JPH07181016A - Method and apparatus for measuring film thickness - Google Patents

Method and apparatus for measuring film thickness

Info

Publication number
JPH07181016A
JPH07181016A JP32294293A JP32294293A JPH07181016A JP H07181016 A JPH07181016 A JP H07181016A JP 32294293 A JP32294293 A JP 32294293A JP 32294293 A JP32294293 A JP 32294293A JP H07181016 A JPH07181016 A JP H07181016A
Authority
JP
Japan
Prior art keywords
film thickness
light
measured
wavelength region
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32294293A
Other languages
Japanese (ja)
Inventor
Akira Sakata
陽 坂田
Hiroshi Kojima
弘 小島
Yukio Watanabe
幸穂 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP32294293A priority Critical patent/JPH07181016A/en
Publication of JPH07181016A publication Critical patent/JPH07181016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide method and apparatus for measuring the film thickness of various materials automatically with high accuracy by transmitting the light beam, projected from a light source having a wide wavelength region, in an arbitrary wavelength region inherent to an object to be measured having a transmittance dependent on the film thickness. CONSTITUTION:A light beam having a transmittance dependent on the film thickness is projected from a light source 2, e.g. a black body furnace, having a wide wavelength range and transmitted selectively through an optical filter 3 before impinging on an object 5 to be measured and a reference object 7 having a known film thickness. The reflected lights are subjected to photoelectric conversion through detectors 6, 8 and compared with each other before the film thickness is measured at a section 9 comprising a subtractor 10, a signal processor 11, a thickness indicator 12, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単一素材のフィルムの
膜厚や基材フィルム上に積層された薄膜フィルム等の任
意の材質の膜厚を効率的に自動検出し得る比較的簡便構
造の膜厚測定方法と膜厚測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a relatively simple structure capable of efficiently and automatically detecting the film thickness of a single material film or the film thickness of any material such as a thin film laminated on a base film. Film thickness measuring method and film thickness measuring device.

【0002】[0002]

【従来の技術】例えば包装材に用いられるPETフィル
ムの表面にはMgO単層薄膜が蒸着されるものが使用さ
れる。このMgO単層薄膜の蒸着特性を求め、包装紙の
品質の安定化を図るためにはその膜厚を測定することが
必要である。従来より、この種の薄膜の測定方法として
は被測定物に光線を照射し、その透過減衰光量から膜厚
を求めるものが一般に採用されている。具体的には、膜
厚と最も依存関係(相関関係)のある透過率を示す単波
長成分を回析格子により分光し、この分光光線を被測定
物に照射し、その透過減衰量を光電変換により電気出力
として求め、この出力値から膜厚を検出するものが挙げ
られる。この場合、膜厚測定分解能を向上させるために
透過減衰光量の微弱な被測定物については時間積分して
透過減衰光量を増幅する手段も採用されていた。また、
光源としてレーザ光を用いその高出力特性を利用して効
率的な膜厚測定を行うものも採用されていた。
2. Description of the Related Art For example, a PET film used as a packaging material has a MgO single layer thin film deposited on its surface. In order to obtain the vapor deposition characteristics of this MgO single-layer thin film and stabilize the quality of the packaging paper, it is necessary to measure the film thickness. Conventionally, as a method of measuring a thin film of this kind, a method of irradiating an object to be measured with a light beam and obtaining the film thickness from the amount of transmitted attenuated light is generally adopted. Specifically, a single-wavelength component that exhibits the transmittance that has the most dependency (correlation) with the film thickness is dispersed by a diffraction grating, and this spectral ray is irradiated to the DUT, and the transmission attenuation is photoelectrically converted. An electric output is obtained by the above method, and the film thickness is detected from this output value. In this case, in order to improve the resolution of the film thickness measurement, a means for amplifying the transmitted attenuation light amount by time integration has also been adopted for the object to be measured with a weak transmitted attenuation light amount. Also,
There has also been adopted a device that uses a laser beam as a light source and utilizes its high output characteristic to efficiently measure a film thickness.

【0003】[0003]

【発明が解決しようとする課題】前記した従来技術にお
いては被測定物に照射される単波長の光線は被測定物の
透過減衰波長領域の一部しか使用していないため、例え
ば白色光源のような広範囲にわたる放射スペクトルを有
する光源の場合には光源の放射エネルギの利用率が低く
無駄であった。また、回析格子は特定波長の光線を分光
するため、広範囲な波長の光線を放射させるには回析角
度を連続的変化させることが必要になるが、走査速度や
検出器の応答時間に限界があり、かつ装置構造が複雑と
なるため実用的に適用出来ない。また、レーザ光のよう
な単波長で高出力な光源を用いることにより測定効率の
向上を図ることは可能であるが、前記と同様に波長領域
が特定される問題点を有すると共に、レーザ光の照射エ
ネルギ量に被測定物が耐えられない性質を有する場合に
はレーザ光の出力を低下せざるを得ない。そのため、微
弱な透過減衰光量を時間積分して感度を向上させねばな
らず測定効率が低下する問題点がある。また、レーザ光
の場合、波長領域に限界があり、各種材質の被測定物に
対応出来ない問題点がある。
In the above-mentioned prior art, since the single-wavelength light beam irradiated to the object to be measured uses only a part of the transmission attenuation wavelength range of the object to be measured, a light source such as a white light source is used. In the case of a light source having a wide emission spectrum, the utilization rate of the radiant energy of the light source is low and wasted. In addition, since the diffraction grating disperses light of a specific wavelength, it is necessary to change the diffraction angle continuously to emit light of a wide range of wavelengths, but the scanning speed and the response time of the detector are limited. However, it is not practically applicable because the device structure is complicated. Further, it is possible to improve the measurement efficiency by using a single-wavelength and high-output light source such as a laser beam, but there is a problem that the wavelength region is specified similarly to the above, and the laser beam When the object to be measured has a property of being unable to withstand the amount of irradiation energy, the output of laser light must be reduced. Therefore, there is a problem that the measurement efficiency is lowered because the sensitivity must be improved by time-integrating the weak transmitted attenuation light amount. Further, in the case of laser light, there is a problem in that the wavelength range is limited and it is not possible to deal with measured objects of various materials.

