been reduced by an order of magnitude. However, since the reflected light itself from the back surface of the glass substrate cannot be eliminated, it is not suitable when high-precision measurement is required.
In Japanese Patent Application Laid-Open No. 6-34523, the measurement accuracy is improved based on a theoretical formula on the assumption that the measurement light does not interfere with the reflected light from the back surface of the glass substrate. Is unsuitable for measuring

【0004】さらに、特開平5−264440号公報で
は、ガラス基板裏面からの反射光を遮光しているが、適
当な遮光のために試料搭載ステージの高さを微調整する
必要があるので、操作が煩雑である。エリプソメータ以
外の光計測装置で透明基材表面に形成された薄膜の膜
厚、屈折率又はスペクトル等の物理量を計測する場合に
も、上記問題が生ずる。
Further, in Japanese Patent Application Laid-Open No. Hei 5-264440, the reflected light from the back surface of the glass substrate is shielded. However, it is necessary to finely adjust the height of the sample mounting stage in order to appropriately shield the light. Is complicated. The above problem also occurs when a physical quantity such as a film thickness, a refractive index or a spectrum of a thin film formed on the surface of the transparent substrate is measured by an optical measurement device other than the ellipsometer.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、この
ような問題点に鑑み、煩雑な操作をすることなく、透明
基材裏面からの反射光が測定光に重畳されるのを防止し
て、透明基材表面に形成された薄膜の物理量を高精度で
計測することが可能な光学的薄膜計測方法及び装置並び
にこの装置に用いられる光学的薄膜計測妨害光除去装置
を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent the reflected light from the back surface of a transparent substrate from being superimposed on the measuring light without performing a complicated operation in view of such problems. Accordingly, it is an object of the present invention to provide an optical thin film measuring method and apparatus capable of measuring a physical quantity of a thin film formed on a transparent base material surface with high accuracy, and an optical thin film measuring interference light removing apparatus used in the apparatus. .

【0006】[0006]

【課題を解決するための手段及びその作用効果】請求項
1の光学的薄膜計測妨害光除去装置では、透明基材の一
方の面に薄膜が形成された試料に対し該一方の面へ光ビ
ームを照射し、照射点からの反射光を検出して該薄膜の
物理量を計測する光学的薄膜計測装置に用いられ、屈折
率が該基材のそれと略等しい液体又はゲル状物質である
反射防止物質と、該透明基材の該一方の面と対向する面
と接触可能に該反射防止物質が収容される容器と、該容
器内に配置され、該試料を透過して該反射防止物質内に
入射した光を吸収する吸光体とを有する。
According to the first aspect of the present invention, there is provided an apparatus for removing interference light from measurement of an optical thin film, wherein a sample having a thin film formed on one surface of a transparent substrate is irradiated with a light beam to the one surface. Is used for an optical thin film measuring device that measures the physical quantity of the thin film by detecting reflected light from the irradiation point, and is a liquid or gel-like antireflective substance having a refractive index substantially equal to that of the base material. A container in which the antireflective substance is housed so as to be capable of contacting the surface of the transparent substrate opposite to the one surface; and a container disposed in the container, penetrating the sample and entering the antireflective substance. And a light absorber that absorbs the light.

【0007】この光学的薄膜計測妨害光除去装置によれ
ば、透明基材と反射防止物質の屈折率が互いに略等しい
ので、透明基材の対向面での反射光の強度は、光学的薄
膜計測装置の検出部に入射しても無視できる程度に小さ
くなり、また、透明基材を透過した光ビームは、吸光体
で吸収されるので、反射して光学的薄膜計測装置の検出
部に入射するのが防止され、これにより、薄膜の厚み、
屈折率又はスペクトル等の物理量を高精度で測定するこ
とが可能になるという効果を奏する。
According to this optical thin film measurement interference light removing device, the refractive index of the transparent substrate and the antireflective substance are substantially equal to each other, so that the intensity of the reflected light on the opposite surface of the transparent substrate can be measured by the optical thin film measurement. The light beam transmitted through the transparent base material becomes negligibly small even when it enters the detection unit of the apparatus, and is reflected by the light absorber because it is absorbed by the light absorber, and enters the detection unit of the optical thin film measurement apparatus. And thus the thickness of the thin film,
There is an effect that a physical quantity such as a refractive index or a spectrum can be measured with high accuracy.

【0008】また、計測前の光学的薄膜計測装置の微調
整が不要であるので、操作が簡単であるという効果を奏
する。請求項2の光学的薄膜計測妨害光除去装置では、
請求項1において例えば図1に示す如く、上記容器内に
は、上端開口と底面との間を仕切る仕切部材が配置され
て該仕切部材と該底面との間に室が形成され、上記反射
防止物質内に入射した光を該室の内部に通すための孔が
該仕切部材に形成され、上記吸光体は該室の内部に配置
されている。
Further, since fine adjustment of the optical thin film measuring device before measurement is not required, there is an effect that the operation is simple. In the optical thin film measurement interference light removing device according to claim 2,
In claim 1, for example, as shown in FIG. 1, a partition member for partitioning between an upper end opening and a bottom surface is disposed in the container, and a chamber is formed between the partition member and the bottom surface, and the antireflection is provided. A hole is formed in the partition member to allow light incident on the substance to pass through the interior of the chamber, and the light absorber is disposed inside the chamber.

【0009】この光学的薄膜計測妨害光除去装置によれ
ば、透明基材を透過した光ビームを吸光体で確実に吸収
することが可能になるという効果を奏する。請求項3の
光学的薄膜計測妨害光除去装置では、請求項2において
例えば図4に示す如く、上記容器の上端に輪状の溝が形
成され、該溝に輪状のシール部材が嵌込まれ、該シール
部材が該上端から突出し、上記反射防止物質が該容器に
該シール部材の上端まで入れられている。
According to the optical thin film measurement interference light removing device, there is an effect that the light beam transmitted through the transparent substrate can be surely absorbed by the light absorber. In the optical thin film measurement interference light removing device of claim 3, as shown in FIG. 4, for example, a ring-shaped groove is formed at the upper end of the container, and a ring-shaped seal member is fitted into the groove. A sealing member protrudes from the upper end, and the antireflective substance is placed in the container up to the upper end of the sealing member.

