JP2005172774A - Method and apparatus for measuring physical properties based on catoptric characteristics - Google Patents

Method and apparatus for measuring physical properties based on catoptric characteristics Download PDF

Info

Publication number
JP2005172774A
JP2005172774A JP2003436318A JP2003436318A JP2005172774A JP 2005172774 A JP2005172774 A JP 2005172774A JP 2003436318 A JP2003436318 A JP 2003436318A JP 2003436318 A JP2003436318 A JP 2003436318A JP 2005172774 A JP2005172774 A JP 2005172774A
Authority
JP
Japan
Prior art keywords
terahertz
terahertz wave
sample
wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003436318A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Ken Sudo
建 須藤
Tetsuro Sasaki
哲朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP2003436318A priority Critical patent/JP2005172774A/en
Publication of JP2005172774A publication Critical patent/JP2005172774A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring instrument having high detection sensitivity and high positional resolving power in terahertz spectrometry, and a measuring method using it. <P>SOLUTION: This terahertz wave spectrometric instrument is constituted so that the arbitrary place of a sample 2 is irradiated with a frequency variable terahertz wave 5 and the reflected terahertz wave 6 or the like is detected to obtain a terahertz spectrum. The measuring result is analyzed to investigate the physical properties or composition of the sample. The measuring result is obtained as a terahertz imaging image at every measuring frequency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コヒーレントテラヘルツ波による物性測定装置および測定方法に関する。  The present invention relates to a physical property measuring apparatus and a measuring method using a coherent terahertz wave.

従来の物性あるいは組成測定法としては、有機物分析では主にGC−MS(ガスクロマトグラフ質量分析装置)、LC−MS(液体クロマトグラフ質量分析計)、NMR(核磁気共鳴法)、FT−IR(フーリエ変換赤外分光光度計)などが用いられ、無機分析では主にICP−MS(誘導結合プラズマ質量分析装置)、ICP−AES(誘導結合プラズマ発光分析装置)、FLAA(フレームレス原子吸光分析装置)などが用いられる。また、表面の局所分析ではSIMS(二次イオン質量分析装置)やXPS(ESCA)(X線光電子分光分析装置)なども用いられている。しかしながら、これらはいずれも高真空装置や遮光ユニットなどの大掛かりな装置が必要であり、簡便とは言えない。  Conventional methods for measuring physical properties or compositions are mainly GC-MS (gas chromatograph mass spectrometer), LC-MS (liquid chromatograph mass spectrometer), NMR (nuclear magnetic resonance method), FT-IR (organic substance analysis) in organic matter analysis. Fourier transform infrared spectrophotometer) is used. In inorganic analysis, ICP-MS (inductively coupled plasma mass spectrometer), ICP-AES (inductively coupled plasma emission spectrometer), FLAA (frameless atomic absorption spectrometer) are mainly used. ) Etc. are used. Also, SIMS (secondary ion mass spectrometer), XPS (ESCA) (X-ray photoelectron spectrometer), etc. are used for local analysis of the surface. However, these all require large-scale devices such as a high vacuum device and a light-shielding unit, and are not simple.

生体を構成する分子やガス分子など、各種分子の固有振動周波数はテラヘルツ帯に存在する。このテラヘルツ領域での吸収スペクトルを測定すれば、物質の同定や組成分析に用いることができる。波長可変テラヘルツ分光光源として、例えば半導体GaP結晶内のポラリトンモードを利用したテラヘルツ波発生装置が知られている。すなわち、GaP結晶にポンプ光およびシグナル光を、角度位相整合条件を満たすように微小角度をつけて入射し、差周波発生によりコヒーレントなテラヘルツ波を発生する。ポンプ光およびシグナル光をインジェクションシーディング技術、あるいはエタロン挿入などによって線幅を狭くすることにより、得られるテラヘルツ波の線幅も狭く、更に大出力が得られ、分光装置に適する光源となる。このようなテラヘルツ波発生装置を用いた分光計測装置は非破壊測定であり、任意の測定対象を高分解能、かつ広い周波数帯域に渡って吸収スペクトルを得ることができる。  The natural vibration frequency of various molecules such as molecules and gas molecules constituting the living body exists in the terahertz band. If an absorption spectrum in this terahertz region is measured, it can be used for substance identification and composition analysis. As a wavelength tunable terahertz spectral light source, for example, a terahertz wave generator using a polariton mode in a semiconductor GaP crystal is known. That is, the pump light and the signal light are incident on the GaP crystal at a minute angle so as to satisfy the angle phase matching condition, and a coherent terahertz wave is generated by the difference frequency generation. By narrowing the line width of the pump light and the signal light by injection seeding technology or etalon insertion, the line width of the obtained terahertz wave is narrowed, and a larger output can be obtained, making it a light source suitable for a spectroscopic device. A spectroscopic measurement apparatus using such a terahertz wave generation apparatus is nondestructive measurement, and can obtain an absorption spectrum of an arbitrary measurement object over a wide frequency band with high resolution.

