JP4260683B2 - Ellipsometer, polarization state acquisition method and light intensity acquisition method - Google Patents

Ellipsometer, polarization state acquisition method and light intensity acquisition method Download PDF

Info

Publication number
JP4260683B2
JP4260683B2 JP2004154464A JP2004154464A JP4260683B2 JP 4260683 B2 JP4260683 B2 JP 4260683B2 JP 2004154464 A JP2004154464 A JP 2004154464A JP 2004154464 A JP2004154464 A JP 2004154464A JP 4260683 B2 JP4260683 B2 JP 4260683B2
Authority
JP
Japan
Prior art keywords
light
intensity
ellipsometer
optical system
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004154464A
Other languages
Japanese (ja)
Other versions
JP2005337785A (en
Inventor
久美子 赤鹿
正浩 堀江
秀樹 林
藤和 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2004154464A priority Critical patent/JP4260683B2/en
Publication of JP2005337785A publication Critical patent/JP2005337785A/en
Application granted granted Critical
Publication of JP4260683B2 publication Critical patent/JP4260683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対象物に偏光した光を照射して対象物からの光の偏光状態を取得する技術、および、回転する回転偏光素子から出射される光の強度を求める方法に関する。   The present invention relates to a technique for obtaining a polarization state of light from an object by irradiating the object with polarized light, and a method for obtaining the intensity of light emitted from a rotating rotating polarizing element.

従来より、半導体基板(以下、「基板」という。)上に形成される膜の厚さや光学定数等の測定にエリプソメータが利用されている。エリプソメータでは偏光した光を基板上に照射してその反射光の偏光状態を取得し、偏光解析を行うことにより各種測定を行う。このようなエリプソメータでは、対象物からの反射光を導く光学系や反射光を受光して偏光状態を取得する光検知器等、エリプソメータを構成する光学要素が反射光の偏光状態に与える影響を抑制するための様々な技術が提案されている。   Conventionally, an ellipsometer has been used to measure the thickness, optical constant, and the like of a film formed on a semiconductor substrate (hereinafter referred to as “substrate”). An ellipsometer performs various measurements by irradiating polarized light onto a substrate to acquire the polarization state of the reflected light and performing polarization analysis. In such an ellipsometer, the effects of the optical elements that make up the ellipsometer on the polarization state of the reflected light, such as an optical system that guides the reflected light from the object and a photodetector that receives the reflected light to acquire the polarization state, are suppressed. Various techniques for doing so have been proposed.

例えば、特許文献1では、対象物から光検知器に至る光路上に光ファイバを設けることにより、光検知器の偏光特性による影響を抑制する技術が開示されている。また、偏光解消板等の素子を光路上に配置して光学要素が偏光状態に与える影響を抑制する技術も知られている。
特開昭62−266439号公報
For example, Patent Document 1 discloses a technique for suppressing an influence due to polarization characteristics of a photodetector by providing an optical fiber on an optical path from an object to the photodetector. There is also known a technique in which an element such as a depolarization plate is arranged on the optical path to suppress the influence of the optical element on the polarization state.
Japanese Patent Laid-Open No. Sho 62-266439

ところで、特許文献1のエリプソメータでは、約1m〜10mあるいはそれ以上の長さの光ファイバが設けられるため、装置の構造が複雑化してしまう。また、光ファイバによる光量の減衰が大きく、測定に要する時間が増大してしまう。さらには、光ファイバに対する周囲の温度等の影響により、測定値の再現性や測定精度が低下する恐れもある。偏光解消板等の素子を利用する場合も同様に、エリプソメータの構成の複雑化、および、測定値の再現性や測定精度の低下といった問題がある。   By the way, in the ellipsometer of Patent Document 1, since an optical fiber having a length of about 1 m to 10 m or more is provided, the structure of the apparatus becomes complicated. In addition, the attenuation of the amount of light by the optical fiber is large, and the time required for measurement increases. Furthermore, the reproducibility of measurement values and measurement accuracy may be reduced due to the influence of the ambient temperature on the optical fiber. Similarly, when an element such as a depolarizing plate is used, there are problems such as a complicated configuration of the ellipsometer and a decrease in reproducibility of measurement values and measurement accuracy.

本発明は、上記課題に鑑みなされたものであり、エリプソメータの構成を簡素化しつつ偏光解析に利用される情報を精度良く取得することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to obtain information used for polarization analysis with high accuracy while simplifying the configuration of an ellipsometer.

請求項1に記載の発明は、エリプソメータであって、偏光した光を対象物へと導く照射部と、前記対象物からの前記偏光した光の反射光が入射するとともに光軸方向を向く軸を中心として回転する検出側の回転偏光子と、前記回転偏光子を経由した光が入射する検出光学系と、前記検出光学系を経由した光を受光して前記光の強度を検出するセンサと、前記回転偏光子の回転角度、および、前記検出光学系の反射振幅比角に基づいて前記センサにより検出された前記強度を補正して前記回転偏光子を通過した直後の光の強度を求める演算部とを備える。   The invention according to claim 1 is an ellipsometer, and includes an irradiation unit that guides polarized light to an object, and an axis in which reflected light of the polarized light from the object is incident and that faces an optical axis direction. A detection-side rotating polarizer that rotates as a center, a detection optical system that receives light that has passed through the rotating polarizer, a sensor that receives light that has passed through the detection optical system and detects the intensity of the light, An arithmetic unit that corrects the intensity detected by the sensor based on the rotation angle of the rotating polarizer and the reflection amplitude ratio angle of the detection optical system and obtains the intensity of light immediately after passing through the rotating polarizer. With.

請求項2に記載の発明は、請求項1に記載のエリプソメータであって、前記演算部が、所定の基準姿勢からの前記回転偏光子の回転角度をθ、前記検出光学系の反射振幅比角をΨdet、前記センサにより検出された前記強度をI(θ)とし、前記回転偏光子を通過した直後の光の強度I(θ)を、 According to a second aspect of the present invention, in the ellipsometer according to the first aspect, the calculation unit is configured such that the rotation angle of the rotating polarizer from a predetermined reference posture is θ, and the reflection amplitude ratio angle of the detection optical system. Ψ det , the intensity detected by the sensor as I (θ), and the intensity I 0 (θ) of light immediately after passing through the rotating polarizer,

Figure 0004260683
Figure 0004260683

により求める。 Ask for.

請求項3に記載の発明は、請求項1または2に記載のエリプソメータであって、前記対象物から前記センサに至る光路上において、前記回転偏光子と前記センサとの間にのみ光学素子が配置される。   The invention according to claim 3 is the ellipsometer according to claim 1 or 2, wherein an optical element is disposed only between the rotary polarizer and the sensor on an optical path from the object to the sensor. Is done.

請求項4に記載の発明は、請求項1ないし3のいずれかに記載のエリプソメータであって、前記検出光学系が分光素子を備え、前記演算部により前記回転偏光子を通過した直後の光の波長毎の強度が求められる。   The invention according to claim 4 is the ellipsometer according to any one of claims 1 to 3, wherein the detection optical system includes a spectroscopic element, and the light immediately after passing through the rotary polarizer by the arithmetic unit. The intensity for each wavelength is required.

請求項5に記載の発明は、請求項4に記載のエリプソメータであって、前記分光素子が、回折格子型の分光素子である。   The invention described in claim 5 is the ellipsometer according to claim 4, wherein the spectroscopic element is a diffraction grating type spectroscopic element.