【0010】この光学的薄膜計測妨害光除去装置によれ
ば、小形の容器を用いることが可能になるという効果を
奏する。請求項4の光学的薄膜計測妨害光除去装置で
は、請求項1において例えば図2に示す如く、上記容器
内には、上端開口と底面との間に、上記反射防止物質内
に入射した光を通すための移動自在なスリットが形成さ
れた可動マスクが配置され、上記吸光体は該可動マスク
と該底面との間に配置されている。
According to the optical thin film measuring and obstructing light removing device, there is an effect that a small container can be used. In the optical thin film measurement interference light removing device of claim 4, as shown in FIG. 2, for example, light incident on the anti-reflective material is provided between the upper end opening and the bottom surface in the container. A movable mask having a movable slit for passing therethrough is arranged, and the light absorber is arranged between the movable mask and the bottom surface.

【0011】この光学的薄膜計測妨害光除去装置によれ
ば、試料を固定した状態で、スリットの移動に追従して
光計測装置を移動させることにより、試料上の任意の位
置を計測することができるという効果を奏する。請求項
5の光学的薄膜計測妨害光除去装置では、請求項1にお
いて例えば図5に示す如く、上記容器は、上端開口が胴
体部断面より狭く、上記反射防止物質はその中央部上面
が該上端開口より上まで盛り上がっている。
According to this optical thin film measurement interference light removing device, an arbitrary position on the sample can be measured by moving the optical measurement device following the movement of the slit while the sample is fixed. It has the effect of being able to. In the optical thin-film measurement interference light removing device according to claim 5, as shown in FIG. 5, for example, in the container, the upper end opening of the container is narrower than the cross section of the body portion, and the upper surface of the antireflective substance has the upper end at the upper end. It rises above the opening.

【0012】この光学的薄膜計測妨害光除去装置によれ
ば、小形の容器を用いることが可能になるという効果を
奏する。請求項6の光学的薄膜計測妨害光除去装置で
は、請求項1乃至3のいずれか1つ又は請求項5におい
て、上記試料への光照射点を変更するために該試料を移
動させる移動ステージを有する。
According to the optical thin film measuring and obstructing light removing device, there is an effect that a small container can be used. In the optical thin film measurement interference light removing device according to claim 6, the moving stage for moving the sample in order to change the light irradiation point on the sample according to any one of claims 1 to 3 or claim 5, is provided. Have.

【0013】この光学的薄膜計測妨害光除去装置によれ
ば、光計測装置を移動させることなく、試料上の任意の
光照射点について自動計測を行うことが可能になるとい
う効果を奏する。請求項7の光学的薄膜計測妨害光除去
装置では、請求項1乃至6のいずれか1つにおいて、上
記吸光体は上記容器の内壁に形成されている。
According to the optical thin film measurement interference light removing device, there is an effect that automatic measurement can be performed at an arbitrary light irradiation point on the sample without moving the optical measuring device. In the optical thin film measurement interference light removing device according to claim 7, in any one of claims 1 to 6, the light absorber is formed on an inner wall of the container.

【0014】請求項8の光学的薄膜計測装置では、請求
項1乃至7のいずれか1つに記載の光学的薄膜計測妨害
光除去装置と、透明基材の一方の面に薄膜が形成された
試料に対し該一方の面へ光ビームを照射させ、照射点か
らの反射光を検出して該薄膜の物理量を計測する光計測
装置とを有する。
According to an eighth aspect of the present invention, there is provided the optical thin film measuring apparatus according to any one of the first to seventh aspects, wherein the thin film is formed on one surface of the transparent base material. An optical measurement device that irradiates the sample with a light beam to the one surface, detects reflected light from an irradiated point, and measures a physical quantity of the thin film.

【0015】請求項9の光学的薄膜計測装置では、例え
ば図6に示す如く、透明基材の一方の面に薄膜が形成さ
れた試料に対し該一方の面へ光ビームを照射し、照射点
からの反射光を検出して該薄膜の物理量を計測する光計
測装置と、該照射点を変更するために該試料を移動させ
る移動ステージと、該照射点からの反射光を遮光せず
に、該透明基材内で該一方の面と対向する面において反
射し該薄膜を透過した光ビームを遮光するために、該照
射点に対し反射光側にナイフエッジを位置させ該試料に
接近して配置されたナイフエッジ板とを有する。
In an optical thin film measuring apparatus according to a ninth aspect, for example, as shown in FIG. 6, a sample having a thin film formed on one surface of a transparent base material is irradiated with a light beam on the one surface. An optical measurement device that detects the reflected light from and measures the physical quantity of the thin film, a moving stage that moves the sample to change the irradiation point, and without blocking the reflected light from the irradiation point, In order to block the light beam reflected on the surface opposite to the one surface in the transparent substrate and transmitted through the thin film, a knife edge is positioned on the reflected light side with respect to the irradiation point, and the knife edge is approached to the sample. A knife edge plate disposed.

【0016】この光学的薄膜計測装置によれば、反射防
止物質及びこれを収容する容器が不要になるので、構成
が簡単になるという効果を奏する。請求項10では、透
明基材の一方の面に薄膜が形成された試料に対し該一方
の面へ光ビームを照射し、照射点からの反射光を検出し
て該薄膜の物理量を計測する光学的薄膜計測方法におい
て、屈折率が該基材のそれに略等しい液体又はゲル状物
質である反射防止物質を容器に収容し、該透明基材の該
一方の面と対向する面を該反射防止物質に接触させ、該
試料を透過して該反射防止物質内に入射した光を吸光体
に吸収させる。
According to this optical thin-film measuring apparatus, an antireflection substance and a container for accommodating the antireflection substance are not required. According to claim 10, an optical system for irradiating a sample having a thin film formed on one surface of a transparent base material with a light beam, detecting reflected light from an irradiation point, and measuring a physical quantity of the thin film. In a method for measuring a thin film, a liquid or gel-like antireflective substance having a refractive index substantially equal to that of the base material is accommodated in a container, and the surface of the transparent base material facing the one surface is coated with the antireflective material. And the light passing through the sample and entering the antireflective substance is absorbed by the light absorber.