テラヘルツ透過スペクトルを測定する場合、たとえば透過率が小さい物質を測定するには、試料厚さを薄くするなどして、透過率を調整する必要があり、面倒である。すなわち、試料の1部を切り出したり、薄くするなどの加工が難しい場合には、テラヘルツ透過率測定を適用するのは難しい。  When measuring a terahertz transmission spectrum, for example, in order to measure a substance having a low transmittance, it is necessary to adjust the transmittance by reducing the thickness of the sample, which is troublesome. That is, when it is difficult to cut or thin a part of the sample, it is difficult to apply terahertz transmittance measurement.

また、例えば生体組織などでは、場所によって物質や組成が異なっている情報が、病変部の検出などに重要である。特定の点での物性や組成検出が望まれている。  Further, for example, in a living tissue, information having different materials and compositions depending on the location is important for detecting a lesion. Physical properties and composition detection at specific points are desired.

周波数可変のテラヘルツ波を試料に照射し、その反射波などを検出器により受信する。テラヘルツ波反射率の周波数依存性を測定することにより、物質に固有の反射率スペクトルから物性を調べる。同時に場所を走査させて、特定の場所の物性および組成を調べる。  The sample is irradiated with a variable frequency terahertz wave, and the reflected wave is received by a detector. By measuring the frequency dependence of the terahertz wave reflectivity, the physical properties are examined from the reflectivity spectrum unique to the material. At the same time, the location is scanned to examine the physical properties and composition of a particular location.

本発明はテラヘルツ波分光測定装置に関し、任意の場所に、任意のテラヘルツ波長を試料に照射し、反射波スペクトルなどを検出してテラヘルツスペクトルを得る装置を提供するものであり、その結果を解析することにより、試料の物性や組成を調べることができる。測定結果は周波数ごとのテラヘルツイメージング画像としても得られる。  The present invention relates to a terahertz wave spectrometer, and provides an apparatus for obtaining a terahertz spectrum by irradiating a sample with an arbitrary terahertz wavelength at an arbitrary place and detecting a reflected wave spectrum or the like, and analyzing the result. Thus, the physical properties and composition of the sample can be examined. The measurement result is also obtained as a terahertz imaging image for each frequency.

簡易かつ高精度な物性分析装置として利用できる。  It can be used as a simple and highly accurate physical property analyzer.

テラヘルツ発生は例えば、YAGレーザおよびYAGレーザ励起のオプティカル・パラメトリック発振器(OPO)から得られる2つの励起レーザ光を、角度位相整合条件を満たすように非線形光学結晶であるGaP結晶に照射して、テラヘルツを発生させる方法などがある。この方法では0.3から7.3THzの範囲で、任意のテラヘルツ波が大出力で得られている。  The generation of terahertz is performed by, for example, irradiating a GaP crystal, which is a nonlinear optical crystal, with two pump laser beams obtained from a YAG laser and a YAG laser-pumped optical parametric oscillator (OPO) so as to satisfy the angle phase matching condition. There is a method to generate. In this method, an arbitrary terahertz wave is obtained with a large output in the range of 0.3 to 7.3 THz.

図1に示すように、コヒーレントで単一周波数の照射テラヘルツ波5が、テラヘルツ波発生装置1より供給される。このビームはもともと直径3mm程度のほぼ円形であるが、レンズ系により更に集光させることもでき、直径300μm程度が得られる。このテラヘルツ波発生装置1は、任意の周波数を選択可能、あるいは任意の速度で周波数掃引可能である。  As shown in FIG. 1, a coherent single-frequency irradiation terahertz wave 5 is supplied from a terahertz wave generator 1. This beam is essentially circular with a diameter of about 3 mm, but can be further condensed by a lens system, resulting in a diameter of about 300 μm. The terahertz wave generator 1 can select an arbitrary frequency or can sweep a frequency at an arbitrary speed.