【0004】本発明は、以上の問題点を解決するもの
で、広範囲な波長領域を有する光源を用い、被測定物の
材質に応じて任意の波長領域の光を選択し、例えば、基
準測定物と比較しながら膜厚を効率的に自動検出出来る
と共に比較的簡便な構造からなる膜厚測定方法と膜厚測
定装置を提供することを目的とする。
The present invention solves the above problems by using a light source having a wide wavelength range and selecting light in an arbitrary wavelength range according to the material of the object to be measured. An object of the present invention is to provide a film thickness measuring method and a film thickness measuring device having a relatively simple structure and capable of efficiently and automatically detecting the film thickness.

【0005】[0005]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、薄膜からなる被測定物の膜厚を測定す
る方法であって、広範囲な波長領域の光線を放射する光
源からの放射光線の内、膜厚と相関関係のある透過率を
示す前記被測定物固有の波長領域の光線のみを光学フィ
ルタを介して透過させ、透過光線を前記被測定物に照射
し、その膜厚に相関して減衰された透過減衰光量に基づ
いて被測定物の膜厚を求める膜厚測定方法を特徴とする
ものである。また、この方法を具体的に実施する装置と
して、薄膜からなる被測定物の膜厚を測定する装置であ
って、広範囲な波長領域の光源を放射する光源と、膜厚
と相関関係のある透過率を示す前記被測定物固有の波長
領域の光線のみを透過させる光学フィルタと、前記被測
定物を透過して減衰された透過光線の透過減衰光量を基
にして前記被測定物の膜厚を自動検出表示する膜厚検出
部を設けてなる膜厚測定装置を構成するものである。ま
た、本発明では光学フィルタとしては、ショートカット
フィルタ,ロングカットフィルタ,バンドカットフィル
タの組み合わせやバンドパスフィルタが採用される。
In order to achieve the above object, the present invention provides a method for measuring the film thickness of an object to be measured, which comprises a thin film, and which comprises a light source that emits light rays in a wide wavelength range. Among the radiated light, only the light beam in the wavelength region peculiar to the object to be measured, which shows the transmittance correlated with the film thickness, is transmitted through the optical filter, and the transmitted light beam is irradiated to the object to be measured, and the film is formed. It is characterized by a film thickness measuring method for obtaining the film thickness of an object to be measured based on the amount of transmitted attenuated light attenuated in correlation with the thickness. Further, as a device for specifically implementing this method, a device for measuring the film thickness of an object to be measured composed of a thin film, which is a light source that emits a light source in a wide wavelength range, and a transmission that correlates with the film thickness. An optical filter that transmits only a light ray in a wavelength region specific to the measured object indicating a ratio, and a film thickness of the measured object based on the transmission attenuation light amount of the transmitted light that is attenuated by passing through the measured object. The film thickness measuring device is provided with a film thickness detecting section for automatic detection and display. Further, in the present invention, a combination of a short cut filter, a long cut filter, a band cut filter and a band pass filter are adopted as the optical filter.

【0006】[0006]

【作用】広範囲な波長領域を有する黒体炉のような光源
からの光線は光学フィルタにより波長選択され、膜厚と
透過率依存性のある被測定物固有の波長領域の光線を出
力する。その光線は、例えば被測定物および被測定物と
同一材質の基準測定物に照射され透過減衰光線となり検
出器に入力され光電変換され検出信号および基準検出信
号になる。この両信号は膜厚検出部の減算器により比較
減算され、信号処理装置および厚さ指示器により測定表
示される。カットフィルタの組み合わせやバンドパスフ
ィルタを使用することにより、任意の波長領域の光線を
選択抽出して被測定物の膜厚を測定可能とする。これに
より、光線光の有効利用が可能になり測定感度が増大す
る。
A light beam from a light source such as a black body furnace having a wide wavelength range is wavelength-selected by an optical filter and outputs a light beam in a wavelength range peculiar to an object to be measured, which has a dependency on film thickness and transmittance. The light beam is applied to, for example, the object to be measured and a reference object made of the same material as the object to be measured, becomes a transmission attenuation light beam, is input to the detector, and is photoelectrically converted into a detection signal and a reference detection signal. These two signals are compared and subtracted by the subtractor of the film thickness detection unit, and measured and displayed by the signal processing device and the thickness indicator. By using a combination of cut filters and a bandpass filter, it is possible to selectively extract light rays in an arbitrary wavelength range and measure the film thickness of the object to be measured. This enables effective use of light rays and increases measurement sensitivity.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は本発明の実施例1の全体構造を示す構成図、
図2は実施例の構成要素の1つのチョッパ回転器の正面
図、図3,図4は本発明の実施例2,実施例3の全体構
造を示す構成図、図5は波長と分光透過率との関係を示
す線図、図6は放射線量を示す分光放射輝度と波長との
関係を示す線図、図7乃至図18は光学フィルタの具体
例とそれによる所望の波長領域を選択する方法を説明す
るための線図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a block diagram showing the overall structure of a first embodiment of the present invention,
FIG. 2 is a front view of a chopper rotator, which is one of the constituent elements of the embodiment, FIGS. 3 and 4 are configuration diagrams showing the overall structure of the second and third embodiments of the present invention, and FIG. 5 is a wavelength and spectral transmittance. And FIG. 6 is a diagram showing the relationship between the spectral radiance indicating the radiation dose and the wavelength, and FIGS. 7 to 18 are specific examples of the optical filter and a method of selecting a desired wavelength region according to the specific example. It is a diagram for explaining.