【0017】請求項11では、透明基材の一方の面に薄
膜が形成された試料に対し該一方の面に光ビームを照射
し、照射点からの反射光を検出して該薄膜の物理量を計
測する光学的薄膜計測方法において、該照射点からの反
射光を遮光せずに、該透明基材内で該一方の面と対向す
る面において反射し該薄膜を透過した光ビームを遮光す
るように、該試料に接近してナイフエッジ板を配置し且
つ該照射点に対し反射光側に該ナイフエッジ板のナイフ
エッジを位置させる。
In the eleventh aspect, a sample having a thin film formed on one surface of a transparent substrate is irradiated with a light beam to the one surface, and reflected light from an irradiation point is detected to determine a physical quantity of the thin film. In the optical thin film measuring method for measuring, without blocking light reflected from the irradiation point, a light beam reflected on a surface opposite to the one surface in the transparent base material and transmitted through the thin film is shielded. Next, a knife edge plate is arranged close to the sample, and the knife edge of the knife edge plate is positioned on the reflected light side with respect to the irradiation point.

【0018】[0018]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態を説明する。 [第1実施形態]図1は、本発明の第1実施形態の光学
的薄膜計測装置概略構成を示す。試料10は、透明基板
11の面11aに薄膜12が形成されている。例えば、
透明基板11は石英ガラス基板であり、薄膜12はIT
O膜である。この試料10は、以下のような光学的薄膜
計測妨害光除去装置内に配置されている。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 shows a schematic configuration of an optical thin film measuring apparatus according to a first embodiment of the present invention. The sample 10 has a thin film 12 formed on a surface 11 a of a transparent substrate 11. For example,
The transparent substrate 11 is a quartz glass substrate, and the thin film 12 is an IT
O film. The sample 10 is placed in an optical thin film measurement and interference light removing device as described below.

【0019】この装置の容器20は、横断面矩形であ
り、その上端開口と底面との中間部に、仕切り板21が
容器20の底面に平行にされて、容器20の内壁に固定
され、これにより、容器20の下部に室22が形成され
ている。仕切り板21の中央部には開口23が形成さ
れ、この開口23は、孔又は長手方向が紙面垂直方向の
スリットである。室22の内壁面に吸光面24が被着さ
れて黒体が構成されており、開口23から入射した光
は、この黒体で吸収される。吸光面24は、例えば室2
2の内面を粗面にし、その上に黒色塗料を塗布したもの
である。仕切り板21の上面には、支持突起25A及び
25Bが形成され、これらに試料10がスライド自在に
搭載される。
The container 20 of this device has a rectangular cross section, and a partition plate 21 is fixed to the inner wall of the container 20 at an intermediate portion between the upper end opening and the bottom surface so as to be parallel to the bottom surface of the container 20. Thereby, a chamber 22 is formed in the lower part of the container 20. An opening 23 is formed at the center of the partition plate 21, and the opening 23 is a hole or a slit whose longitudinal direction is perpendicular to the plane of the paper. A light absorbing surface 24 is attached to the inner wall surface of the chamber 22 to form a black body, and light incident from the opening 23 is absorbed by the black body. The light absorbing surface 24 is, for example, the chamber 2
The inner surface of No. 2 was roughened, and a black paint was applied thereon. On the upper surface of the partition plate 21, support projections 25A and 25B are formed, on which the sample 10 is slidably mounted.

【0020】容器20内には、屈折率が透明基板11の
それに略等しい液体26が収容されている。液体26が
揮発性の場合には、密度が液体26のそれより小さい不
揮発性液体として、油27の層が液体26上に入れられ
ている。このような構成の光学的薄膜計測妨害光除去装
置の上方には、入射側のレーザ30及び偏光子31と反
射側の検光子32及び光検出器33とを備えたエリプソ
メータが配置されている。
A liquid 26 having a refractive index substantially equal to that of the transparent substrate 11 is stored in the container 20. If the liquid 26 is volatile, a layer of oil 27 is placed on the liquid 26 as a non-volatile liquid having a density less than that of the liquid 26. An ellipsometer including a laser 30 and a polarizer 31 on the incident side, an analyzer 32 and a photodetector 33 on the reflection side is disposed above the optical thin film measurement interference light removing apparatus having such a configuration.

【0021】次に、上記の如く構成された本第1実施形
態の動作を説明する。レーザ30から出射した光ビーム
は、偏光子31を通って直線偏光又は円偏光になり、試
料10上の測定点に照射され、一方では、薄膜12の表
面及び裏面での反射光が干渉し、検光子32を通って直
線偏光となり、その強度が光検出器33で検出される。
他方では光ビームが、薄膜12を透過して透明基板11
内に入る。透明基板11と液体26の屈折率が互いに略
等しいので、透明基板11の面11bでの反射光の強度
は、検光子32に入射しても無視できる程度に小さくな
る。また、透明基板11を透過した光ビームは、開口2
3を通り、吸光面24で吸収され、吸光面24での弱い
乱反射光はさらに吸光面24で吸収されて、開口23か
ら光が漏れるのが阻止される。
Next, the operation of the first embodiment configured as described above will be described. The light beam emitted from the laser 30 becomes linearly polarized light or circularly polarized light through the polarizer 31 and irradiates the measurement point on the sample 10, while the light reflected on the front and back surfaces of the thin film 12 interferes with each other, The light passes through the analyzer 32 and becomes linearly polarized light, and the intensity is detected by the photodetector 33.
On the other hand, the light beam passes through the thin film 12 and passes through the transparent substrate 11.
Get in. Since the refractive indices of the transparent substrate 11 and the liquid 26 are substantially equal to each other, the intensity of the light reflected on the surface 11b of the transparent substrate 11 becomes negligibly small even when the light enters the analyzer 32. The light beam transmitted through the transparent substrate 11 is transmitted through the aperture 2
3, the light that is absorbed by the light absorbing surface 24 and is weakly diffusely reflected by the light absorbing surface 24 is further absorbed by the light absorbing surface 24 to prevent light from leaking from the opening 23.