請求項6に記載の発明は、対象物に偏光した光を照射して前記対象物からの光の偏光状態を取得する偏光状態取得方法であって、対象物上に偏光した光を照射する照射工程と、前記対象物からの前記偏光した光の反射光を、光軸方向を向く軸を中心として回転する回転偏光子および検出光学系を介してセンサにより受光し、受光した光の強度を検出する検出工程と、前記回転偏光子の回転角度、および、前記検出光学系の反射振幅比角に基づいて前記センサにより検出された前記強度を補正して前記回転偏光子を通過した直後の光の強度を求める演算工程とを備える。   The invention according to claim 6 is a polarization state acquisition method for irradiating an object with polarized light to acquire the polarization state of the light from the object, and irradiating the object with polarized light. The reflected light of the polarized light from the object and the object is received by a sensor via a rotating polarizer and a detection optical system that rotate about an axis that faces the optical axis direction, and the intensity of the received light is detected. Correcting the intensity detected by the sensor based on the detection step, the rotation angle of the rotary polarizer, and the reflection amplitude ratio angle of the detection optical system, and the light immediately after passing through the rotary polarizer And a calculation step for obtaining the strength.

請求項7に記載の発明は、回転する回転偏光子を通過した直後の光の強度を求める光強度取得方法であって、回転偏光子の回転軸に沿って前記回転偏光子に入射した光を、前記回転偏光子から検出光学系を介してセンサにより受光して前記光の強度を検出する検出工程と、前記回転偏光子の回転角度、および、前記検出光学系の反射振幅比角に基づいて前記センサにより検出された前記強度を補正して前記回転偏光子を通過した直後の光の強度を求める演算工程とを備え、前記演算工程において、所定の基準姿勢からの前記回転偏光子の回転角度をθ、前記検出光学系の反射振幅比角をΨdet、前記センサにより検出された前記強度をI(θ)とし、前記回転偏光子を通過した直後の光の強度I(θ)が、 The invention according to claim 7 is a light intensity acquisition method for obtaining the intensity of light immediately after passing through the rotating rotating polarizer, and the light incident on the rotating polarizer along the rotation axis of the rotating polarizer. , Based on the detection step of detecting the intensity of the light received by the sensor through the detection optical system from the rotary polarizer, the rotation angle of the rotary polarizer, and the reflection amplitude ratio angle of the detection optical system A calculation step of correcting the intensity detected by the sensor and obtaining the intensity of light immediately after passing through the rotary polarizer, wherein in the calculation step, the rotation angle of the rotary polarizer from a predetermined reference posture Is θ, the reflection amplitude ratio angle of the detection optical system is ψ det , the intensity detected by the sensor is I (θ), and the intensity I 0 (θ) of light immediately after passing through the rotating polarizer is

Figure 0004260683
Figure 0004260683

により求められる。 Is required.

本発明では、装置の構成を簡素化しつつ偏光解析に利用される情報を精度良く取得することができる。また、請求項2の発明では、偏光解析に利用される情報を容易に取得することができ、請求項3の発明では、偏光解析に利用される情報をより精度良く取得することができる。   In the present invention, information used for polarization analysis can be acquired with high accuracy while simplifying the configuration of the apparatus. In the invention of claim 2, information used for the polarization analysis can be easily obtained, and in the invention of claim 3, the information used for the polarization analysis can be obtained with higher accuracy.

請求項4の発明では、波長毎に異なる検出光学系の偏光特性の影響を受けることなく、回転偏光素子を通過した直後の光の波長毎の強度を取得することができる。また、請求項5の発明では、検出光学系が光の偏光状態に影響を与えやすい回折格子型の分光素子を備える場合であっても、偏光状態を精度良く検出することができる。   According to the fourth aspect of the present invention, it is possible to acquire the intensity for each wavelength of the light immediately after passing through the rotating polarization element without being affected by the polarization characteristics of the detection optical system that differs for each wavelength. In the invention of claim 5, even when the detection optical system includes a diffraction grating type spectroscopic element that easily affects the polarization state of light, the polarization state can be detected with high accuracy.

請求項7の発明では、回転偏光素子を通過した直後の光の強度を精度良く求めることができる。   In the invention of claim 7, the intensity of light immediately after passing through the rotating polarizing element can be obtained with high accuracy.

図1は、本発明の一の実施の形態に係るエリプソメータ1の構成を示す図である。エリプソメータ1は、半導体基板9(以下、「基板9」という。)上に偏光した光を照射し、基板9からの反射光の偏光状態を測定して偏光解析を行う装置である。   FIG. 1 is a diagram showing a configuration of an ellipsometer 1 according to an embodiment of the present invention. The ellipsometer 1 is an apparatus that performs polarization analysis by irradiating polarized light onto a semiconductor substrate 9 (hereinafter referred to as “substrate 9”), and measuring the polarization state of reflected light from the substrate 9.

エリプソメータ1は、基板9を支持するステージ2、ステージ2を図1中のX方向およびY方向に移動するステージ移動機構21、ステージ2を図1中のZ方向に昇降するステージ昇降機構24、偏光した光(以下、「偏光光」という。)を基板9上へと導く照射部3、基板9からの偏光光の反射光を受光する受光部4、並びに、これらの構成を制御する制御部5を備え、制御部5は、各種演算処理を行う演算部51、および、各種情報を記憶する記憶部52を備える。   The ellipsometer 1 includes a stage 2 that supports a substrate 9, a stage moving mechanism 21 that moves the stage 2 in the X and Y directions in FIG. 1, a stage elevating mechanism 24 that raises and lowers the stage 2 in the Z direction in FIG. Irradiating unit 3 that guides the light (hereinafter referred to as “polarized light”) onto the substrate 9, a light receiving unit 4 that receives reflected light of the polarized light from the substrate 9, and a control unit 5 that controls these configurations. The control unit 5 includes a calculation unit 51 that performs various calculation processes and a storage unit 52 that stores various types of information.

ステージ移動機構21は、ステージ2をY方向に移動するY方向移動機構22、および、X方向に移動するX方向移動機構23を有する。Y方向移動機構22は、モータ221にボールねじ(図示省略)が接続された構成とされ、モータ221が回転することにより、X方向移動機構23がガイドレール222に沿って図1中のY方向に移動する。X方向移動機構23もY方向移動機構22と同様の構成となっており、モータ231が回転するとボールねじ(図示省略)によりステージ2がガイドレール232に沿ってX方向に移動する。   The stage moving mechanism 21 includes a Y direction moving mechanism 22 that moves the stage 2 in the Y direction, and an X direction moving mechanism 23 that moves in the X direction. The Y-direction moving mechanism 22 is configured such that a ball screw (not shown) is connected to the motor 221, and the X-direction moving mechanism 23 moves along the guide rail 222 in the Y direction in FIG. 1 as the motor 221 rotates. Move to. The X-direction moving mechanism 23 has the same configuration as the Y-direction moving mechanism 22. When the motor 231 rotates, the stage 2 moves in the X direction along the guide rail 232 by a ball screw (not shown).

照射部3は、偏光解析用の光を出射する高輝度キセノン(Xe)ランプを有する光源部31、および、光源部31からの光が入射する偏光素子である(いわゆる、偏光子である)ポーラライザ32を備え、光源部31からの光はポーラライザ32により直線偏光とされて基板9上へと照射される。なお、光源部31は他の種類のランプ等により構成されてもよい。   The irradiation unit 3 is a light source unit 31 having a high-intensity xenon (Xe) lamp that emits light for polarization analysis, and a polarizer (a so-called polarizer) that is a polarizing element on which light from the light source unit 31 is incident. 32, the light from the light source unit 31 is converted into linearly polarized light by the polarizer 32 and irradiated onto the substrate 9. The light source unit 31 may be composed of other types of lamps.