試料2は照射テラヘルツ波に対して45°傾けて設置されたX−Zステージ3に固定されており、照射テラヘルツ波5は試料2によって反射され、反射テラヘルツ波6となる。照射テラヘルツ波5と試料2上の反射面とのなす角度は、ほぼ0°からほぼ90°まで設定することが可能である。このとき試料2の反射面の凹凸が、照射テラヘルツ波2の波長程度になると散乱の影響が大きくなり効率が落ちるので、試料表面にテラヘルツ波の吸収が少なく、光学的フラットな材料を接着させてもよい。反射テラヘルツ波6は、検出器4によってその強度を測定される。  The sample 2 is fixed to an XZ stage 3 installed at an angle of 45 ° with respect to the irradiated terahertz wave, and the irradiated terahertz wave 5 is reflected by the sample 2 to become a reflected terahertz wave 6. The angle formed by the irradiation terahertz wave 5 and the reflection surface on the sample 2 can be set from approximately 0 ° to approximately 90 °. At this time, if the unevenness of the reflecting surface of the sample 2 becomes about the wavelength of the irradiated terahertz wave 2, the influence of scattering becomes large and the efficiency is lowered. Therefore, an optically flat material is bonded to the sample surface with less terahertz wave absorption. Also good. The intensity of the reflected terahertz wave 6 is measured by the detector 4.

試料2を固定したX−Zステージ3が動くことにより、試料2上のテラヘルツ波照射点が移動し、その点ごとの反射率が測定できる。これにより2次元の反射テラヘルツ画像を得ることができる。レンズ系は試料上で焦点を結ぶように設計すれば、解像度を上げることができる。  By moving the XZ stage 3 to which the sample 2 is fixed, the terahertz wave irradiation point on the sample 2 moves, and the reflectance at each point can be measured. Thereby, a two-dimensional reflection terahertz image can be obtained. If the lens system is designed to focus on the sample, the resolution can be increased.

テラヘルツ波周波数を変化させて、その周波数ごとに2次元テラヘルツ画像を得れば、試料中のどの部位に、何の物質がどの程度あるか判別することができる。このとき、さまざまな物質のテラヘルツスペクトルパターンをあらかじめ記憶させておき、測定結果と比較してもよい。  If the terahertz wave frequency is changed and a two-dimensional terahertz image is obtained for each frequency, it is possible to determine what substance is present in which part of the sample. At this time, terahertz spectrum patterns of various substances may be stored in advance and compared with measurement results.

テラヘルツ波の周波数変化は、全波長自動掃引あるいは、特定の周波数について選択的に照射させることもできる。例えば、ある試料についてスペクトル測定を行い、その微分係数が0となる周波数のみを選択して、測定するよう設定する。このとき、テラヘルツスペクトルは照射する周波数でピークあるいはディップとなるので、特徴的な周波数のみを効率的に測定できることになる。  The frequency change of the terahertz wave can be irradiated selectively for a full frequency automatic sweep or a specific frequency. For example, spectrum measurement is performed on a certain sample, and only the frequency at which the differential coefficient is 0 is selected and set to be measured. At this time, since the terahertz spectrum becomes a peak or dip at the irradiation frequency, only the characteristic frequency can be measured efficiently.

もちろん、このとき図2に示すように、試料2の後ろに検出器4を配置することもできる。この構成にすれば、透過テラヘルツ画像が得られ、反射テラヘルツ画像と同様に、試料の部位それぞれの物性を調べることができる。このときX−Zステージはテラヘルツ波を透過する材料で作成されているか、あるいは試料の裏面だけ、中空になっていてもよい。もちろん、反射テラヘルツ画像と透過テラヘルツ画像を同時に測定してもよい。  Of course, at this time, as shown in FIG. 2, the detector 4 can be arranged behind the sample 2. With this configuration, a transmission terahertz image is obtained, and the physical properties of each part of the sample can be examined in the same manner as the reflection terahertz image. At this time, the XZ stage may be made of a material that transmits terahertz waves, or only the back surface of the sample may be hollow. Of course, the reflection terahertz image and the transmission terahertz image may be measured simultaneously.