【0022】検光子32の偏光面を回転させながら光検
出器33の出力を読み取り、試料10に対する検光子3
2及び光検出器33の角度を変えて同様のことを行い、
読み取ったデータを不図示の信号処理装置で解析するこ
とにより、薄膜12の光照射点での膜厚及び屈折率が求
められる。透明基板11を支持突起25A及び25B上
でスライドさせることにより、薄膜12の任意の点での
膜厚及び屈折率が計測される。
The output of the photodetector 33 is read while rotating the polarization plane of the analyzer 32, and the analyzer 3
2 and the angle of the photodetector 33 is changed, and the same is performed.
By analyzing the read data with a signal processing device (not shown), the film thickness and the refractive index of the thin film 12 at the light irradiation point are obtained. By sliding the transparent substrate 11 on the support protrusions 25A and 25B, the film thickness and the refractive index of the thin film 12 at arbitrary points are measured.

【0023】本第1実施形態によれば、面11bでの反
射光が無視できるので、薄膜12の膜厚及び屈折率を高
精度で測定することが可能となる。また、エリプソメー
タの位置と開口23の位置との関係を概略定めればよい
ので、操作が簡単である。例えば透明基板11が石英ガ
ラスの場合、その屈折率は、He−Neレーザ光の波長
632.8nmに対し1.4570であり、この透明基
板11に光ビームを入射角60゜で入射させると、その
約81%が透明基板11内に入る。液体26が存在しな
い場合には、透明基板11内に入った光の約18%が面
11bで反射するので、透明基板11への入射光の約1
5%が面11bで反射されることになる。
According to the first embodiment, since the light reflected on the surface 11b can be ignored, the thickness and the refractive index of the thin film 12 can be measured with high accuracy. Further, since the relationship between the position of the ellipsometer and the position of the opening 23 may be roughly determined, the operation is simple. For example, when the transparent substrate 11 is made of quartz glass, its refractive index is 1.4570 with respect to the wavelength of 632.8 nm of the He—Ne laser beam. When a light beam is incident on the transparent substrate 11 at an incident angle of 60 °, About 81% of it enters the transparent substrate 11. When the liquid 26 does not exist, about 18% of the light that has entered the transparent substrate 11 is reflected by the surface 11b.
5% will be reflected by the surface 11b.

【0024】これに対し、液体26として例えば屈折率
1.4507のシクロヘキサン(C 610O)を用い、
図1の状態で計測すると、面11bでの反射率は0.2
%まで減少し、面11bでの反射光強度は透明基板11
への入射光強度の0.17%になる。さらに、液体26
として、シクロヘキサンに屈折率1.5411のベンジ
ルアルコールを約7%混ぜたものを用いることにより、
液体26の屈折率を石英ガラスのそれにほぼ等しくする
ことができ、面11bでの反射率をほぼ0にすることが
できる。
On the other hand, the liquid 26 has, for example, a refractive index
1.4507 cyclohexane (C 6 HTenO)
When measured in the state of FIG. 1, the reflectance on the surface 11b is 0.2
%, And the reflected light intensity at the surface 11b becomes
0.17% of the intensity of the incident light on the substrate. Further, the liquid 26
Benzene with a refractive index of 1.5411
By using a mixture of about 7% alcohol
Make the refractive index of the liquid 26 approximately equal to that of quartz glass
And the reflectance at the surface 11b can be reduced to almost zero.
it can.

【0025】液体26としては、透明基板11の屈折率
に応じて、例えば、シクロヘキサンにキシレン又は安息
香酸を混入した混合液を用いることができる。液体26
の替わりに、これをポリマーに吸収させてゲル状にした
物質を用いてもよい。この場合には、透明基板11を斜
めにした状態で上記計測を行うことが可能となる。
As the liquid 26, for example, a mixed liquid in which xylene or benzoic acid is mixed in cyclohexane can be used according to the refractive index of the transparent substrate 11. Liquid 26
Instead of this, a gelled substance obtained by absorbing this into a polymer may be used. In this case, the above measurement can be performed with the transparent substrate 11 inclined.

【0026】吸光体としては、吸光面24の替わりに、
強い光吸収のある黒色染料を液体26に溶解させたもの
であってもよい。レーザ30の替わりに光源及び分光器
を用い、試料10に対する検光子32及び光検出器33
の角度を変えずに分光器からの光ビームの波長を変える
構成であってもよい。
As the light absorbing body, instead of the light absorbing surface 24,
A black dye having strong light absorption may be dissolved in the liquid 26. A light source and a spectroscope are used instead of the laser 30, and an analyzer 32 and a photodetector 33 for the sample 10 are used.
May be changed without changing the angle of the light beam.

【0027】さらに、光計測装置としては、エリプソメ
ータの替わりに例えば、白色光ビームを試料10に照射
するフーリエ分光器を用いて、薄膜12のスペクトルを
計測する構成であってもよい。以上のような変形例は、
以下の実施形態についても同様である。 [第2実施形態]図2(A)は、本発明の第2実施形態
の光学的薄膜計測装置の概略構成を示す。
Further, the optical measurement device may be configured to measure the spectrum of the thin film 12 by using, for example, a Fourier spectroscope that irradiates the sample 10 with a white light beam instead of the ellipsometer. The above modified example is
The same applies to the following embodiments. [Second Embodiment] FIG. 2A shows a schematic configuration of an optical thin film measuring apparatus according to a second embodiment of the present invention.

【0028】この装置の光学的薄膜計測妨害光除去装置
では、容器20Aにおいて、図1の仕切り板21の替わ
りに、中央部に比較的大きな開口が形成された仕切り板
21Aが用いられ、かつ、この開口部に可動マスク28
が配置されている。可動マスク28は、図2(B)にも
示す如く、ローラ28a及び28bに幕28cの一端部
及び他端部が巻回され、幕28cにスリット23Aが形
成されており、ローラ28a及び28bを同一方向へ回
転させることによりスリット23Aの位置を調整可能に
なっている。
In the optical thin film measuring and obstructing light removing device of this device, a partition plate 21A having a relatively large opening formed in the center is used in the container 20A instead of the partition plate 21 of FIG. The movable mask 28 is provided in this opening.
Is arranged. As shown in FIG. 2B, the movable mask 28 has one end and the other end of a curtain 28c wound around rollers 28a and 28b, and a slit 23A is formed on the curtain 28c. By rotating in the same direction, the position of the slit 23A can be adjusted.