受光部4は、基板9からの反射光が入射する回転する偏光素子である(いわゆる、回転検光子である)アナライザ41、表面がアルミニウム(Al)により形成された球面ミラー421および平板状のミラー422、レンズ423、並びに、分光器43を備える。アナライザ41は、基板9からの反射光の主光線に平行な光軸を有し、光軸方向を向く軸を中心として回転する。分光器43は、入射した光を波長毎(例えば、紫外線から近赤外線までの波長毎)に分光する回折格子型の光学素子である分光素子432、および、受光する位置毎の光の強度、すなわち、受光した光(以下、「受光光」という。)の波長毎の強度を検出する光センサ431を備える。   The light receiving unit 4 is an analyzer 41 that is a rotating polarizing element (a so-called rotating analyzer) on which reflected light from the substrate 9 is incident, a spherical mirror 421 whose surface is made of aluminum (Al), and a flat mirror. 422, a lens 423, and a spectroscope 43. The analyzer 41 has an optical axis parallel to the principal ray of the reflected light from the substrate 9, and rotates around an axis that faces the optical axis direction. The spectroscope 43 includes a spectroscopic element 432 that is a diffraction grating type optical element that splits incident light for each wavelength (for example, for each wavelength from ultraviolet rays to near infrared rays), and the intensity of light for each light receiving position, that is, And an optical sensor 431 for detecting the intensity for each wavelength of received light (hereinafter referred to as “received light”).

受光部4では、基板9からの反射光がアナライザ41を経由して球面ミラー421に入射し、ミラー422、レンズ423および分光素子432を経由して光センサ431により受光される。以下、アナライザ41を経由した光が入射する球面ミラー421、ミラー422、レンズ423および分光素子432をまとめて検出光学系42と称する。   In the light receiving unit 4, the reflected light from the substrate 9 enters the spherical mirror 421 through the analyzer 41, and is received by the optical sensor 431 through the mirror 422, the lens 423, and the spectroscopic element 432. Hereinafter, the spherical mirror 421, the mirror 422, the lens 423, and the spectroscopic element 432 on which light having passed through the analyzer 41 is incident are collectively referred to as a detection optical system 42.

エリプソメータ1では、これらの構成が制御部5により制御され、基板9により反射されてアナライザ41を通過した直後の光(以下、「アナライザ通過光」という。)の強度が求められる。なお、アナライザ41の各回転角度におけるアナライザ通過光の強度を取得することにより、アナライザ41に入射する直前の光の偏光状態(すなわち、p偏光成分とs偏光成分との振幅比角および位相差)が取得されることとなる。   In the ellipsometer 1, these components are controlled by the control unit 5, and the intensity of light immediately after being reflected by the substrate 9 and passing through the analyzer 41 (hereinafter referred to as “analyzer passing light”) is obtained. Note that the polarization state of light immediately before entering the analyzer 41 (that is, the amplitude ratio angle and the phase difference between the p-polarized component and the s-polarized component) is obtained by acquiring the intensity of the analyzer-passing light at each rotation angle of the analyzer 41. Will be acquired.

図2は、エリプソメータ1の動作の流れを示す図である。エリプソメータ1により測定が行われる際には、まず、ステージ移動機構21およびステージ昇降機構24によりステージ2に支持される基板9の位置が調整され(ステップS11)、続いて、照射部3から基板9上に偏光光が照射される(ステップS12)。偏光光は基板9により反射され、受光部4では、基板9からの反射光がアナライザ41、球面ミラー421およびミラー422を介し、レンズ423により集光されて分光素子432へと導かれ、分光素子432により高い波長分解能にて分光されて光センサ431により受光される。光センサ431では、アナライザ41を回転させながら、アナライザ41の各回転角度における受光光の波長毎の強度が好感度に測定され、測定結果が制御部5へと出力される(ステップS13)。   FIG. 2 is a diagram showing a flow of operation of the ellipsometer 1. When measurement is performed by the ellipsometer 1, first, the position of the substrate 9 supported by the stage 2 is adjusted by the stage moving mechanism 21 and the stage elevating mechanism 24 (step S11). The polarized light is irradiated on the top (step S12). The polarized light is reflected by the substrate 9, and in the light receiving unit 4, the reflected light from the substrate 9 is collected by the lens 423 via the analyzer 41, the spherical mirror 421 and the mirror 422, and guided to the spectroscopic element 432. The light is split by 432 with high wavelength resolution and received by the optical sensor 431. The optical sensor 431 measures the intensity for each wavelength of the received light at each rotation angle of the analyzer 41 with good sensitivity while rotating the analyzer 41, and outputs the measurement result to the control unit 5 (step S13).

ところで、エリプソメータ1では、アナライザ41を通過した光が検出光学系42を経由することにより、検出光学系42の偏光特性による影響を受けた状態で光センサ431により受光される。このため、光センサ431により検出された受光光の波長毎の強度(以下、「測定強度」という。)は、アナライザ通過光のその波長における強度とは異なるものになる。   By the way, in the ellipsometer 1, the light that has passed through the analyzer 41 passes through the detection optical system 42 and is received by the optical sensor 431 while being influenced by the polarization characteristics of the detection optical system 42. For this reason, the intensity of the received light detected by the optical sensor 431 for each wavelength (hereinafter referred to as “measurement intensity”) is different from the intensity of the analyzer-passing light at that wavelength.

図3〜図7は、基板9の反射特性(すなわち、基板に入射した光と、基板により反射された後の光とを比較した場合の偏光状態の変化)と波長との関係を示す図である。図3〜図7はそれぞれ、厚さ1nm(ナノメートル),10nm,50nm,100nm,500nmの酸化シリコン(SiO)の単層膜が表面に形成された基板9に対して、照射部3から入射角65度にて光を入射した場合の基板9の反射特性をシミュレーションにより求めた図である。 3 to 7 are diagrams showing the relationship between the reflection characteristic of the substrate 9 (that is, the change in the polarization state when comparing the light incident on the substrate and the light reflected by the substrate) and the wavelength. is there. 3 to 7 show an irradiation part 3 on a substrate 9 on which a single layer film of silicon oxide (SiO 2 ) having a thickness of 1 nm (nanometer), 10 nm, 50 nm, 100 nm, and 500 nm is formed. It is the figure which calculated | required the reflection characteristic of the board | substrate 9 when light injects with the incident angle of 65 degree | times by simulation.

図3〜図7中の実線811〜815、並びに、実線821〜825はそれぞれ、基板9の理論上の(すなわち、アナライザ通過光に基づいて求めた場合の)反射振幅比角Ψ(度)および位相差Δ(度)を示し、破線831〜835、並びに、破線841〜845はそれぞれ、検出光学系42を経由した後の光をアナライザ通過光とみなして求めた場合の基板9の反射振幅比角Ψおよび位相差Δを示す。なお、破線831〜835、並びに、破線841〜845は、検出光学系42が球面ミラー421およびミラー422のみから構成されると仮定して行ったシミュレーションの結果であり、両ミラーへの光の入射角は30度としている。   The solid lines 811 to 815 and solid lines 821 to 825 in FIGS. 3 to 7 are the theoretical reflection amplitude ratio angle Ψ (degrees) and the theoretical (that is, determined based on the analyzer passing light) of the substrate 9, respectively. The phase difference Δ (degree) is shown, and the broken lines 831 to 835 and the broken lines 841 to 845 indicate the reflection amplitude ratio of the substrate 9 when the light after passing through the detection optical system 42 is obtained as the analyzer passing light. Angle Ψ and phase difference Δ are shown. The broken lines 831 to 835 and the broken lines 841 to 845 are the results of a simulation performed on the assumption that the detection optical system 42 includes only the spherical mirror 421 and the mirror 422, and light is incident on both mirrors. The angle is 30 degrees.