【0008】(実施例1)図1に示すように、本実施例
の膜厚測定装置1は大別して光源2と、光学フィルタ3
と、チョッパ回転器4と、被測定物5用の検出器6と、
基準測定物7の検出器8と、膜厚検出部9を構成する減
算器10,信号処理装置11および厚さ指示器12等か
らなる。また、光源2の近傍にはパラボラミラの一部か
ら形成されるパラボラミラ片13が配設される。
(Embodiment 1) As shown in FIG. 1, the film thickness measuring apparatus 1 of this embodiment is roughly classified into a light source 2 and an optical filter 3.
A chopper rotator 4, a detector 6 for the DUT 5,
It comprises a detector 8 for the reference measurement object 7, a subtractor 10 constituting the film thickness detection unit 9, a signal processing device 11, a thickness indicator 12, and the like. In addition, a parabolic mirror piece 13 formed from a part of the parabolic mirror is arranged near the light source 2.

【0009】光源2は広範囲な波長領域の光線を放射す
るものからなり、例えば黒体炉(黒体・プランクの放射
体)のような熱放射体が適用される。前記黒体炉は図6
に示すように、紫外から遠赤外の広範囲波長領域におい
て所定の放射輝度を有するものである。なお、図6に示
した分光放射輝度と波長との関係曲線は温度をパラメー
タとして変化する。
The light source 2 emits light rays in a wide wavelength range, and a thermal radiator such as a black body furnace (black body / Planck radiator) is applied. The black body furnace is shown in FIG.
As shown in (1), it has a predetermined radiance in a wide wavelength range from ultraviolet to far infrared. The relationship curve between the spectral radiance and the wavelength shown in FIG. 6 changes with temperature as a parameter.

【0010】光学フィルタ3は後に詳しく説明するが、
光源2からの広範囲の波長の光線の内、膜厚と相関関係
のある透過率を示す波長領域の光線を選択透過させるも
ので、被測定物5の材質により設定される。なお、光学
フィルタ3としては短波長領域のみをカットするショー
トカットフィルタと高波長領域のみをカットするロング
カットフィルタと、特定の波長領域のみをカットするバ
ンドカットフィルタの組み合わせのものや、特定の波長
領域のみを透過させるバンドパスフィルタが採用され
る。
The optical filter 3 will be described in detail later,
The light source 2 selectively transmits light rays in a wavelength region showing a transmittance having a correlation with the film thickness, out of light rays having a wide range of wavelengths from the light source 2, and is set depending on the material of the DUT 5. The optical filter 3 includes a combination of a short cut filter that cuts only a short wavelength region, a long cut filter that cuts only a high wavelength region, and a band cut filter that cuts only a specific wavelength region, or a specific wavelength region. A bandpass filter that transmits only light is used.

【0011】チョッパ回転器4は、図1に示すように、
モータ14で回転されるチョッピング羽根15と、チョ
ッピング羽根15に係合し、その回転周期をカウントす
る同期カウンタ16等からなる。チョッピング羽根15
は、図2に示すように円周を4等分し、1/4円周の部
分に交互に開口部17と反射鏡部18を形成したものか
らなる。
The chopper rotator 4 is, as shown in FIG.
It is composed of a chopping blade 15 rotated by a motor 14 and a synchronous counter 16 which is engaged with the chopping blade 15 and counts the rotation cycle thereof. Chopping feather 15
As shown in FIG. 2, the circumference is divided into four equal parts, and the openings 17 and the reflecting mirror parts 18 are alternately formed in the part of the quarter circumference.

【0012】被測定物5は、例えばPETフィルム上に
MgO単層薄膜を蒸着形成したものからなる。被測定物
5を光が透過すると光は吸収減衰する。この分光透過率
(%)と波長(μm)とは図5に示すような関係を有す
る。この線図は被測定物5の薄膜の材質により相異し固
有のものである。図5に示すように、実線で示す曲線ア
のサンプル膜厚が最も薄く、点線の曲線イがその次に薄
く、一点鎖線の曲線ウが最も厚い。透過率は厚さが薄い
方が高い値を示すのが普通であるが、図5に示すように
波長により相異する。この場合はαおよびβで示す波長
領域においてのみ膜厚と透過率とはプラスの相関関係が
ある。従って、光学フィルタ3はこのα,βの波長領域
を選択する構造のものが最も効率的である。一方、基準
測定物7は被測定物5と同一材質のものからなり、予め
その膜厚は既知のものである。
The object to be measured 5 is formed by depositing a MgO single layer thin film on a PET film, for example. When light passes through the DUT 5, the light is absorbed and attenuated. The spectral transmittance (%) and the wavelength (μm) have a relationship as shown in FIG. This diagram differs depending on the material of the thin film of the DUT 5 and is unique. As shown in FIG. 5, the sample thickness of the curve A indicated by the solid line is the thinnest, the curve A of the dotted line is the second thinnest, and the curve C of the one-dot chain line is the thickest. Generally, the smaller the thickness is, the higher the transmittance is, but as shown in FIG. 5, it varies depending on the wavelength. In this case, there is a positive correlation between the film thickness and the transmittance only in the wavelength regions indicated by α and β. Therefore, the optical filter 3 having the structure that selects the wavelength regions of α and β is most efficient. On the other hand, the reference measurement object 7 is made of the same material as the measurement object 5, and its film thickness is known in advance.