【0029】この調整に合わせて、試料10の上部のエ
リプソメータが追従移動される。この移動と、エリプソ
メータの紙面垂直方向への独立移動とにより、仕切り板
21A上に固定された試料10上の任意の位置について
計測を行うことができる。他の点は、図1の場合と同一
である。 [第3実施形態]図3は、本発明の第3実施形態の光学
的薄膜計測装置概略構成を示す。
In accordance with this adjustment, the ellipsometer above the sample 10 is moved. By this movement and the independent movement of the ellipsometer in the direction perpendicular to the paper surface, measurement can be performed at an arbitrary position on the sample 10 fixed on the partition plate 21A. Other points are the same as those in FIG. Third Embodiment FIG. 3 shows a schematic configuration of an optical thin-film measuring apparatus according to a third embodiment of the present invention.

【0030】この装置の光学的薄膜計測妨害光除去装置
では、試料10が容器20B内で光照射点走査用ステー
ジ34に搭載されて、紙面に垂直な面内で試料10が移
動自在になっている。また、ステージ34との衝突を避
けるために、容器20B内に小形の仕切り台21Bが配
置され、その上面に開口23が形成されている。この光
学的薄膜計測装置によれば、エリプソメータを移動させ
ることなく、試料10上の任意の光照射点について高精
度の自動計測を行うことができる。
In the optical thin film measurement interference light removing apparatus of this apparatus, the sample 10 is mounted on the light irradiation point scanning stage 34 in the container 20B, and the sample 10 is movable in a plane perpendicular to the paper. I have. In order to avoid collision with the stage 34, a small partition 21B is arranged in the container 20B, and an opening 23 is formed on the upper surface thereof. According to this optical thin film measuring apparatus, high-precision automatic measurement can be performed at an arbitrary light irradiation point on the sample 10 without moving the ellipsometer.

【0031】他の点は、図1の場合と同一である。 [第4実施形態]図4は、本発明の第4実施形態の光学
的薄膜計測装置概略構成を示す。図3において、液体2
6は、少なくとも透明基板11の面11bと仕切り台2
1Bの上面との間に存在すればよい。そこで、この第4
実施形態では、この仕切り台21Bと略同一サイズの容
器20Cの上端に、円形の溝が形成され、この溝にOリ
ング29が嵌込まれ、その上面が容器20Cの上端から
突出している。液体26は、容器20C内にOリング2
9の上面まで入れられ、透明基板11の面11bをOリ
ング29に当接させることにより、面11bに液体26
が接触する。
The other points are the same as those in FIG. [Fourth Embodiment] FIG. 4 shows a schematic configuration of an optical thin film measuring apparatus according to a fourth embodiment of the present invention. In FIG. 3, the liquid 2
6 is at least the surface 11b of the transparent substrate 11 and the partition 2
What is necessary is just to exist between the upper surface of 1B. Therefore, this 4th
In the embodiment, a circular groove is formed in the upper end of the container 20C having substantially the same size as the partition 21B, and the O-ring 29 is fitted into the groove, and the upper surface protrudes from the upper end of the container 20C. Liquid 26 contains O-ring 2 in container 20C.
9, the surface 11b of the transparent substrate 11 is brought into contact with the O-ring 29, so that the liquid 26
Contact.

【0032】この第4実施形態によれば、小形の容器2
0Cを用いているので、装置全体を小形化することが可
能となる。他の点は、図3の場合と同一である。 [第5実施形態]図5は、本発明の第5実施形態の光学
的薄膜計測装置概略構成を示す。
According to the fourth embodiment, the small container 2
Since 0C is used, the entire device can be downsized. Other points are the same as those in FIG. [Fifth Embodiment] FIG. 5 shows a schematic configuration of an optical thin film measuring apparatus according to a fifth embodiment of the present invention.

【0033】この装置の光学的薄膜計測妨害光除去装置
では、図4のOリング29を用いる替わりに、液体26
の表面張力を利用している。すなわち、上端開口が胴体
部断面より狭い瓶状の容器20Dに液体26が、中央部
において容器20Dの上端より高く盛り上がるまで入れ
られ、液体26の上面に透明基板11の面11bが当接
されている。
In the optical thin film measurement interference light removing apparatus of this apparatus, instead of using the O-ring 29 of FIG.
Utilizing the surface tension of That is, the liquid 26 is put into the bottle-shaped container 20D whose upper end opening is narrower than the body part cross section until it rises higher than the upper end of the container 20D at the center, and the surface 11b of the transparent substrate 11 contacts the upper surface of the liquid 26. I have.

【0034】他の点は、図4の場合と同一である。液体
26の替わりに上述のゲル状物質を用いれば、その突出
した上面形状を長時間安定させることができる。 [第6実施形態]図6は、本発明の第6実施形態の光学
的薄膜計測装置概略構成を示す。
The other points are the same as those in FIG. If the above-mentioned gel-like substance is used instead of the liquid 26, the shape of the protruding upper surface can be stabilized for a long time. Sixth Embodiment FIG. 6 shows a schematic configuration of an optical thin film measuring apparatus according to a sixth embodiment of the present invention.