図8は、シミュレーションに用いた球面ミラー421やミラー422を形成するアルミニウムの反射特性を示す図である。図8中の線801は、アルミニウムのミラーに対して入射角30度にて光を入射した場合の反射振幅比角をΨmirとしてtan(Ψmir)を示す。図8に示すように、ミラーに入射する光の波長が約800nmである場合には、tan(Ψmir)は約0.98となる。 FIG. 8 is a diagram showing the reflection characteristics of aluminum forming the spherical mirror 421 and the mirror 422 used in the simulation. A line 801 in FIG. 8 represents tan (Ψ mir ), where Ψ mir is a reflection amplitude ratio angle when light is incident on an aluminum mirror at an incident angle of 30 degrees. As shown in FIG. 8, when the wavelength of the light incident on the mirror is about 800 nm, tan (Ψ mir ) is about 0.98.

このように、アナライザ通過光と検出光学系42を経由した後の光とでは、検出光学系42の偏光特性(ミラーの反射特性のみならず、光学素子を通過する場合の光の偏光状態の変化も含む。)により光の強度にずれが生じ、その結果、図3〜図7に示すように、求められる基板9の反射特性にもずれが生じる。特に、位相差Δが180度となる付近で比較的大きなずれが生じる。実際のエリプソメータ1では、検出光学系42が、球面ミラー421およびミラー422に加えてレンズ423および分光素子432を備えるため、検出光学系42の偏光特性による光の強度のずれは更に大きくなる。   As described above, in the light passing through the analyzer and the light after passing through the detection optical system 42, the polarization characteristic of the detection optical system 42 (change in the polarization state of the light when passing through the optical element as well as the reflection characteristic of the mirror). As a result, the light intensity is shifted, and as a result, the required reflection characteristics of the substrate 9 are also shifted as shown in FIGS. In particular, a relatively large shift occurs in the vicinity where the phase difference Δ is 180 degrees. In the actual ellipsometer 1, the detection optical system 42 includes the lens 423 and the spectroscopic element 432 in addition to the spherical mirror 421 and the mirror 422, so that the light intensity deviation due to the polarization characteristics of the detection optical system 42 is further increased.

ここで、p偏光成分の複素反射率がrpmir、s偏光成分の複素反射率がrsmirであるミラーにより振幅の大きさが1の直線偏光が反射された場合、反射光のp偏光成分Exおよびs偏光成分Eyは、直線偏光の振動方向とミラーの入射面とのなす角度をβ(度)、ミラーの反射振幅比角および位相差をΨmir(度),Δmir(度)として、数5により表される。ただし、数5の2行目以降のrpmir,rsmirは、位相差を分離した後の係数を示す。 Here, when linearly polarized light having an amplitude of 1 is reflected by a mirror having a complex reflectance of the p-polarized component of r pmir and a complex reflectance of the s-polarized component of r smir , the p-polarized component of the reflected light Ex And the s-polarized component Ey, the angle between the vibration direction of linearly polarized light and the incident surface of the mirror is β (degrees), the reflection amplitude ratio angle and the phase difference of the mirror are Ψ mir (degrees), Δ mir (degrees), It is expressed by Equation 5. However, r pmir and r smir in the second and subsequent lines of Equation 5 indicate coefficients after separating the phase difference.

Figure 0004260683
Figure 0004260683

したがって、ミラーに入射する直線偏光の強度をIinとした場合の反射光の強度Ireは、数6により表すことができる。ここで、定数αは、数7により求められる定数である。 Therefore, the intensity I re of the reflected light when the intensity of the linearly polarized light incident on the mirror is I in can be expressed by Equation 6. Here, the constant α is a constant obtained by Equation 7.

Figure 0004260683
Figure 0004260683

Figure 0004260683
Figure 0004260683

エリプソメータ1では、アナライザ41に入射する直前の光の偏光状態を精度良く求めるために、検出光学系42を数5の説明におけるミラーと仮定して、数5〜数7に示す関係に基づいて、検出光学系42による偏光状態の変化が補正される。エリプソメータ1では、アナライザ41の所定の基準姿勢からの回転角度をθ(度)、検出光学系42の波長毎の反射振幅比角をΨλdet(度)、受光光の波長毎の測定強度をI(θ)λとして、アナライザ通過光の波長毎の強度I(θ)λが、数8により求められる。 In the ellipsometer 1, in order to accurately determine the polarization state of the light immediately before entering the analyzer 41, the detection optical system 42 is assumed to be a mirror in the description of Equation 5, and based on the relationships shown in Equations 5 to 7, The change in the polarization state by the detection optical system 42 is corrected. In the ellipsometer 1, the rotation angle of the analyzer 41 from a predetermined reference posture is θ (degrees), the reflection amplitude ratio angle for each wavelength of the detection optical system 42 is Ψ λdet (degrees), and the measured intensity for each wavelength of the received light is I As (θ) λ , the intensity I 0 (θ) λ for each wavelength of the analyzer-passing light is obtained by Equation 8.

Figure 0004260683
Figure 0004260683

ここで、検出光学系42の波長毎の反射振幅比角Ψλdetは、検出光学系42の構成要素である球面ミラー421、ミラー422、レンズ423および分光素子432のその波長における反射振幅比角をまとめたものであり、球面ミラー421、ミラー422、レンズ423および分光素子432のそれぞれの反射振幅比角をΨλ1〜Ψλ4とすると、数9により求められ、後述する方法により予め取得されて制御部5の記憶部52に記憶されている。 Here, the reflection amplitude ratio angle Ψ λdet for each wavelength of the detection optical system 42 is the reflection amplitude ratio angle at the wavelength of the spherical mirror 421, mirror 422, lens 423, and spectroscopic element 432 that are components of the detection optical system 42. When the reflection amplitude ratio angles of the spherical mirror 421, the mirror 422, the lens 423, and the spectroscopic element 432 are Ψ λ1 to Ψ λ4 , they are obtained by Equation 9 and acquired and controlled in advance by a method described later. It is stored in the storage unit 52 of the unit 5.

Figure 0004260683
Figure 0004260683

また、アナライザ41の基準姿勢(すなわち、θが0度となる姿勢)とは、アナライザ41により直線偏光とされたアナライザ通過光の振動方向の向きと検出光学系42の基準面(例えば、折れ曲がった光軸を含む面)との成す角度が0度となるときの姿勢、すなわち、検出光学系42を1つの仮想的な反射面と捉えた場合の仮想的な入射面内にてアナライザ通過光が振動するときのアナライザ41の姿勢である。エリプソメータ1では、基板9からの反射光のp偏光成分を通過させるアナライザ41の姿勢が基準姿勢とされる。   The reference posture of the analyzer 41 (that is, the posture where θ is 0 degree) refers to the direction of the vibration direction of the analyzer passing light that has been linearly polarized by the analyzer 41 and the reference surface of the detection optical system 42 (for example, bent). The posture when the angle formed with the surface including the optical axis) is 0 degree, that is, the analyzer passing light within the virtual incident surface when the detection optical system 42 is regarded as one virtual reflecting surface. This is the attitude of the analyzer 41 when vibrating. In the ellipsometer 1, the posture of the analyzer 41 that passes the p-polarized component of the reflected light from the substrate 9 is set as a reference posture.