【0013】検出器6,8は被測定物5および基準測定
物8を透過した透過減衰光量に見合う電気信号を発する
光電変換機能を有するものである。
The detectors 6 and 8 have a photoelectric conversion function of emitting an electric signal corresponding to the amount of transmitted attenuated light that has passed through the object to be measured 5 and the reference object to be measured 8.

【0014】膜厚検出部9は前記したように減算器1
0,信号処置装置11および厚さ指示器12からなる。
減算器10には検出器6,8および同期カウンタ16が
それぞれ連結され、それ等からの電気信号が入力され
る。具体的には減算器10は同期カウンタから出力され
るチョッピング羽根15の回転同期信号をモニタし、被
測定物5又は基準測定物7の切り替りタイミングを検出
すると共に、両者の透過減衰光量の差を演算し電気信号
として次段側に出力する機能を有するものからなる。ま
た、信号処理装置11は感算器10に連結し、感算器1
0の演算値を基にし予め計算されたルックアップテーブ
ルを参照して膜厚信号を発するものからなる。また、厚
さ指示器12は膜厚信号を基に膜厚値を表示するもので
ある。
As described above, the film thickness detecting section 9 has the subtracter 1
0, a signal processing device 11 and a thickness indicator 12.
The detectors 6 and 8 and the synchronous counter 16 are connected to the subtractor 10, and electric signals from them are input. Specifically, the subtractor 10 monitors the rotation synchronization signal of the chopping blade 15 output from the synchronization counter, detects the switching timing of the DUT 5 or the reference measurement object 7, and determines the difference in the amount of transmitted attenuation light between the two. Is calculated and output as an electric signal to the next stage side. In addition, the signal processing device 11 is connected to the calculator 10, and the calculator 1 is connected to the calculator 10.
The film thickness signal is generated by referring to a look-up table calculated in advance based on the calculated value of 0. Further, the thickness indicator 12 displays the film thickness value based on the film thickness signal.

【0015】次に、実施例1の膜厚測定装置1による膜
厚測定方法を説明する。光源2からある放射角度θの広
がりを持つ光線(H1)が放射される。光線(H1)は
パラボラミラ片13に当り、反射して平行光線(H2)
になる。平行光線(H2)は光学フィルタ3を通ること
により特定波長領域の光線(H3)が選択される。光線
(H3)はチョッパ回転器4のチョッピング羽根15に
より開口部17からそのまま平行に直進する光線(H
4)と反射鏡18により直角方向に光路を変更される光
線(H5)に分けられる。なお、光線(H4)と光線
(H5)は1:1の時間比で分割される。なお、チョッ
パ回転器4の同期カウンタ16から回転同期信号S5が
出力され減算器10に入力される。光線(H4)は被測
定物5を照射し、その膜厚に依存して減衰された透過減
衰光線(H6)となる。一方、光線(H5)は基準測定
物7を照射し透過減衰光線(H7)となる。透過減衰光
線(H6)および(H7)は検出器6および8に入りそ
れ等の光線の強度に応じる電気出力に変換され検出信号
S1および基準検出信号S2が出力される。前記の回転
同期信号S5と検出信号S1および基準検出信号S2は
減算器10に入力される。回転同期信号S5は検出信号
S1と基準検出信号S2の切り替りタイミングを制御す
るためのものである。減算器10は検出信号S1から基
準検出信号S2を減算し、減算信号S3を信号処理装置
11に入力させる。信号処理装置11では入力された減
算信号S3に対し被測定物5の分光透過特性を検出器
6,8の波長感度特性から予め計算されているルックア
ップテーブルを参照して減算信号S3を膜厚信号S4に
変換し厚さ指示器12に入力する。厚さ指示器12は膜
厚信号S4に相当する膜厚値を表示する。
Next, a film thickness measuring method by the film thickness measuring device 1 of the first embodiment will be described. A light ray (H1) having a spread of a certain radiation angle θ is emitted from the light source 2. The ray (H1) hits the parabola mirror piece 13 and is reflected to be a parallel ray (H2).
become. The parallel ray (H2) passes through the optical filter 3 to select the ray (H3) in the specific wavelength region. The light ray (H3) travels straight from the opening 17 in parallel by the chopping blade 15 of the chopper rotator 4 (H3).
4) and the reflecting mirror 18 divides the light beam into a light beam (H5) whose optical path is changed in a right angle direction. The ray (H4) and the ray (H5) are divided at a time ratio of 1: 1. The rotation counter 16 of the chopper rotator 4 outputs a rotation synchronization signal S5 to the subtractor 10. The light ray (H4) irradiates the DUT 5 and becomes a transmission attenuated light ray (H6) which is attenuated depending on its film thickness. On the other hand, the light ray (H5) irradiates the reference measurement object 7 and becomes a transmission attenuated light ray (H7). The transmission attenuated rays (H6) and (H7) enter detectors 6 and 8 and are converted into electric outputs corresponding to the intensities of these rays, and a detection signal S1 and a reference detection signal S2 are output. The rotation synchronization signal S5, the detection signal S1, and the reference detection signal S2 are input to the subtractor 10. The rotation synchronization signal S5 is for controlling the switching timing of the detection signal S1 and the reference detection signal S2. The subtractor 10 subtracts the reference detection signal S2 from the detection signal S1 and inputs the subtraction signal S3 to the signal processing device 11. The signal processing device 11 refers to the spectral transmission characteristics of the DUT 5 for the input subtraction signal S3 from the wavelength sensitivity characteristics of the detectors 6 and 8 with reference to a look-up table, and calculates the subtraction signal S3 with the film thickness. The signal S4 is converted and input to the thickness indicator 12. The thickness indicator 12 displays a film thickness value corresponding to the film thickness signal S4.