図3に示すように、試料2に照射されるハーフミラー透過テラヘルツ波21上にハーフミラー20を設置する。ハーフミラー透過テラヘルツ波21は、ハーフミラー20で約半分の強度が透過し、試料2に照射される。このとき実施例1と同様に、レンズ系により照射点を更に絞ることもできる。レンズ系の焦点が試料上にくるようにすれば、その焦点の大きさが解像度となる。但し、ピンホールや集光ホーン等によりスポット系を更に小さくすることもでき、更に解像度を上げられる。試料2で反射した光は再びハーフミラー20に戻り、約半分の強度が反射され、検出器4に導かれる。試料をX−Zステージ3によりハーフミラー透過テラヘルツ波21に垂直な面内で動かせば、試料2上のテラヘルツ照射点が変化し、各点でのテラヘルツ波の反射率が測定できる。  As shown in FIG. 3, the half mirror 20 is installed on the half mirror transmission terahertz wave 21 irradiated on the sample 2. The half mirror transmission terahertz wave 21 is transmitted through the half mirror 20 with about half the intensity, and is irradiated onto the sample 2. At this time, similarly to the first embodiment, the irradiation point can be further reduced by the lens system. If the focal point of the lens system is on the sample, the size of the focal point becomes the resolution. However, the spot system can be further reduced by a pinhole, a condenser horn or the like, and the resolution can be further increased. The light reflected by the sample 2 returns to the half mirror 20 again, and about half the intensity is reflected and guided to the detector 4. If the sample is moved in the plane perpendicular to the half mirror transmission terahertz wave 21 by the XZ stage 3, the terahertz irradiation point on the sample 2 changes, and the reflectance of the terahertz wave at each point can be measured.

図4に示すように、試料2の近くに集光ミラー30を配置する。試料2に照射された照射テラヘルツ波5により、反射テラヘルツ波6および散乱テラヘルツ波31が発生する。特に生体組織など試料表面に凹凸のある場合などは、その多くが散乱テラヘルツ波となる。反射テラヘルツ波6は集光ミラーで更に反射し、検出器4に導入される。同時に散乱テラヘルツ波31も集光ミラー30で反射させ、検出器4に集光させることにより、高感度な測定を可能にする。このとき、反射テラヘルツ波6が直接検出器4に導入される配置としてもよい。  As shown in FIG. 4, a condenser mirror 30 is disposed near the sample 2. A reflected terahertz wave 6 and a scattered terahertz wave 31 are generated by the irradiated terahertz wave 5 irradiated to the sample 2. In particular, when the surface of the sample is uneven, such as a biological tissue, most of them are scattered terahertz waves. The reflected terahertz wave 6 is further reflected by the condenser mirror and introduced into the detector 4. At the same time, the scattered terahertz wave 31 is also reflected by the condensing mirror 30 and condensed on the detector 4, thereby enabling highly sensitive measurement. At this time, the reflected terahertz wave 6 may be directly introduced into the detector 4.

図5に示すような、積分球状の集光系を用いてもよい。内面がテラヘルツ波を高効率に反射する素材からなる密閉容器40の、極微小に設けられたテラヘルツ波入射口41より照射テラヘルツ波5が入射し、テラヘルツ波出射口43より出射され、試料2表面に照射される。この時生じる反射テラヘルツ波6および散乱テラヘルツ波31は再び密閉容器40にテラヘルツ波出射口43より戻り、直接あるいは密閉空間40内で反射された後、微小な検出器口42より検出器4に導入される。この場合、反射テラヘルツ波6および散乱テラヘルツ波31のほとんどが検出器4にいたるので、非常に高感度となる。このとき、反射テラヘルツ波6が直接検出器4に導入される配置としてもよい。  An integrating spherical condensing system as shown in FIG. 5 may be used. An irradiation terahertz wave 5 is incident from a terahertz wave incident port 41 provided in a very small size in a sealed container 40 whose inner surface is made of a material that reflects terahertz waves with high efficiency, and is emitted from a terahertz wave emitting port 43, and the surface of the sample 2 Is irradiated. The reflected terahertz wave 6 and the scattered terahertz wave 31 generated at this time are returned to the sealed container 40 from the terahertz wave exit port 43 and reflected directly or within the sealed space 40, and then introduced into the detector 4 from the minute detector port 42. Is done. In this case, since most of the reflected terahertz wave 6 and the scattered terahertz wave 31 are in the detector 4, the sensitivity is very high. At this time, the reflected terahertz wave 6 may be directly introduced into the detector 4.

これらの手法は特に表面に凹凸の多い、生体組織などの測定に有効である。  These techniques are particularly effective for measurement of biological tissues or the like having many irregularities on the surface.

実施例1における反射テラヘルツ画像測定装置の構成を示す図である。  1 is a diagram illustrating a configuration of a reflective terahertz image measuring device in Embodiment 1. FIG. 実施例1における透過テラヘルツ画像測定装置の構成を示す図である。  1 is a diagram illustrating a configuration of a transmission terahertz image measurement apparatus in Example 1. FIG. 実施例2における反射テラヘルツ画像測定装置の構成を示す図である。  FIG. 6 is a diagram illustrating a configuration of a reflective terahertz image measurement device according to a second embodiment. 実施例3における反射および散乱テラヘルツ画像測定装置の構成を示す図である。  FIG. 6 is a diagram illustrating a configuration of a reflection and scattering terahertz image measurement apparatus in Example 3. 実施例3における反射および散乱テラヘルツ画像測定装置の構成を示す図である。  FIG. 6 is a diagram illustrating a configuration of a reflection and scattering terahertz image measurement apparatus in Example 3.

符号の説明Explanation of symbols

1…テラヘルツ波発生装置
2…試料
3…X−Zステージ
4…テラヘルツ検出器
5…照射テラヘルツ波
6…反射テラヘルツ波
10…透過テラヘルツ波
20…ハーフミラー
21…ハーフミラー透過テラヘルツ波
22…試料反射テラヘルツ波
23…ハーフミラー再反射波
30…集光ミラー
31…散乱テラヘルツ波
40…密閉容器
41…テラヘルツ波入射口
42…検出器口
43…テラヘルツ波出射口
DESCRIPTION OF SYMBOLS 1 ... Terahertz wave generator 2 ... Sample 3 ... XZ stage 4 ... Terahertz detector 5 ... Irradiation terahertz wave 6 ... Reflection terahertz wave 10 ... Transmission terahertz wave 20 ... Half mirror 21 ... Half mirror transmission terahertz wave 22 ... Sample reflection Terahertz wave 23: Half mirror re-reflection wave 30 ... Condensing mirror 31 ... Scattered terahertz wave 40 ... Sealed container 41 ... Terahertz wave entrance 42 ... Detector port 43 ... Terahertz wave exit port

Claims (3)

テラヘルツ波を用いた測定に関し、範囲を限定することもできるテラヘルツ波周波数掃引、または少なくとも一つ以上の任意の単一周波数を指定したテラヘルツ波を照射する機能を有し、被測定試料における、少なくとも反射テラヘルツ波のスペクトルから物性同定および組成分析することを特徴とする測定装置および方法。  With respect to measurement using terahertz waves, the terahertz wave frequency sweep can also limit the range, or has a function of irradiating terahertz waves designating at least one arbitrary single frequency, and at least in the sample to be measured, A measuring apparatus and method for identifying physical properties and analyzing a composition from a spectrum of a reflected terahertz wave. テラヘルツ波を用いた測定に関し、範囲を指定することもできるテラヘルツ波周波数の掃引、または少なくとも一つ以上の任意の単一周波数を指定したテラヘルツ波を照射する機能、およびテラヘルツ波照射位置走査の機能を有し、被測定試料における、少なくとも反射テラヘルツ波を測定することにより、被測定試料中の位置および周波数スペクトルの情報から、それぞれの位置の物性同定および組成分析することを特徴とする測定装置および方法。  For terahertz wave measurement, sweeping terahertz wave frequency that can specify the range, function to irradiate terahertz wave with at least one arbitrary single frequency, and terahertz wave irradiation position scanning function A measuring apparatus characterized in that, by measuring at least a reflected terahertz wave in a sample to be measured, physical property identification and composition analysis of each position from information on the position and frequency spectrum in the sample to be measured, and Method. 請求項1および2において、照射テラヘルツ波の反射波あるいは透過波あるいは散乱波を、集光する構造を持つことを特徴とする測定装置。  3. The measuring apparatus according to claim 1, wherein the measuring apparatus has a structure for collecting a reflected wave, a transmitted wave, or a scattered wave of an irradiation terahertz wave.
JP2003436318A 2003-12-05 2003-12-05 Method and apparatus for measuring physical properties based on catoptric characteristics Pending JP2005172774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003436318A JP2005172774A (en) 2003-12-05 2003-12-05 Method and apparatus for measuring physical properties based on catoptric characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003436318A JP2005172774A (en) 2003-12-05 2003-12-05 Method and apparatus for measuring physical properties based on catoptric characteristics