なお、正確には数8の右辺は(1/αλ)倍(ただし、定数αλは、仮想面のs偏光成分の反射率をrsλとした場合、検出光学系42の反射振幅比角をΨλdetを用いて、数10により求められる定数である。)されるが、定数αλは最終的な測定結果には影響を与えないため、実際の演算では数8に示すようにαλは無視される。 More precisely, the right side of Equation 8 is (1 / α λ ) times (where the constant α λ is the reflection amplitude ratio angle of the detection optical system 42 when the reflectance of the s-polarized component of the virtual surface is rs λ. the using [psi Ramudadet, a constant determined by the number 10.) but is the, since the constant alpha lambda does not affect the final measurement result, alpha lambda as shown in Equation 8 in the actual operation Is ignored.

Figure 0004260683
Figure 0004260683

制御部5では、数8に示す関係が予め記憶部52に記憶されており、制御部5により取得されるアナライザ41の回転角度θ、および、予め記憶部52に記憶されている検出光学系42の波長毎の反射振幅比角Ψλdetに基づいて、光センサ431により検出された受光光の波長毎の測定強度I(θ)λが演算部51により補正され、アナライザ41の各回転角度におけるアナライザ通過光の波長毎の強度(以下、「補正強度」という。)I(θ)λが求められる(ステップS14)。 In the control unit 5, the relationship shown in Equation 8 is stored in advance in the storage unit 52, the rotation angle θ of the analyzer 41 acquired by the control unit 5, and the detection optical system 42 stored in the storage unit 52 in advance. Based on the reflection amplitude ratio angle Ψ λdet for each wavelength, the measurement intensity I (θ) λ for each wavelength of the received light detected by the optical sensor 431 is corrected by the calculation unit 51, and the analyzer 41 at each rotation angle of the analyzer 41. The intensity (hereinafter referred to as “correction intensity”) I 0 (θ) λ of each wavelength of the passing light is obtained (step S14).

図9は、厚さ58nmの酸化シリコンの単層膜が表面に形成された基板9に、波長600nmの偏光光が入射した場合の受光光の測定強度とアナライザ通過光の補正強度とをアナライザ41の回転角度毎に比較して示す図である。図9中の実線851は、回転角度毎の受光光の測定強度を、θの全範囲における測定強度の平均値で割った値(以下、「相対測定強度」という。)を示す。破線852は、演算部51により受光光の測定強度が補正されて求められたアナライザ通過光の補正強度を、θの全範囲における補正強度の平均値で割った値(以下、「相対補正強度」という。)を示す。   9 shows the measured intensity of the received light and the corrected intensity of the light passing through the analyzer when polarized light having a wavelength of 600 nm is incident on the substrate 9 on which a single layer film of silicon oxide having a thickness of 58 nm is formed. It is a figure shown in comparison for every rotation angle. A solid line 851 in FIG. 9 represents a value (hereinafter referred to as “relative measurement intensity”) obtained by dividing the measurement intensity of the received light at each rotation angle by the average value of the measurement intensity in the entire range of θ. A broken line 852 indicates a value obtained by dividing the correction intensity of the analyzer passing light obtained by correcting the measurement intensity of the received light by the calculation unit 51 by the average value of the correction intensity in the entire range of θ (hereinafter, “relative correction intensity”). .)

エリプソメータ1では、演算部51により、アナライザ通過光の波長毎の補正強度I(θ)λ、あるいは、波長毎に求められた相対補正強度に基づいて(例えば、フーリエ変換することにより)アナライザ41に入射する直前の光の波長毎の偏光状態が求められ、基板9の波長毎の反射特性が求められる(ステップS15)。 In the ellipsometer 1, the analyzer 41 calculates (for example, by Fourier transform) the analyzer 41 based on the correction intensity I 0 (θ) λ for each wavelength of the analyzer passing light or the relative correction intensity obtained for each wavelength. The polarization state for each wavelength of light immediately before entering the light is obtained, and the reflection characteristic for each wavelength of the substrate 9 is obtained (step S15).

図10は、演算部51により補正強度I(θ)λに基づいて求められた基板9の反射特性(すなわち、補正後の反射特性)と、仮に測定強度I(θ)λに基づいて求めた場合の基板9の反射特性(すなわち、補正前の反射特性)とを比較して示す図である。 FIG. 10 shows the reflection characteristic (that is, the corrected reflection characteristic) of the substrate 9 obtained by the calculation unit 51 based on the corrected intensity I 0 (θ) λ and the calculated intensity I (θ) λ. It is a figure which compares and shows the reflection characteristic (namely, reflection characteristic before correction | amendment) of the board | substrate 9 in the case of a case.

図10中の実線861,862はそれぞれ、補正前の基板9の反射特性を表す反射振幅比角Ψおよび位相差Δを示し、破線863,864はそれぞれ、補正後の基板9の反射特性を表す反射振幅比角Ψおよび位相差Δを示す。例えば、光の波長が600nmである場合、補正前の反射振幅比角Ψおよび位相差Δはそれぞれ30.1度および106.4度であり、補正後の反射振幅比角Ψおよび位相差Δはそれぞれ27.8度および106.9度である。エリプソメータ1では、演算部51による補正により、検出光学系42による偏光状態の変化が補正されて基板9の反射特性が求められ、偏光解析が行われる。   The solid lines 861 and 862 in FIG. 10 indicate the reflection amplitude ratio angle Ψ and the phase difference Δ that represent the reflection characteristics of the substrate 9 before correction, and the broken lines 863 and 864 indicate the reflection characteristics of the substrate 9 after correction. The reflection amplitude ratio angle Ψ and the phase difference Δ are shown. For example, when the wavelength of light is 600 nm, the reflection amplitude ratio angle Ψ and the phase difference Δ before correction are 30.1 degrees and 106.4 degrees, respectively, and the reflection amplitude ratio angle Ψ and the phase difference Δ after correction are They are 27.8 degrees and 106.9 degrees, respectively. In the ellipsometer 1, the change in the polarization state by the detection optical system 42 is corrected by the correction by the calculation unit 51, the reflection characteristic of the substrate 9 is obtained, and the polarization analysis is performed.

なお、エリプソメータ1の演算部51では、受光光の波長毎の測定強度I(θ)λから求められた波長毎の相対測定強度をI(θ)λrelとして、波長毎の相対補正強度I(θ)λrelが数11により求められてもよく、この場合、相対補正強度I(θ)λrelに基づいて基板9の反射特性が求められる。 Note that the calculation unit 51 of the ellipsometer 1 uses the relative measurement intensity I 00 λrel ) as the relative measurement intensity I 0 ( λ ) for each wavelength obtained from the measurement intensity I (θ) λ for each wavelength of the received light. θ) λrel may be obtained by Equation 11, and in this case, the reflection characteristic of the substrate 9 is obtained based on the relative correction intensity I 0 (θ) λrel .

Figure 0004260683
Figure 0004260683

また、エリプソメータ1では、検出光学系42の反射振幅比角Ψλdetを45度に近づけることにより、検出光学系42による偏光状態のずれを小さくして演算部51による補正量を小さくすることができる。 Further, in the ellipsometer 1, by making the reflection amplitude ratio angle Ψλdet of the detection optical system 42 close to 45 degrees, it is possible to reduce the deviation of the polarization state by the detection optical system 42 and to reduce the correction amount by the calculation unit 51. .