【0016】被測定物5の材料を変更した場合には光源
2はそのまま使用され、光学フィルタ3と基準測定物7
と信号処理装置内のルックアップテーブルを交換すれば
よい。すなわち、被測定物5の材質により図5に示した
分光透過率と波長との関係を示す曲線の形態が変化する
ため、膜厚に依存する分光透過率を有する波長領域を選
択することが必要になる。すなわち、光学フィルタ3に
よる透過領域を変えることによって膜厚測定がそのまま
可能になる。なお、単一素材からなる単層,薄膜の測定
は問題ないが、基材フィルム上に積層された薄膜を測定
する場合、基材の分光透過率特性を考慮した上で測定波
長領域の選択等を行う必要がある。また、実施例1の場
合はチョッパ回転器4により光線(H4)と(H5)に
切り換えるもので、それぞれの検出器6,8への入射光
量は均等になる。
When the material of the object to be measured 5 is changed, the light source 2 is used as it is, and the optical filter 3 and the reference object to be measured 7 are used.
The lookup table in the signal processing device may be exchanged. That is, since the shape of the curve showing the relationship between the spectral transmittance and the wavelength shown in FIG. 5 changes depending on the material of the DUT 5, it is necessary to select the wavelength region having the spectral transmittance that depends on the film thickness. become. That is, the film thickness can be measured as it is by changing the transmission region by the optical filter 3. It should be noted that there is no problem in measuring single layers and thin films made of a single material, but when measuring thin films laminated on a base film, the measurement wavelength range should be selected after considering the spectral transmittance characteristics of the base material. Need to do. Further, in the case of the first embodiment, the light beams (H4) and (H5) are switched by the chopper rotator 4, and the amounts of light incident on the detectors 6 and 8 become equal.

【0017】(実施例2)図3に本発明の実施例2を示
す。この膜厚測定装置1aは前記実施例1のチョッパ回
転器4の替りに半透過鏡19を使用したものでその他の
構成は実施例1と同一であり詳細説明を省略する。通
常、半透過鏡19は波長依存性を有しており広い波長領
域にわたって膜厚測定する必要があるものには配慮を要
する。また、半透過鏡19に照射される光線の強度が二
分されるため検出器6,8側への入射光量が半減する。
しかし、チョッパ回転器の同期的な制御を行うことなく
本実施例により膜厚測定は可能である。光学フィルタ3
からの光線(H3)は半透過鏡19により光線(H4)
と光線(H5)に1:1で分割される。以下、前記実施
例と同様に被測定物6,基準測定物7および検出器6,
8を通った検出信号S1および基準検出信号S2が膜厚
検出部9側に入り、膜厚測定および表示が行われる。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention. This film thickness measuring device 1a uses a semi-transmissive mirror 19 instead of the chopper rotator 4 of the first embodiment, and other configurations are the same as those of the first embodiment, and detailed description thereof will be omitted. Normally, the semi-transmissive mirror 19 has wavelength dependence, and care must be taken when the film thickness needs to be measured over a wide wavelength range. Further, since the intensity of the light beam applied to the semi-transmissive mirror 19 is divided into two, the amount of light incident on the detectors 6 and 8 is halved.
However, the film thickness can be measured according to this embodiment without synchronously controlling the chopper rotator. Optical filter 3
The light ray (H3) from is transmitted by the semi-transmissive mirror 19 (H4).
And the ray (H5) is split 1: 1. Hereinafter, in the same manner as in the above-described embodiment, the DUT 6, the reference measured object 7, and the detector 6,
The detection signal S1 and the reference detection signal S2 that have passed through 8 enter the film thickness detection unit 9 side, and film thickness measurement and display are performed.

【0018】(実施例3)本実施例の膜厚測定装置1b
は検出器1個のみ使用し、検出器の感度のバラツキによ
る誤差を回避させる点に特徴を有するものである。ま
た、図1および図3の膜厚測定装置1,1aと相異する
構造としては半透過鏡19とチョッパ回転器4を併用す
るもので、この場合チョッパ回転器4は被測定物5およ
び基準測定物7の後段側に配置される。半透過鏡19を
透過した光線(H4)は被測定物5を透過して透過減衰
光線(H6)となり、チョッパ回転器4に照射される。
一方、半透過鏡19で反射した光線(H5)は基準測定
物7を透過し透過減衰光線(H7)となり、更に反射鏡
20,21を介してチョッパ回転器4に照射される。チ
ョッパ回転器4により透過減衰光線(H6)又は(H
7)のいずれかが単一の検出器6に入り、検出信号S1
又は基準検出信号S2と交互になり、膜厚検出部9側に
送られる。それにより、前記とほぼ同様な膜厚測定が出
来る。
(Third Embodiment) A film thickness measuring apparatus 1b according to the present embodiment.
Is characterized in that only one detector is used and errors due to variations in the sensitivity of the detector are avoided. Further, as a structure different from the film thickness measuring devices 1 and 1a of FIGS. 1 and 3, a semi-transmissive mirror 19 and a chopper rotator 4 are used together. In this case, the chopper rotator 4 is the object to be measured 5 and the reference. It is arranged on the rear side of the measurement object 7. The light ray (H4) transmitted through the semi-transmissive mirror 19 is transmitted through the DUT 5 and becomes a transmission attenuation light ray (H6), which is applied to the chopper rotator 4.
On the other hand, the light beam (H5) reflected by the semi-transmissive mirror 19 is transmitted through the reference measurement object 7 to become a transmission attenuation light beam (H7), and is further applied to the chopper rotator 4 via the reflecting mirrors 20 and 21. The transmission light ray (H6) or (H
Either of 7) enters the single detector 6 and the detection signal S1
Alternatively, it alternates with the reference detection signal S2 and is sent to the film thickness detection unit 9 side. Thereby, almost the same film thickness measurement as described above can be performed.