Publications (1)

Publication Number Publication Date
JP2005172774A true JP2005172774A (en) 2005-06-30

Family

ID=34736915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436318A Pending JP2005172774A (en) 2003-12-05 2003-12-05 Method and apparatus for measuring physical properties based on catoptric characteristics

Country Status (1)

Country Link
JP (1) JP2005172774A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199044A (en) * 2006-01-24 2007-08-09 Junichi Nishizawa Terahertz wave type measuring apparatus and method
JP2007205768A (en) * 2006-01-31 2007-08-16 Niigata Prefecture Analyzer of intermolecular interaction
JP2008197081A (en) * 2007-02-15 2008-08-28 Tohoku Univ Detection and analysis method for substance in living body or excreted from living body
JP2008197080A (en) * 2007-02-15 2008-08-28 Tohoku Univ Tooth decay detection method and device
JP2009287960A (en) * 2008-05-27 2009-12-10 Denso Corp Non-contact measuring device
WO2012108306A1 (en) * 2011-02-10 2012-08-16 株式会社日立ハイテクノロジーズ Device for detecting foreign matter and method for detecting foreign matter
WO2017013759A1 (en) * 2015-07-22 2017-01-26 株式会社日立ハイテクノロジーズ Far-infrared spectroscopy device
CN106525862A (en) * 2016-10-27 2017-03-22 首都师范大学 Method for detecting internal defect of layered insulating material by using terahertz imaging and apparatus thereof
CN107677608A (en) * 2016-08-02 2018-02-09 北京遥感设备研究所 A kind of quasi-optical active scan reflection imaging system of Terahertz
CN110132888A (en) * 2019-04-30 2019-08-16 深圳市太赫兹科技创新研究院有限公司 A kind of optical integrating-sphere and gaseous sample tera-hertz spectra acquisition device
CN110132887A (en) * 2019-04-30 2019-08-16 深圳市太赫兹科技创新研究院有限公司 A kind of optical integrating-sphere and sample Terahertz transmitted spectrum acquisition device
CN110146465A (en) * 2019-04-30 2019-08-20 深圳市太赫兹科技创新研究院有限公司 A kind of optical integrating-sphere and sample Terahertz reflectance spectrum acquisition device
JP2019168701A (en) * 2019-04-25 2019-10-03 株式会社日立ハイテクノロジーズ Far-infrared spectroscopy device
CN110849841A (en) * 2019-11-20 2020-02-28 中国科学院电子学研究所 Dark field imaging-based reflective terahertz imaging method and device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199044A (en) * 2006-01-24 2007-08-09 Junichi Nishizawa Terahertz wave type measuring apparatus and method
JP2007205768A (en) * 2006-01-31 2007-08-16 Niigata Prefecture Analyzer of intermolecular interaction
JP2008197081A (en) * 2007-02-15 2008-08-28 Tohoku Univ Detection and analysis method for substance in living body or excreted from living body
JP2008197080A (en) * 2007-02-15 2008-08-28 Tohoku Univ Tooth decay detection method and device
JP2009287960A (en) * 2008-05-27 2009-12-10 Denso Corp Non-contact measuring device
WO2012108306A1 (en) * 2011-02-10 2012-08-16 株式会社日立ハイテクノロジーズ Device for detecting foreign matter and method for detecting foreign matter
JPWO2012108306A1 (en) * 2011-02-10 2014-07-03 株式会社日立ハイテクノロジーズ Foreign object detection device and foreign object detection method
JP5615941B2 (en) * 2011-02-10 2014-10-29 株式会社日立ハイテクノロジーズ Foreign object detection device and foreign object detection method
US9164042B2 (en) 2011-02-10 2015-10-20 Hitachi High-Technologies Corporation Device for detecting foreign matter and method for detecting foreign matter
JPWO2017013759A1 (en) * 2015-07-22 2018-03-01 株式会社日立ハイテクノロジーズ Far-infrared spectrometer
US11079275B2 (en) 2015-07-22 2021-08-03 Hitachi High-Tech Corporation Far-infrared spectroscopy device
WO2017013759A1 (en) * 2015-07-22 2017-01-26 株式会社日立ハイテクノロジーズ Far-infrared spectroscopy device
GB2556249A (en) * 2015-07-22 2018-05-23 Hitachi High Tech Corp Far-infrared spectroscopy device
US20180209848A1 (en) * 2015-07-22 2018-07-26 Hitachi High-Technologies Corporation Far-Infrared Spectroscopy Device
US11320309B2 (en) 2015-07-22 2022-05-03 Hitachi High-Tech Corporation Far-infrared spectroscopy device
GB2556249B (en) * 2015-07-22 2021-08-18 Hitachi High Tech Corp Far-infrared spectroscopy device
US10948347B2 (en) 2015-07-22 2021-03-16 Hitachi High-Tech Corporation Far-infrared spectroscopy device
CN107677608A (en) * 2016-08-02 2018-02-09 北京遥感设备研究所 A kind of quasi-optical active scan reflection imaging system of Terahertz
CN106525862B (en) * 2016-10-27 2023-10-27 北京远大恒通科技发展有限公司 Method and device for detecting internal defects of layered insulating material by using terahertz imaging
CN106525862A (en) * 2016-10-27 2017-03-22 首都师范大学 Method for detecting internal defect of layered insulating material by using terahertz imaging and apparatus thereof
JP2019168701A (en) * 2019-04-25 2019-10-03 株式会社日立ハイテクノロジーズ Far-infrared spectroscopy device
CN110132887A (en) * 2019-04-30 2019-08-16 深圳市太赫兹科技创新研究院有限公司 A kind of optical integrating-sphere and sample Terahertz transmitted spectrum acquisition device
CN110146465A (en) * 2019-04-30 2019-08-20 深圳市太赫兹科技创新研究院有限公司 A kind of optical integrating-sphere and sample Terahertz reflectance spectrum acquisition device
CN110132888A (en) * 2019-04-30 2019-08-16 深圳市太赫兹科技创新研究院有限公司 A kind of optical integrating-sphere and gaseous sample tera-hertz spectra acquisition device
CN110849841A (en) * 2019-11-20 2020-02-28 中国科学院电子学研究所 Dark field imaging-based reflective terahertz imaging method and device

Similar Documents

Publication Publication Date Title
US11592391B2 (en) Photothermal imaging device and system
CN110300883A (en) Method and apparatus for enhancing photothermal imaging and spectrum
US6977379B2 (en) T-ray Microscope
US6605808B2 (en) Diagnostic apparatus using terahertz radiation
US6608677B1 (en) Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same
JP5736325B2 (en) Optical device
US20140252233A1 (en) Methods, devices and kits for peri-critical reflectance spectroscopy
US7502104B2 (en) Probe beam profile modulated optical reflectance system and methods
US20080179528A1 (en) Pulsed terahertz frequency domain spectrometer with single mode-locked laser and dispersive phase modulator
US5589936A (en) Optical measuring apparatus for measuring physichemical properties
JP2005172774A (en) Method and apparatus for measuring physical properties based on catoptric characteristics
JP2003015050A (en) Laser microscope
CN104390943A (en) Microscopic imaging system capable of simultaneously obtaining appearance image and element distribution image
JP2008304444A (en) Attenuated total reflection spectrometry and device at terahertz frequency
JP7012098B2 (en) Far-infrared light source, far-infrared spectroscope
US6522402B1 (en) Apparatus and method for analyzing microscopic samples based on optical parametric oscillation
US5406377A (en) Spectroscopic imaging system using a pulsed electromagnetic radiation source and an interferometer
JP2004527741A (en) Apparatus and method for total reflection spectroscopy
KR101632269B1 (en) Frequency And Intensity Modulation Laser Absorption Spectroscopy Apparatus and The Measuring Method Of The Same
EP0582384A2 (en) Spectroscopic imaging system with ultrasonic detection of absorption of modulated electromagnetic radiation
JP6720383B2 (en) Far infrared spectrometer
WO2009050437A1 (en) A system and method for infrared imaging
CN111693503A (en) Linearly polarized light beam excitation Raman scattering enhancement sensing device
Fan et al. Absorption measurement for coatings using surface thermal lensing technique
KR101698910B1 (en) Detection probe and probe-type detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701