図11は、上述のアナライザ通過光の波長毎の補正強度I(θ)λの算出(ステップS14)に利用される検出光学系42の波長毎の反射振幅比角Ψλdetの取得作業を示す図である。反射振幅比角Ψλdetの取得作業は、通常、エリプソメータ1が製造されたときに行われる。 FIG. 11 shows an operation of acquiring the reflection amplitude ratio angle Ψ λdet for each wavelength of the detection optical system 42 used for calculating the correction intensity I 0 (θ) λ for each wavelength of the analyzer passing light (step S14). FIG. The operation of obtaining the reflection amplitude ratio angle Ψ λdet is normally performed when the ellipsometer 1 is manufactured.

エリプソメータ1では、まず、既知の膜厚の単層膜が形成された基板9が準備され(ステップS21)、基板9とアナライザ41との間の光路上においてアナライザ41の直前に偏光子が所定の向き(通常、偏光子の偏光方向を基板9の入射面に対して45度だけ傾けた向き)で設置され(ステップS22)、アナライザ41に入射する光の振幅比角が全ての波長において同一とされる。ここで、アナライザ41に入射する光の振幅比角ψideが計算により求められる(ステップS23)。 In the ellipsometer 1, first, a substrate 9 on which a single-layer film having a known thickness is formed is prepared (step S 21), and a polarizer is provided in front of the analyzer 41 on the optical path between the substrate 9 and the analyzer 41. It is installed in a direction (usually a direction in which the polarization direction of the polarizer is inclined by 45 degrees with respect to the incident surface of the substrate 9) (step S22), and the amplitude ratio angle of the light incident on the analyzer 41 is the same at all wavelengths. Is done. Here, the amplitude ratio angle ψide of the light incident on the analyzer 41 is obtained by calculation (step S23).

次に、エリプソメータ1による測定が行われ、光センサ431により検出光学系42を通過した後の測定強度I(θ)λが取得され、検出光学系42を通過した後の光の振幅比角ψλmeasが求められる(ステップS24)。そして、振幅比角ψide,ψmeasに基づいて、検出光学系42の反射振幅比角Ψλdetが数12により求められる(ステップS25)。これにより、簡単に反射振幅比角Ψλdetを求めることができる。 Next, measurement by the ellipsometer 1 is performed, and the measured intensity I (θ) λ after passing through the detection optical system 42 is acquired by the optical sensor 431, and the amplitude ratio angle ψ of the light after passing through the detection optical system 42 λmeas is obtained (step S24). Then, the amplitude ratio angle [psi ide, based on [psi meas, reflection amplitude ratio angle [psi Ramudadet optical imaging system 42 is determined by the number 12 (step S25). Thereby, the reflection amplitude ratio angle Ψ λdet can be easily obtained.

Figure 0004260683
Figure 0004260683

図12は、検出光学系42の反射振幅比角Ψλdetを示す図であり、図12中の線871は、検出光学系42の反射振幅比角Ψλdetと検出光学系42に入射する光の波長との関係を示す。エリプソメータ1では、上述の取得作業により取得された検出光学系42の反射振幅比角Ψλdetが、制御部5の記憶部52に記憶されてアナライザ通過光の補正強度I(θ)λの算出に利用される。 Figure 12 is a diagram showing the reflection amplitude ratio angle [psi Ramudadet optical imaging system 42, a line 871 in FIG. 12, the light incident on the detection optical system 42 and the reflection amplitude ratio angle [psi Ramudadet optical imaging system 42 The relationship with wavelength is shown. In the ellipsometer 1, the reflection amplitude ratio angle Ψ λdet of the detection optical system 42 acquired by the above-described acquisition operation is stored in the storage unit 52 of the control unit 5 to calculate the correction intensity I 0 (θ) λ of the analyzer passing light. Used for

なお、エリプソメータ1では、既知の膜厚を有する基板について、受光光の測定強度I(θ)λから求めた振幅比角ψλmeasと、演算により求めたアナライザ41入射直前の光の振幅比角ψλiesとに基づいて、検出光学系42の反射振幅比角Ψλdetが数12により求められてもよい。 In the ellipsometer 1, with respect to a substrate having a known film thickness, the amplitude ratio angle ψ λmeas obtained from the measured intensity I (θ) λ of the received light, and the amplitude ratio angle ψ of the light immediately before entering the analyzer 41 obtained by calculation. Based on λies , the reflection amplitude ratio angle Ψλdet of the detection optical system 42 may be obtained by Expression 12.

以上に説明したように、エリプソメータ1では、基板9から反射された光に対する検出光学系42の影響を抑制するための新たな光学要素(例えば、光ファイバや偏光解消板)が不要であるため、装置の構成を簡素化することができるとともに、周囲温度等の外的要因による装置構成への影響を軽減し、光センサ431により検出される測定強度の再現性を向上することができる。   As described above, the ellipsometer 1 does not require a new optical element (for example, an optical fiber or a depolarization plate) for suppressing the influence of the detection optical system 42 on the light reflected from the substrate 9. The configuration of the apparatus can be simplified, the influence on the apparatus configuration due to external factors such as ambient temperature can be reduced, and the reproducibility of the measured intensity detected by the optical sensor 431 can be improved.

エリプソメータ1では、アナライザ41と光センサ431との間に配置された検出光学系42による影響を補正してアナライザ通過光の補正強度を精度良く求めることができる。その結果、基板9からの反射光の偏光状態、すなわち、基板9の偏光解析に利用される情報を精度良く取得することができる。このとき、検出光学系42の反射振幅比角Ψλdetを予め取得しておき、数8に示す関係に基づいてアナライザ通過光の補正強度を求めることにより、偏光解析に利用される情報を容易に取得することができる。 In the ellipsometer 1, it is possible to correct the influence of the detection optical system 42 disposed between the analyzer 41 and the optical sensor 431 and to obtain the correction intensity of the analyzer passing light with high accuracy. As a result, the polarization state of the reflected light from the substrate 9, that is, the information used for the polarization analysis of the substrate 9 can be obtained with high accuracy. At this time, the reflection amplitude ratio angle Ψ λdet of the detection optical system 42 is acquired in advance, and the correction intensity of the analyzer passing light is obtained based on the relationship shown in Equation 8, so that information used for polarization analysis can be easily obtained. Can be acquired.

エリプソメータ1は、基板9から光センサ431に至る光路上において、アナライザ41と光センサ431との間にのみ検出光学系42等の光学素子が配置されるため(すなわち、基板9とアナライザ41との間には光学素子が配置されない。)、基板9からの反射光が光センサ431に至るまでに経由する全ての光学素子(アナライザ41を除く。)の偏光特性による影響を補正することができ、偏光解析に利用される情報をより精度良く取得することができる。   In the ellipsometer 1, an optical element such as the detection optical system 42 is arranged only between the analyzer 41 and the optical sensor 431 on the optical path from the substrate 9 to the optical sensor 431 (that is, between the substrate 9 and the analyzer 41. An optical element is not disposed between them.) The influence of the polarization characteristics of all the optical elements (except the analyzer 41) through which the reflected light from the substrate 9 reaches the optical sensor 431 can be corrected. Information used for ellipsometry can be acquired with higher accuracy.