【0035】この装置では、光照射点走査用ステージ3
4A上に試料10が搭載されて、紙面垂直面内で試料1
0が移動自在になっている。また、試料10と平行なナ
イフエッジ板20Eが、試料10の上面に接近して、エ
リプソメータの反射光側に配置され、その基端が固定側
に取着されている。ナイフエッジ板20Eの先端部は、
光照射点からの反射光を妨害しないようにするためエッ
ジになっていて、光照射点の近くの反射光側に位置して
いる。ナイフエッジ板20Eの先端と光照射点との間の
距離は、光照射点から、面11bでの反射光が面11a
へ戻った位置までの距離Sに略等しい。この距離Sは、
次式で表される。
In this apparatus, the light irradiation point scanning stage 3
The sample 10 is mounted on the sample 4A, and the sample 1 is
0 is free to move. A knife edge plate 20E parallel to the sample 10 is arranged on the reflected light side of the ellipsometer, approaching the upper surface of the sample 10, and the base end thereof is attached to the fixed side. The tip of the knife edge plate 20E
The edge is formed so as not to disturb the reflected light from the light irradiation point, and is located on the side of the reflected light near the light irradiation point. The distance between the tip of the knife edge plate 20E and the light irradiation point is such that the light reflected from the surface 11b is reflected from the surface 11a from the light irradiation point.
Is substantially equal to the distance S to the position at which the position has returned. This distance S is
It is expressed by the following equation.

【0036】 S=2d・tan〔(sin-1{sin(θ/n)}〕 ここに、θは試料10に対する入射角であり、dは透明
基板11の厚みであり、nは透明基板11の屈折率であ
る。計測前に、このSの値に基づいて、エリプソメータ
とナイフエッジ板20Eとの位置関係が調整される。こ
の調整は、ステージ34Aの位置とは無関係である。
S = 2d · tan [(sin −1 {sin (θ / n)}] where θ is the incident angle with respect to the sample 10, d is the thickness of the transparent substrate 11, and n is the transparent substrate 11 Before the measurement, the positional relationship between the ellipsometer and the knife edge plate 20E is adjusted based on the value of S. This adjustment is independent of the position of the stage 34A.

【0037】本第6実施形態の光学的薄膜計測装置によ
れば、液体26が不要となるので、構成が簡単になる。
According to the optical thin-film measuring apparatus of the sixth embodiment, the liquid 26 is not required, so that the configuration is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の光学的薄膜計測装置概
略構成図である。
FIG. 1 is a schematic configuration diagram of an optical thin film measurement device according to a first embodiment of the present invention.

【図2】本発明の第2実施形態の光学的薄膜計測装置概
略構成図である。
FIG. 2 is a schematic configuration diagram of an optical thin film measuring device according to a second embodiment of the present invention.

【図3】本発明の第3実施形態の光学的薄膜計測装置概
略構成図である。
FIG. 3 is a schematic configuration diagram of an optical thin-film measuring device according to a third embodiment of the present invention.

【図4】本発明の第4実施形態の光学的薄膜計測装置概
略構成図である。
FIG. 4 is a schematic configuration diagram of an optical thin film measurement device according to a fourth embodiment of the present invention.

【図5】本発明の第5実施形態の光学的薄膜計測装置概
略構成図である。
FIG. 5 is a schematic configuration diagram of an optical thin film measuring device according to a fifth embodiment of the present invention.

【図6】本発明の第6実施形態の光学的薄膜計測装置概
略構成図である。
FIG. 6 is a schematic configuration diagram of an optical thin film measuring device according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 試料 11 透明基板 12 薄膜 20、20A〜20D 容器 20E ナイフエッジ板 21、21A 仕切り板 21B 仕切り台 22 室 23 開口 23A スリット 24 吸光面 25A、25B 支持突起 26 液体 27 油 28 可動マスク 29 Oリング 30 レーザ 31 偏光子 32 検光子 33 光検出器 Reference Signs List 10 sample 11 transparent substrate 12 thin film 20, 20A to 20D container 20E knife edge plate 21, 21A partition plate 21B partition base 22 chamber 23 opening 23A slit 24 light absorbing surface 25A, 25B support protrusion 26 liquid 27 oil 28 movable mask 29 O-ring 30 Laser 31 polarizer 32 analyzer 33 photodetector

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 透明基材の一方の面に薄膜が形成された
試料に対し該一方の面へ光ビームを照射し、照射点から
の反射光を検出して該薄膜の物理量を計測する光学的薄
膜計測装置に用いられ、 屈折率が該基材のそれと略等しい液体又はゲル状物質で
ある反射防止物質と、 該透明基材の該一方の面と対向する面と接触可能に該反
射防止物質が収容される容器と、 該容器内に配置され、該試料を透過して該反射防止物質
内に入射した光を吸収する吸光体と、 を有することを特徴とする光学的薄膜計測妨害光除去装
置。
An optical system for irradiating a sample having a thin film formed on one surface of a transparent base material with a light beam, detecting reflected light from an irradiated point, and measuring a physical quantity of the thin film. An anti-reflective substance, which is a liquid or gel-like substance having a refractive index substantially equal to that of the substrate, and the anti-reflection so as to be able to come into contact with the surface of the transparent substrate opposite to the one surface A container for accommodating a substance, and a light absorber disposed in the container and absorbing light transmitted through the sample and incident on the anti-reflection substance, comprising: Removal device.
【請求項2】 上記容器内には、上端開口と底面との間
を仕切る仕切部材が配置されて該仕切部材と該底面との
間に室が形成され、上記反射防止物質内に入射した光を
該室の内部に通すための孔が該仕切部材に形成され、 上記吸光体は該室の内部に配置されている、 ことを特徴とする請求項1記載の光学的薄膜計測妨害光
除去装置。
2. In the container, a partition member for partitioning between an upper end opening and a bottom surface is disposed, a chamber is formed between the partition member and the bottom surface, and light incident on the anti-reflective substance. 2. An optical thin film measuring and obstructing light removing device according to claim 1, wherein a hole is formed in the partition member for allowing the light to pass through the interior of the chamber, and the light absorber is disposed inside the chamber. .
【請求項3】 上記容器の上端に輪状の溝が形成され、
該溝に輪状のシール部材が嵌込まれ、該シール部材が該
上端から突出し、上記反射防止物質が該容器に該シール
部材の上端まで入れられている、 ことを特徴とする請求項2記載の光学的薄膜計測妨害光
除去装置。
3. An annular groove is formed at an upper end of the container,
The ring-shaped seal member is fitted into the groove, the seal member protrudes from the upper end, and the anti-reflective substance is put in the container up to the upper end of the seal member. Optical thin film measurement interference light removal device.
【請求項4】 上記容器内には、上端開口と底面との間
に、上記反射防止物質内に入射した光を通すための移動
自在なスリットが形成された可動マスクが配置され、 上記吸光体は該可動マスクと該底面との間に配置されて
いる、 ことを特徴とする請求項1記載の光学的薄膜計測妨害光
除去装置。
4. A movable mask having a movable slit formed between the upper end opening and the bottom surface for allowing light incident on the anti-reflective substance to pass therethrough, wherein the light absorber is provided in the container. The optical thin film measurement interference light removing device according to claim 1, wherein is disposed between the movable mask and the bottom surface.
【請求項5】 上記容器は、上端開口が胴体部断面より
狭く、 上記反射防止物質はその中央部上面が該上端開口より上
まで盛り上がっている、 ことを特徴とする請求項1記載の光学的薄膜計測妨害光
除去装置。
5. The optical device according to claim 1, wherein the upper end opening of the container is narrower than a cross section of the body portion, and the upper surface of the anti-reflection substance is raised above the upper end opening. Thin film measurement interference light removal device.
【請求項6】 上記試料への光照射点を変更するために
該試料を移動させる移動ステージを有することを特徴と
する請求項1乃至3のいずれか1つ又は請求項5に記載
の光学的薄膜計測妨害光除去装置。
6. The optical device according to claim 1, further comprising a moving stage for moving the sample to change a light irradiation point on the sample. Thin film measurement interference light removal device.
【請求項7】 上記吸光体は上記容器の内壁に形成され
ていることを特徴とする請求項1乃至6のいずれか1つ
に記載の光学的薄膜計測妨害光除去装置。
7. The optical thin film measurement interference light removing apparatus according to claim 1, wherein the light absorber is formed on an inner wall of the container.
【請求項8】 請求項1乃至7のいずれか1つに記載の
光学的薄膜計測妨害光除去装置と、 透明基材の一方の面に薄膜が形成された試料に対し該一
方の面へ光ビームを照射させ、照射点からの反射光を検
出して該薄膜の物理量を計測する光計測装置と、 を有することを特徴とする光学的薄膜計測装置。
8. An optical thin film measuring and obstructing light removing apparatus according to claim 1, further comprising: a sample on which a thin film is formed on one surface of a transparent substrate; An optical measurement device for irradiating a beam, detecting reflected light from an irradiation point, and measuring a physical quantity of the thin film.
【請求項9】 透明基材の一方の面に薄膜が形成された
試料に対し該一方の面へ光ビームを照射し、照射点から
の反射光を検出して該薄膜の物理量を計測する光計測装
置と、 該照射点を変更するために該試料を移動させる移動ステ
ージと、 該照射点からの反射光を遮光せずに、該透明基材内で該
一方の面と対向する面において反射し該薄膜を透過した
光ビームを遮光するために、該照射点に対し反射光側に
ナイフエッジを位置させ該試料に接近して配置されたナ
イフエッジ板と、 を有することを特徴とする光学的薄膜計測装置。
9. A light for irradiating a light beam to a sample on which a thin film is formed on one surface of a transparent substrate, and detecting a reflected light from an irradiation point to measure a physical quantity of the thin film. A measuring device, a moving stage for moving the sample to change the irradiation point, and a reflection surface on the surface opposed to the one surface in the transparent substrate without blocking light reflected from the irradiation point. And a knife edge plate having a knife edge positioned on the reflected light side with respect to the irradiation point and arranged in close proximity to the sample in order to block a light beam transmitted through the thin film. Thin film measuring device.
【請求項10】 透明基材の一方の面に薄膜が形成され
た試料に対し該一方の面へ光ビームを照射し、照射点か
らの反射光を検出して該薄膜の物理量を計測する光学的
薄膜計測方法において、 屈折率が該基材のそれに略等しい液体又はゲル状物質で
ある反射防止物質を容器に収容し、 該透明基材の該一方の面と対向する面を該反射防止物質
に接触させ、 該試料を透過して該反射防止物質内に入射した光を吸光
体に吸収させる、 ことを特徴とする光学的薄膜計測方法。
10. An optical system for irradiating a sample having a thin film formed on one surface of a transparent base material with a light beam, detecting reflected light from an irradiated point and measuring a physical quantity of the thin film. In the method for measuring a thin film, an antireflection substance which is a liquid or a gel-like substance having a refractive index substantially equal to that of the base material is contained in a container, and the surface of the transparent base material facing the one surface is formed of the antireflection material. Wherein the light that has passed through the sample and entered the anti-reflective substance is absorbed by a light absorber.
【請求項11】 透明基材の一方の面に薄膜が形成され
た試料に対し該一方の面に光ビームを照射し、照射点か
らの反射光を検出して該薄膜の物理量を計測する光学的
薄膜計測方法において、 該照射点からの反射光を遮光せずに、該透明基材内で該
一方の面と対向する面において反射し該薄膜を透過した
光ビームを遮光するように、該試料に接近してナイフエ
ッジ板を配置し且つ該照射点に対し反射光側に該ナイフ
エッジ板のナイフエッジを位置させる、 ことを特徴とする光学的薄膜計測方法。
11. An optical system for irradiating a sample having a thin film formed on one surface of a transparent base material with a light beam, detecting reflected light from an irradiation point, and measuring a physical quantity of the thin film. In the method for measuring a target thin film, the light reflected from the irradiation point is not shielded, but the light beam reflected on the surface opposite to the one surface in the transparent base material and transmitted through the thin film is shielded. An optical thin film measurement method, comprising: disposing a knife edge plate close to a sample; and positioning a knife edge of the knife edge plate on a side of reflected light with respect to the irradiation point.
JP2943498A 1998-02-12 1998-02-12 Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device Withdrawn JPH11230860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2943498A JPH11230860A (en) 1998-02-12 1998-02-12 Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2943498A JPH11230860A (en) 1998-02-12 1998-02-12 Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device

Publications (1)

Publication Number Publication Date
JPH11230860A true JPH11230860A (en) 1999-08-27

Family

ID=12276042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2943498A Withdrawn JPH11230860A (en) 1998-02-12 1998-02-12 Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device

Country Status (1)

Country Link
JP (1) JPH11230860A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065536A (en) * 1998-08-20 2000-03-03 Otsuka Denshi Kk Method and instrument for measuring film thickness and optical constant
US6444313B1 (en) 2001-01-05 2002-09-03 The Pilot Ink Co., Ltd. Thermochromic acrylic synthetic fiber, its processed article, and process for producing thermochromic acrylic synthetic fiber
JP2003509667A (en) * 1999-09-16 2003-03-11 エムケーエス インストゥルメンツ インコーポレーテッド Method and apparatus for optical measurement of layer and surface properties
WO2003041143A1 (en) * 2001-11-09 2003-05-15 Semiconductor Energy Laboratory Co., Ltd. Laser beam treatment device and semiconductor device
JP2010054562A (en) * 2008-08-26 2010-03-11 Toppan Printing Co Ltd Color filter substrate and liquid crystal display device
JP2010271603A (en) * 2009-05-25 2010-12-02 Nikon Corp Apparatus for detecting surface position, apparatus for forming pattern, method for detecting surface position, method for forming pattern, and device manufacturing method
KR101063291B1 (en) * 2009-06-18 2011-09-07 한양대학교 산학협력단 Specimen mount for optical measuring instrument and optical measuring instrument having same
JP2016510397A (en) * 2012-12-19 2016-04-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting one or more objects
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
DE102019204466A1 (en) 2018-04-09 2019-10-10 Mitsubishi Electric Corporation Film thickness measuring device
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065536A (en) * 1998-08-20 2000-03-03 Otsuka Denshi Kk Method and instrument for measuring film thickness and optical constant
JP4909480B2 (en) * 1999-09-16 2012-04-04 エムケーエス インストゥルメンツ インコーポレーテッド Layer and surface property optical measurement method and apparatus
JP2003509667A (en) * 1999-09-16 2003-03-11 エムケーエス インストゥルメンツ インコーポレーテッド Method and apparatus for optical measurement of layer and surface properties
US6444313B1 (en) 2001-01-05 2002-09-03 The Pilot Ink Co., Ltd. Thermochromic acrylic synthetic fiber, its processed article, and process for producing thermochromic acrylic synthetic fiber
WO2003041143A1 (en) * 2001-11-09 2003-05-15 Semiconductor Energy Laboratory Co., Ltd. Laser beam treatment device and semiconductor device
JPWO2003041143A1 (en) * 2001-11-09 2005-03-03 株式会社半導体エネルギー研究所 Laser processing apparatus and semiconductor device
JP4555568B2 (en) * 2001-11-09 2010-10-06 株式会社半導体エネルギー研究所 Laser processing apparatus, laser processing method, and method for manufacturing thin film transistor
US8269136B2 (en) 2001-11-09 2012-09-18 Semiconductor Energy Laboratory Co., Ltd. Laser beam treatment device and semiconductor device
JP2010054562A (en) * 2008-08-26 2010-03-11 Toppan Printing Co Ltd Color filter substrate and liquid crystal display device
JP2010271603A (en) * 2009-05-25 2010-12-02 Nikon Corp Apparatus for detecting surface position, apparatus for forming pattern, method for detecting surface position, method for forming pattern, and device manufacturing method
KR101063291B1 (en) * 2009-06-18 2011-09-07 한양대학교 산학협력단 Specimen mount for optical measuring instrument and optical measuring instrument having same
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
JP2016510397A (en) * 2012-12-19 2016-04-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting one or more objects
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
DE102019204466A1 (en) 2018-04-09 2019-10-10 Mitsubishi Electric Corporation Film thickness measuring device
CN110360941A (en) * 2018-04-09 2019-10-22 三菱电机株式会社 Film thickness measuring device
US10677585B2 (en) 2018-04-09 2020-06-09 Mitsubishi Electric Corporation Film thickness measuring apparatus
JP2019184393A (en) * 2018-04-09 2019-10-24 三菱電機株式会社 Film thickness measuring device

Similar Documents

Publication Publication Date Title
JPH11230860A (en) Method and device for measuring optical thin film, and device for removing interfering light in optical thin film measurement used for same device
US10495530B2 (en) Prism-coupling systems and methods for characterizing curved parts
Naftaly Terahertz metrology
US3604927A (en) Total reflection fluorescence spectroscopy
US5304795A (en) High resolution observation apparatus with photon scanning microscope
US7489399B1 (en) Spectroscopic multi angle ellipsometry
EP0397388A3 (en) Method and apparatus for measuring thickness of thin films
US20170254751A1 (en) High-sensitivity metamaterial nano-sensing system with ultra-narrow line width spectral response
JP4399126B2 (en) Spectroscopic ellipsometer
CN104515748A (en) Terahertz time-domain spectrograph based on femtosecond laser
KR900005611B1 (en) Grazing incidence reflection spectrometer
EP1239260A2 (en) Film thickness measuring apparatus
JP2005172774A (en) Method and apparatus for measuring physical properties based on catoptric characteristics
KR100189596B1 (en) Reflection-free ellipsometry measurement apparatus and method for small sample cells
JPS62266439A (en) Spectral temporary optical analyzer
JP3267685B2 (en) Micro surface observation device
CN101614610A (en) A kind of device of measuring InGaAs detector polarization sensitivity response
JP3220252B2 (en) EO probe
Samedov Laser-based optical facility for determination of refractive index of liquids
RU2025656C1 (en) Device for non-destructive measuring of thickness of dielectric and semiconductor films in predetermined point
JPH05158084A (en) Measuring instrument for linear and nonlinear optical sensing rate
SU1260773A1 (en) Device for detecting defects in transparent thin-film articles
SU1714679A1 (en) Method for testing domain structure of ferrite-garnet film
JPH07286955A (en) Sample rotary holder for spectrometry
RU2017084C1 (en) Device for indication and visual observation of ir-range electromagnetic radiation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510