【0019】次に、光学フィルタ3の構造と作用を説明
する。波長と分光放射輝度との関係が図7の曲線Aで示
される光源2が使用された場合について説明する。被測
定物5の膜厚の材質,組成により図5に示したような分
光透過率(%)と波長(μm)との関係が求められ、仮
りに波長領域がα,βの範囲の光源光により膜厚測定を
行う場合について説明する。まず、図8に示すようにシ
ョートカットフィルタにより図7の波長領域αの左端に
相当する波長から原点までをカットしそれ以外の部分を
透過領域とする。次に、ロングカットフィルタを用い図
9に示すように波長領域βの右端から長波長側をカット
しそれ以外の部分を透過領域とする。次に、図10に示
すようにバンドカットフィルタを使用し波長領域αの右
端と波長領域βの左端の間をカットしそれ以外の部分を
透過領域とする。図8,図9,図10に示したショート
カットフィルタ,ロングカットフィルタおよびバンドカ
ットフィルタを組み合わすことにより図11に示した透
過領域を有する光学フィルタ3を形成することが出来
る。
Next, the structure and operation of the optical filter 3 will be described. A case will be described in which the light source 2 whose relationship between the wavelength and the spectral radiance is shown by the curve A in FIG. 7 is used. The relationship between the spectral transmittance (%) and the wavelength (μm) as shown in FIG. 5 is obtained according to the material and composition of the film thickness of the DUT 5, and the light source light in the wavelength range α, β is assumed. The case of measuring the film thickness will be described. First, as shown in FIG. 8, a portion from the wavelength corresponding to the left end of the wavelength region α in FIG. 7 to the origin is cut by a shortcut filter, and the other portion is set as a transmission region. Next, using a long cut filter, as shown in FIG. 9, the long wavelength side is cut from the right end of the wavelength region β, and the other portion is set as a transmission region. Next, as shown in FIG. 10, a band cut filter is used to cut between the right end of the wavelength region α and the left end of the wavelength region β, and the other portion is set as the transmission region. By combining the shortcut filter, the long cut filter and the band cut filter shown in FIGS. 8, 9 and 10, the optical filter 3 having the transmission region shown in FIG. 11 can be formed.

【0020】PETフィルムにMgOを蒸着した被測定
物5において、MgOの膜厚に依存して透過光量の減衰
が見られるのは16.1μmから25μmの赤外波長領
域である。図12に示した分光放射輝度特性を有する光
源2を採用した場合にMgOに対応する波長領域の光学
フィルタ3を次のようにして形成される。すなわち、図
13に示すように波長16.1μm以下をカットするシ
ョートカットフィルタと図14に示すように波長25μ
m以上をカットするロングカットフィルタを組み合わす
ことにより波長領域が16.1μm乃至25μm間のみ
を透過領域とする光学フィルタ3が形成される。図1
3,図14に示すようにそれぞれの透過率をT1,T2
でカットすることにより、波長16.1μm乃至25μ
mの間で図15の分光放射輝度を有する光線を光学フィ
ルタ3から形成することが出来る。なお、図15は波長
16.1μmから25μmの間において図12の輝度に
T1×T2を積算したものである。
In the DUT 5 in which MgO is vapor-deposited on the PET film, the attenuation of the amount of transmitted light is observed depending on the film thickness of MgO in the infrared wavelength range of 16.1 μm to 25 μm. When the light source 2 having the spectral radiance characteristic shown in FIG. 12 is adopted, the optical filter 3 in the wavelength region corresponding to MgO is formed as follows. That is, as shown in FIG. 13, a short cut filter for cutting wavelengths of 16.1 μm or less and a wavelength of 25 μm as shown in FIG.
By combining a long cut filter that cuts m or more, the optical filter 3 having a transmission region only in the wavelength region of 16.1 μm to 25 μm is formed. Figure 1
3. As shown in FIG. 14, the respective transmittances are T1 and T2.
Wavelength 16.1μm to 25μ by cutting with
Light rays having the spectral radiance of FIG. 15 between m can be formed from the optical filter 3. Note that, in FIG. 15, T1 × T2 is added to the luminance of FIG. 12 in the wavelength range of 16.1 μm to 25 μm.

【0021】前記と同じ分光放射輝度特性(図18に示
す)を有する光線を選択する光学フィルタとしては前記
の形式のものに限らず、波長16.1μmから25μm
間を透過領域とするバンドパスフィルタを用いてもよ
い。図16の特性を有する光線を図17に示す特性のバ
ンドパスフィルタで透過させると直接図18の分光放射
輝度特性を有する光線が求められる。
The optical filter for selecting a light beam having the same spectral radiance characteristic as shown above (shown in FIG. 18) is not limited to the above-mentioned type, but a wavelength of 16.1 μm to 25 μm.
A bandpass filter having a transparent region between them may be used. When a light ray having the characteristic shown in FIG. 16 is transmitted by a bandpass filter having the characteristic shown in FIG. 17, a light ray having the spectral radiance characteristic shown in FIG. 18 is directly obtained.

【0022】[0022]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)広範囲の波長領域を有する光源を使用し、被測定物
に対応した波長領域の光線を効率的に選択することが出
来るため、各種の被測定物の膜厚測定感度が向上する。 2)膜厚と依存性(相関性)を有する波長範囲の光線を
光学フィルタの組み合わせ内容を変えることにより簡単
に、かつ正確に作成することが出来る。これにより高精
度な膜厚測定が出来る。 3)被測定物と既知の基準測定物とを比較して膜厚を測
定するため高精度測定が出来る。 4)自動測定により膜厚を求めるため測定効率の向上が
図れる。
According to the present invention, the following remarkable effects are obtained. 1) Since a light source having a wide wavelength range can be used to efficiently select a light beam in a wavelength range corresponding to an object to be measured, the film thickness measurement sensitivity of various objects to be measured is improved. 2) A light ray in a wavelength range having a dependency (correlation) with the film thickness can be easily and accurately created by changing the combination of optical filters. This allows highly accurate film thickness measurement. 3) Since the film thickness is measured by comparing the measured object with a known reference measured object, highly accurate measurement can be performed. 4) Since the film thickness is obtained by automatic measurement, the measurement efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例(実施例1)の全体構造を示
す構成図。
FIG. 1 is a configuration diagram showing an overall structure of an embodiment (Embodiment 1) of the present invention.

【図2】図1の実施例におけるチョッパ回転器の正面
図。
FIG. 2 is a front view of the chopper rotator in the embodiment of FIG.

【図3】本発明の他の実施例(実施例2)の全体構造を
示す構成図。
FIG. 3 is a configuration diagram showing the overall structure of another embodiment (Embodiment 2) of the present invention.

【図4】本発明の更に別の実施例(実施例3)の全体構
造を示す構成図。
FIG. 4 is a block diagram showing the overall structure of still another embodiment (Embodiment 3) of the present invention.

【図5】膜厚をパラメータにとった試料の分光透過率線
図。
FIG. 5 is a spectral transmittance diagram of a sample with film thickness as a parameter.

【図6】本発明に適用される光源の分光放射輝度を示す
線図。
FIG. 6 is a diagram showing a spectral radiance of a light source applied to the present invention.

【図7】光学フィルタの波長領域を説明するための線
図。
FIG. 7 is a diagram for explaining a wavelength region of an optical filter.

【図8】ショートカットフィルタの透過領域を示す線
図。
FIG. 8 is a diagram showing a transparent region of a shortcut filter.

【図9】ロングカットフィルタの透過領域を示す線図。FIG. 9 is a diagram showing a transmission region of a long cut filter.

【図10】バンドカットフィルタの透過領域を示す線
図。
FIG. 10 is a diagram showing a transmission region of a band cut filter.

【図11】図7乃至図9のカットフィルタを透過した光
源光線の分光放射輝度を示す線図。
FIG. 11 is a diagram showing the spectral radiance of a light source beam that has passed through the cut filter of FIGS. 7 to 9;

【図12】波長16.1μmから25μm間の波長領域
を有する光学フィルタを説明するための線図。
FIG. 12 is a diagram for explaining an optical filter having a wavelength region between wavelengths of 16.1 μm and 25 μm.

【図13】ショートカットフィルタの透過領域(16.
1μm以上)を示す線図。
FIG. 13 is a transparent region (16.
(1 μm or more).

【図14】ロングカットフィルタの透過領域(25μm
以下)を示す線図。
FIG. 14: Transmission area of the long-cut filter (25 μm
The following).

【図15】図13,図14のカットフィルタを透過した
光源光線の分光放射輝度線図。
FIG. 15 is a spectral radiance diagram of a light source beam that has passed through the cut filters of FIGS. 13 and 14;

【図16】バンドパスフィルタの内容を説明するための
線図。
FIG. 16 is a diagram for explaining the contents of a bandpass filter.

【図17】バンドパスフィルタの透過領域(16.1μ
m乃至25μm)を示す線図。
FIG. 17 is a transmission region (16.1 μm) of the bandpass filter.
m to 25 μm).

【図18】図17のバンドパスフィルタを透過した光源
光線の分光放射輝度線図。
18 is a spectral radiance diagram of a light source beam that has passed through the bandpass filter of FIG.

【符号の説明】[Explanation of symbols]

1 膜厚測定装置 1a 膜厚測定装置 1b 膜厚測定装置 2 光源 3 光学フィルタ 4 チョッパ回転器 5 被測定物 6 検出器 7 基準測定物 8 検出器 9 膜厚検出部 10 減算器 11 信号処理装置 12 厚さ指示器 13 パラボラミラ片 14 モータ 15 チョッピング羽根 16 同期カウンタ 17 開口部 18 反射鏡 19 半透過鏡 20 反射鏡 21 反射鏡 1 film thickness measuring device 1a film thickness measuring device 1b film thickness measuring device 2 light source 3 optical filter 4 chopper rotator 5 measured object 6 detector 7 reference measured object 8 detector 9 film thickness detecting section 10 subtractor 11 signal processing device 12 Thickness Indicator 13 Parabola Mira Piece 14 Motor 15 Chopping Blade 16 Synchronous Counter 17 Opening 18 Reflector 19 Semi-Transparent Mirror 20 Reflector 21 Reflector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 薄膜からなる被測定物の膜厚を測定する
方法であって、広範囲な波長領域の光線を放射する光源
からの放射光線の内、膜厚と相関関係のある透過率を示
す前記被測定物固有の波長領域の光線のみを光学フィル
タを介して透過させ、透過光線を前記被測定物に照射
し、その膜厚に相関して減衰された透過減衰光量に基づ
いて被測定物の膜厚を求めることを特徴とする膜厚測定
方法。
1. A method for measuring the film thickness of an object to be measured, which comprises a thin film, wherein the transmittance of light emitted from a light source that emits light in a wide wavelength range is correlated with the film thickness. Only the light beam in the wavelength region peculiar to the measured object is transmitted through an optical filter, the transmitted light beam is irradiated to the measured object, and the measured object is based on the amount of transmitted attenuated light attenuated in correlation with the film thickness. A film thickness measuring method, characterized in that the film thickness is determined.
【請求項2】 薄膜からなる被測定物の膜厚を測定する
装置であって、広範囲な波長領域の光線を放射する光源
と、膜厚と相関関係のある透過率を示す前記被測定物固
有の波長領域の光線のみを透過させる光学フィルタと、
前記被測定物を透過して減衰された透過光線の透過減衰
光量を基にして前記被測定物の膜厚を自動検出表示する
膜厚検出部を設けることを特徴とする膜厚測定装置。
2. An apparatus for measuring the film thickness of an object to be measured, which comprises a thin film, the light source emitting a light ray in a wide wavelength range, and the object to be measured which exhibits a transmittance correlated with the film thickness. An optical filter that transmits only light rays in the wavelength region of
A film thickness measuring device, comprising: a film thickness detecting section for automatically detecting and displaying a film thickness of the object to be measured based on a transmission attenuation light amount of a transmitted light beam that has been transmitted through the object to be measured and attenuated.
【請求項3】 前記光学フィルタが、低波長領域を遮断
するショートカットフィルタと高波長領域を遮断するロ
ングカットフィルタと特定の波長のみを遮断するバンド
カットフィルタの組み合わせ体又は、特定の波長領域の
みを透過させるバンドパスフィルタのいずれかである請
求項1の膜厚測定方法。
3. The optical filter is a combination of a short cut filter that cuts off a low wavelength region, a long cut filter that cuts off a high wavelength region, and a band cut filter that cuts off only a specific wavelength, or only a specific wavelength region. The film thickness measuring method according to claim 1, wherein the film thickness measuring method is one of a band-pass filter that transmits light.
【請求項4】 前記光学フィルタが、低波長領域を遮断
するショートカットフィルタと高波長領域を遮断するロ
ングカットフィルタと特定の波長のみを遮断するバンド
カットフィルタの組み合わせ体又は、特定の波長領域の
みを透過させるバンドパスフィルタのいずれかである請
求項2の膜厚測定装置。
4. The optical filter is a combination of a short cut filter that cuts off a low wavelength region, a long cut filter that cuts off a high wavelength region, and a band cut filter that cuts off only a specific wavelength, or only a specific wavelength region. The film thickness measuring device according to claim 2, wherein the film thickness measuring device is one of a band-pass filter that transmits light.
JP32294293A 1993-12-22 1993-12-22 Method and apparatus for measuring film thickness Pending JPH07181016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32294293A JPH07181016A (en) 1993-12-22 1993-12-22 Method and apparatus for measuring film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32294293A JPH07181016A (en) 1993-12-22 1993-12-22 Method and apparatus for measuring film thickness

Publications (1)

Publication Number Publication Date
JPH07181016A true JPH07181016A (en) 1995-07-18

Family

ID=18149362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32294293A Pending JPH07181016A (en) 1993-12-22 1993-12-22 Method and apparatus for measuring film thickness

Country Status (1)

Country Link
JP (1) JPH07181016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147475A (en) * 2005-11-29 2007-06-14 Hitachi High-Technologies Corp Optical inspection device and method therefor
WO2021186910A1 (en) * 2020-03-19 2021-09-23 横浜ゴム株式会社 Thickness measurement device and thickness measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147475A (en) * 2005-11-29 2007-06-14 Hitachi High-Technologies Corp Optical inspection device and method therefor
WO2021186910A1 (en) * 2020-03-19 2021-09-23 横浜ゴム株式会社 Thickness measurement device and thickness measurement method
JP2021148630A (en) * 2020-03-19 2021-09-27 横浜ゴム株式会社 Thickness measurement device and thickness measurement method

Similar Documents

Publication Publication Date Title
JPH01202633A (en) Radiation thermometer
JPH10206552A (en) Image detector improved in contrast
US8184302B2 (en) Measuring system for optical monitoring of coating processes
US4533246A (en) Photometer for measuring atomic fluorescence
US3825762A (en) Apparatus for measuring luminescent radiation
US3770958A (en) Infrared radiation detection by a matched system
US3901601A (en) Chopper arrangement for atomic absorption spectrophotometer
US4743775A (en) Absorption gauge for determining the thickness, moisture content or other parameter of a film of coating
JPH07181016A (en) Method and apparatus for measuring film thickness
US20230417657A1 (en) Spectral sensing device and method for measuring optical radiation
US10072986B1 (en) Detector for low temperature transmission pyrometry
JP3266046B2 (en) Phosphor quantum efficiency measurement device
JP3247845B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
US4666305A (en) Film thickness measuring apparatus employing intensity compensation device of spectral reflectivity
JPS58120106A (en) Detecting device for focal point
US20040062350A1 (en) Arrangement for determining the spectral reflectivity of a measurement object
WO2018003045A1 (en) Beam splitter with aperture function, and detector provided with said beam splitter
JPH0443222B2 (en)
JPH11271215A (en) Surface plasmon resonance angle detector
JPH03163391A (en) X-ray ct detector
FR3061772A1 (en) METHOD OF ANALYZING A MEASURING RANGE AND MINIATURE SPECTROMETER FOR IMPLEMENTING THE METHOD
JPH0719820A (en) Optical film thickness monitor
JPS58162805A (en) Method for monitoring vapor deposited film optically
John 5. Calibration of A Spectroscopic System
JP3402524B2 (en) 3D spectrophotometer