エリプソメータ1では、演算部51により、検出光学系42の波長毎の反射振幅比角Ψλdetに基づいてアナライザ通過光の補正強度が求められるため、入射する光の波長毎に異なる検出光学系42の偏光特性の影響を受けることなく、アナライザ通過光の波長毎の補正強度を取得することができる。その結果、表面に多層膜が形成された基板についても、偏光解析に利用される情報を精度良く取得することができる。 In the ellipsometer 1, the correction intensity of the analyzer passing light is obtained by the calculation unit 51 based on the reflection amplitude ratio angle Ψ λdet for each wavelength of the detection optical system 42, and therefore the detection optical system 42 that differs for each wavelength of incident light. The correction intensity for each wavelength of the analyzer passing light can be acquired without being affected by the polarization characteristic. As a result, information used for polarization analysis can be obtained with high accuracy even for a substrate having a multilayer film formed on the surface.

また、エリプソメータ1は、検出光学系42の影響を精度良く補正することができるため、検出光学系42が光の偏光状態に影響を与えやすい回折格子型の分光素子432を備える場合であっても、アナライザ41に入射する直前の光の波長毎の偏光状態を精度良く検出することができる。   Further, since the ellipsometer 1 can correct the influence of the detection optical system 42 with high accuracy, even if the detection optical system 42 includes a diffraction grating type spectroscopic element 432 that easily affects the polarization state of light. The polarization state for each wavelength of light immediately before entering the analyzer 41 can be detected with high accuracy.

以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変更が可能である。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the said embodiment, A various change is possible.

例えば、分光素子432は回折格子型の光学素子に限定される必要はなく、その他の様々なタイプの分光素子が用いられてもよい。また、照射部3の光源部31では、キセノン(Xe)ランプに代えて単波長の光ビームを出射する半導体レーザが設けられてもよく、この場合、受光部4では、分光器43に代えてフォトダイオード等が設けられる。   For example, the spectroscopic element 432 need not be limited to a diffraction grating type optical element, and various other types of spectroscopic elements may be used. The light source unit 31 of the irradiation unit 3 may be provided with a semiconductor laser that emits a single-wavelength light beam instead of the xenon (Xe) lamp. In this case, the light receiving unit 4 replaces the spectroscope 43. A photodiode or the like is provided.

エリプソメータ1の受光部4は、基板9から光センサ431に至る光路上において、基板9とアナライザ41との間に光学素子が配置されない構成とされることが好ましいが、基板9とアナライザ41との間に光学素子が配置される場合であっても、上述のように受光光の測定強度の補正を行うことにより、補正を行わない場合に比べて基板9の反射特性を精度良く求めることができる。   The light receiving unit 4 of the ellipsometer 1 is preferably configured such that no optical element is disposed between the substrate 9 and the analyzer 41 on the optical path from the substrate 9 to the optical sensor 431. Even when an optical element is disposed between them, the reflection characteristic of the substrate 9 can be obtained with higher accuracy by correcting the measurement intensity of the received light as described above as compared with the case where the correction is not performed. .

基板9は、半導体基板に限定されず、例えば、液晶表示装置やその他のフラットパネル表示装置等に使用されるガラス基板であってもよい。さらに、エリプソメータ1による測定対象は、微細パターンが形成される基板以外の物に形成された膜であってもよい。   The substrate 9 is not limited to a semiconductor substrate, and may be, for example, a glass substrate used for a liquid crystal display device or other flat panel display device. Furthermore, the measurement object by the ellipsometer 1 may be a film formed on an object other than the substrate on which the fine pattern is formed.

また、回転する回転偏光子を通過した直後の光の強度を数8に示す関係を用いて求める方法は、エリプソメータ以外の他の装置に利用することができる。   Moreover, the method of calculating | requiring the intensity | strength of the light immediately after passing through the rotating rotating polarizer using the relationship shown in Formula 8 can be utilized for apparatuses other than an ellipsometer.

一の実施の形態に係るエリプソメータの構成を示す図である。It is a figure which shows the structure of the ellipsometer which concerns on one embodiment. エリプソメータの動作の流れを示す図である。It is a figure which shows the flow of operation | movement of an ellipsometer. 基板の反射特性と入射光の波長との関係を示す図である。It is a figure which shows the relationship between the reflective characteristic of a board | substrate, and the wavelength of incident light. 基板の反射特性と入射光の波長との関係を示す図である。It is a figure which shows the relationship between the reflective characteristic of a board | substrate, and the wavelength of incident light. 基板の反射特性と入射光の波長との関係を示す図である。It is a figure which shows the relationship between the reflective characteristic of a board | substrate, and the wavelength of incident light. 基板の反射特性と入射光の波長との関係を示す図である。It is a figure which shows the relationship between the reflective characteristic of a board | substrate, and the wavelength of incident light. 基板の反射特性と入射光の波長との関係を示す図である。It is a figure which shows the relationship between the reflective characteristic of a board | substrate, and the wavelength of incident light. アルミニウムミラーの反射特性を示す図である。It is a figure which shows the reflective characteristic of an aluminum mirror. 測定強度と補正強度とを比較して示す図である。It is a figure which compares and shows a measurement intensity | strength and correction | amendment intensity | strength. 補正前後の検出光学系の偏光特性を比較して示す図である。It is a figure which compares and shows the polarization characteristic of the detection optical system before and behind correction | amendment. 検出光学系の反射振幅比角の取得作業の流れを示す図である。It is a figure which shows the flow of the acquisition operation | work of the reflection amplitude ratio angle of a detection optical system. 検出光学系の反射振幅比角と入射光の波長との関係を示す図である。It is a figure which shows the relationship between the reflection amplitude ratio angle of a detection optical system, and the wavelength of incident light.

符号の説明Explanation of symbols

1 エリプソメータ
3 照射部
9 基板
41 アナライザ
42 検出光学系
51 演算部
431 光センサ
432 分光素子
S11〜S15,S21〜S25 ステップ
DESCRIPTION OF SYMBOLS 1 Ellipsometer 3 Irradiation part 9 Board | substrate 41 Analyzer 42 Detection optical system 51 Calculation part 431 Optical sensor 432 Spectroscopic element S11-S15, S21-S25 Step

Claims (7)

エリプソメータであって、
偏光した光を対象物へと導く照射部と、
前記対象物からの前記偏光した光の反射光が入射するとともに光軸方向を向く軸を中心として回転する検出側の回転偏光子と、
前記回転偏光子を経由した光が入射する検出光学系と、
前記検出光学系を経由した光を受光して前記光の強度を検出するセンサと、
前記回転偏光子の回転角度、および、前記検出光学系の反射振幅比角に基づいて前記センサにより検出された前記強度を補正して前記回転偏光子を通過した直後の光の強度を求める演算部と、
を備えることを特徴とするエリプソメータ。
An ellipsometer,
An irradiator that guides polarized light to the object;
A rotating polarizer on the detection side that rotates around an axis that is reflected by the reflected light of the polarized light from the object and that faces the optical axis direction;
A detection optical system on which light having passed through the rotating polarizer is incident;
A sensor that receives light via the detection optical system and detects the intensity of the light;
An arithmetic unit that corrects the intensity detected by the sensor based on the rotation angle of the rotating polarizer and the reflection amplitude ratio angle of the detection optical system and obtains the intensity of light immediately after passing through the rotating polarizer. When,
An ellipsometer characterized by comprising:
請求項1に記載のエリプソメータであって、
前記演算部が、所定の基準姿勢からの前記回転偏光子の回転角度をθ、前記検出光学系の反射振幅比角をΨdet、前記センサにより検出された前記強度をI(θ)とし、前記回転偏光子を通過した直後の光の強度I(θ)を、
Figure 0004260683
により求めることを特徴とするエリプソメータ。
The ellipsometer according to claim 1, wherein
The calculation unit sets the rotation angle of the rotating polarizer from a predetermined reference posture as θ, the reflection amplitude ratio angle of the detection optical system as Ψ det , and the intensity detected by the sensor as I (θ), The light intensity I 0 (θ) immediately after passing through the rotating polarizer is
Figure 0004260683
An ellipsometer characterized by the following.
請求項1または2に記載のエリプソメータであって、
前記対象物から前記センサに至る光路上において、前記回転偏光子と前記センサとの間にのみ光学素子が配置されることを特徴とするエリプソメータ。
The ellipsometer according to claim 1 or 2,
An ellipsometer, wherein an optical element is disposed only between the rotary polarizer and the sensor on an optical path from the object to the sensor.
請求項1ないし3のいずれかに記載のエリプソメータであって、
前記検出光学系が分光素子を備え、
前記演算部により前記回転偏光子を通過した直後の光の波長毎の強度が求められることを特徴とするエリプソメータ。
The ellipsometer according to any one of claims 1 to 3,
The detection optical system includes a spectroscopic element;
An ellipsometer characterized in that an intensity for each wavelength of light immediately after passing through the rotating polarizer is obtained by the arithmetic unit.
請求項4に記載のエリプソメータであって、
前記分光素子が、回折格子型の分光素子であることを特徴とするエリプソメータ。
The ellipsometer according to claim 4, wherein
An ellipsometer, wherein the spectroscopic element is a diffraction grating type spectroscopic element.
対象物に偏光した光を照射して前記対象物からの光の偏光状態を取得する偏光状態取得方法であって、
対象物上に偏光した光を照射する照射工程と、
前記対象物からの前記偏光した光の反射光を、光軸方向を向く軸を中心として回転する回転偏光子および検出光学系を介してセンサにより受光し、受光した光の強度を検出する検出工程と、
前記回転偏光子の回転角度、および、前記検出光学系の反射振幅比角に基づいて前記センサにより検出された前記強度を補正して前記回転偏光子を通過した直後の光の強度を求める演算工程と、
を備えることを特徴とする偏光状態取得方法。
A polarization state acquisition method of irradiating a target with polarized light to acquire a polarization state of light from the target,
An irradiation step of irradiating polarized light on the object;
A detection step of detecting the intensity of the received light by receiving the reflected light of the polarized light from the object with a sensor via a rotating polarizer and a detection optical system that rotate about an axis that faces the optical axis direction When,
A calculation step of correcting the intensity detected by the sensor based on the rotation angle of the rotating polarizer and the reflection amplitude ratio angle of the detection optical system to obtain the intensity of light immediately after passing through the rotating polarizer. When,
A polarization state acquisition method comprising:
回転する回転偏光子を通過した直後の光の強度を求める光強度取得方法であって、
回転偏光子の回転軸に沿って前記回転偏光子に入射した光を、前記回転偏光子から検出光学系を介してセンサにより受光して前記光の強度を検出する検出工程と、
前記回転偏光子の回転角度、および、前記検出光学系の反射振幅比角に基づいて前記センサにより検出された前記強度を補正して前記回転偏光子を通過した直後の光の強度を求める演算工程と、
を備え、
前記演算工程において、所定の基準姿勢からの前記回転偏光子の回転角度をθ、前記検出光学系の反射振幅比角をΨdet、前記センサにより検出された前記強度をI(θ)とし、前記回転偏光子を通過した直後の光の強度I(θ)が、
Figure 0004260683
により求められることを特徴とする光強度取得方法。
A light intensity acquisition method for determining the intensity of light immediately after passing through a rotating rotating polarizer,
A detection step of detecting the light incident on the rotary polarizer along the rotation axis of the rotary polarizer with a sensor from the rotary polarizer via a detection optical system and detecting the intensity of the light;
An arithmetic step of correcting the intensity detected by the sensor based on the rotation angle of the rotating polarizer and the reflection amplitude ratio angle of the detection optical system to obtain the intensity of light immediately after passing through the rotating polarizer. When,
With
In the calculation step, the rotation angle of the rotating polarizer from a predetermined reference posture is θ, the reflection amplitude ratio angle of the detection optical system is Ψ det , and the intensity detected by the sensor is I (θ), The light intensity I 0 (θ) immediately after passing through the rotating polarizer is
Figure 0004260683
The light intensity acquisition method characterized by being calculated | required by.
JP2004154464A 2004-05-25 2004-05-25 Ellipsometer, polarization state acquisition method and light intensity acquisition method Expired - Fee Related JP4260683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154464A JP4260683B2 (en) 2004-05-25 2004-05-25 Ellipsometer, polarization state acquisition method and light intensity acquisition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154464A JP4260683B2 (en) 2004-05-25 2004-05-25 Ellipsometer, polarization state acquisition method and light intensity acquisition method

Publications (2)

Publication Number Publication Date
JP2005337785A JP2005337785A (en) 2005-12-08
JP4260683B2 true JP4260683B2 (en) 2009-04-30

Family

ID=35491536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154464A Expired - Fee Related JP4260683B2 (en) 2004-05-25 2004-05-25 Ellipsometer, polarization state acquisition method and light intensity acquisition method

Country Status (1)

Country Link
JP (1) JP4260683B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701301B1 (en) * 2005-12-08 2007-03-29 안일신 Multi-mode rotating element type Ellipsometer
JP2021110559A (en) 2020-01-07 2021-08-02 キヤノン株式会社 Spectroscopic information acquisition system, inspection method, and manufacturing method
WO2023171058A1 (en) * 2022-03-08 2023-09-14 東レ株式会社 Polarization evaluation device

Also Published As

Publication number Publication date
JP2005337785A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP3995579B2 (en) Film thickness measuring device and reflectance measuring device
US4999014A (en) Method and apparatus for measuring thickness of thin films
US9176048B2 (en) Normal incidence broadband spectroscopic polarimeter and optical measurement system
US5581350A (en) Method and system for calibrating an ellipsometer
US6469788B2 (en) Coherent gradient sensing ellipsometer
JP5368507B2 (en) Surface characteristic analysis system with self-calibration function
JPH06103252B2 (en) High resolution ellipsometer apparatus and method
JPH02263105A (en) Film thickness measuring apparatus
KR102139988B1 (en) Normal-incidence ellipsometer and method for measuring optical properties of the sample using the same
JP2008145417A (en) Surface shape measuring device, stress measuring device, surface shape measuring method, and stress measuring method
JP2009103598A (en) Spectroscopic ellipsometer and polarization analysis method
JPH11211654A (en) Polarization analysis device
US11079220B1 (en) Calibration of azimuth angle for optical metrology stage using grating-coupled surface plasmon resonance
US20010026365A1 (en) Evaluation of optically anisotropic structure
JP2008082811A (en) Optical characteristic measuring method and optical characteristic measuring instrument for thin film
JPH09119812A (en) Method and device for featuring multilayered film structure and measuring distance between two planes directly facing film thereof
JP2010223822A (en) Spectroscopic ellipsometer and polarization analysis method
JP4260683B2 (en) Ellipsometer, polarization state acquisition method and light intensity acquisition method
JP2007248255A (en) Light intensity measuring method, light intensity measuring instrument, polarized light analyzer and production control device using it
JP3520379B2 (en) Optical constant measuring method and device
US20130293962A1 (en) Irradiation module for a measuring apparatus
JP2010048604A (en) Apparatus and method for measuring film thickness
CN111076668A (en) Differential reflection spectrum measurement method for nano-thickness SiO2 thickness
KR20220004544A (en) Ellipsometer
JP2006071381A (en) Thin film measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees