WO2021186910A1 - Thickness measurement device and thickness measurement method - Google Patents

Thickness measurement device and thickness measurement method Download PDF

Info

Publication number
WO2021186910A1
WO2021186910A1 PCT/JP2021/003070 JP2021003070W WO2021186910A1 WO 2021186910 A1 WO2021186910 A1 WO 2021186910A1 JP 2021003070 W JP2021003070 W JP 2021003070W WO 2021186910 A1 WO2021186910 A1 WO 2021186910A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
light
light source
light receiving
thickness measuring
Prior art date
Application number
PCT/JP2021/003070
Other languages
French (fr)
Japanese (ja)
Inventor
恭隆 増田
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2021186910A1 publication Critical patent/WO2021186910A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Definitions

  • the present invention relates to a thickness measuring device and a thickness measuring method for measuring the thickness of an object over a predetermined range.
  • a liner arranged on the inner surface of an FRP (Fiber Reinforced Plastics) tank used for various purposes is manufactured by blow molding or a manufacturing method similar thereto.
  • Blow molding is a method of forming a hollow member by extruding molten plastic into a tube shape and pressurizing the molten plastic along the inner mold.
  • the wall thickness of the plastic when it becomes a tube may not be constant, and the film thickness of the liner, which is a molded product, may not be constant. Therefore, the film thickness of the liner, which is a molded product, is measured using an ultrasonic film thickness meter to ensure the quality of the product.
  • Patent Document 1 is a method for non-destructively measuring the liner thickness of an outer lining tube having similar physical properties to the mother tube, and ultrasonic waves are incident on the inner surface of the outer lining tube from the inner surface side of the tube.
  • the liner thickness is measured based on the reflected wave of the incident ultrasonic wave.
  • the boundary surface reflected wave is detected without being affected by the front surface reflected wave and the back surface reflected wave.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to improve efficiency in measuring the thickness of an object over a wide range.
  • one embodiment of the present invention is a thickness measuring device for measuring the thickness of an object over a predetermined range, and the extending direction of the object is on one surface side of the object.
  • a line-shaped light source that is arranged in parallel and irradiates light toward one surface of the object, and a line-shaped light source that is arranged side by side in parallel with the light source on the other surface side of the object and receives transmitted light transmitted through the object.
  • a moving unit that moves the object while keeping the distance between the plurality of light receiving units, the object and the light source, and the distance between the object and the light receiving unit constant, and each of the light receiving units.
  • one embodiment of the present invention is a thickness measuring method for measuring the thickness of an object over a predetermined range, and a line arranged on one surface side of the object parallel to the extending direction of the object. The object was transmitted by a light irradiation step of irradiating light from the shape of the light source toward the one surface and a plurality of light receiving portions arranged side by side in parallel with the light source on the other surface side of the object.
  • a light receiving step of receiving transmitted light a moving step of moving the object while keeping the distance between the object and the light source and the distance between the object and the light receiving portion constant, and the respective above. It is characterized by including a thickness calculation step of calculating the thickness of a portion of the object located between the light source and the light receiving portion based on the illuminance of the transmitted light received by the light receiving portion. ..
  • FIG. 1 is a diagram showing a schematic configuration of a thickness measuring device according to an embodiment.
  • the thickness measuring device 10 measures the thickness of the object O over a predetermined range.
  • measuring the thickness over a predetermined range means, for example, not measuring the thickness at several points sporadically, but at least a part of the range of the object O at a predetermined measurement interval. Refers to continuously measuring the thickness of multiple points.
  • the object O is, for example, a film-like member, and in the present embodiment, is a plastic liner of a fiber reinforced plastic container, specifically, an inner liner of an aircraft water tank having a cylindrical shape (curved surface shape), for example. And. It is assumed that the object O is a light-transmitting and opaque material (transparency is equal to or less than a predetermined value). That is, the object O has a light transmittance such that the irradiation light emitted from one surface in the thickness direction can be detected as transmitted light on the other surface, and the illuminance of the irradiation light and the illuminance of the transmitted light are different. It is assumed that a difference occurs depending on the thickness of the portion (light passing distance) (generally, irradiation light> transmitted light).
  • the thickness measuring device 10 includes a light source 12 and a light receiving unit 14 at positions facing each other with the object O in between.
  • the light source 12 and the light receiving portion 14 are both formed in a line shape, and their extending directions are arranged parallel to the cylindrical axis of the object O, and are arranged at intervals in the radial direction of the cylinder.
  • the light source 12 is arranged in a line on one surface F1 side of the object O, and irradiates light toward one surface F1.
  • a plurality of point light sources (for example, LEDs) are arranged in a line, and each point light source emits light with a constant luminous flux to supply light having a constant illuminance to the irradiation side of the light source 12.
  • a high-power LED work light formed in a line shape can be used.
  • the light receiving unit 14 is arranged side by side with the light source 12 on the other surface F2 side of the object O, and receives the transmitted light transmitted through the object O.
  • a plurality of light receiving elements are arranged in a line, and each light receiving element outputs an output according to the illuminance to detect the illuminance at the position of each light receiving unit 14.
  • the illuminance refers to the amount of light incident per unit area, and is a physical quantity representing the degree of brightness of the surface illuminated by the light source.
  • the intensity of light detected by the light receiving unit 14 is represented by illuminance, but other physical quantities representing the intensity of light may be used.
  • a highly responsive and inexpensive silicon (Si) photodiode is used as the light receiving unit 14.
  • Si silicon photodiode
  • the current generated by light reception is converted into a voltage and output. It is assumed that the thickness measuring device 10 is installed in a dark room, and the light received by the light receiving unit 14 is only the light emitted from the light source 12.
  • the honeycomb structure 20 is arranged between the light source 12 and the object O or at least one of the light receiving unit 14 and the object O.
  • the honeycomb structure 20 (honeycomb core) is arranged both between the light source 12 and the object O and between the light receiving portion 14 and the object O.
  • the honeycomb structure 20 When the irradiation light L1 passes through the honeycomb structure 20, only the light along the extending direction of the opening of the honeycomb structure 20 reaches the opposite side (object O side) with respect to one surface F1 of the object O.
  • the irradiation light L1' is vertically incident.
  • the irradiation light L1'that has reached one surface F1 of the object O passes through the object O and is transmitted from the other surface F2 of the object O as transmitted light L2, but some light is scattered even in the object O. .. Therefore, the honeycomb structure 20 is also installed on the other surface F2 side, and the transmitted light L2'which has reduced the influence of the scattered light by passing through the honeycomb structure 20 is received by the light receiving unit 14.
  • the moving unit 16 moves the object O while keeping the distance between the object O and the light source 12 and the distance between the object O and the light receiving unit 14 constant.
  • the moving portion 16 rotates the object O around the cylindrical axis. That is, the object O is moved in a direction orthogonal to the extending direction of the light source 12 and the light receiving unit 14 (the cylindrical tangential direction of the object O).
  • the moving unit 16 includes, for example, a support member that supports the object O, an actuator (motor) that moves the support member in a predetermined direction, and a detection unit (for example, an encoder) that detects the amount of movement of the actuator.
  • the thickness measuring device 10 can measure the thickness of the object O along the line by having the line-shaped light source 12 and the light receiving unit 14, and further, by moving the object O by the moving unit 16. , The thickness of the object O can be measured in a plane (over a predetermined range).
  • the thickness calculation unit 18 calculates the thickness of the portion of the object O located between the light source 12 and the light receiving unit 14 based on the illuminance of the transmitted light received by each light receiving unit 14.
  • the thickness calculation unit 18 irradiates light from the light source 12 to the location of the object O whose thickness has been measured in advance with an ultrasonic film thickness meter or the like, and the light receiving unit 14 receives the illuminance to obtain the thickness and illuminance.
  • the thickness is calculated based on the correlation with.
  • FIG. 5 is an explanatory diagram schematically showing an example of the correlation between the illuminance and the thickness of the object.
  • the object O is an opaque material, and when the illuminance of the incident light is constant, the illuminance of the transmitted light changes according to the thickness of the portion. More specifically, the thicker the portion, the more components are absorbed or scattered in the object O, and the darker the portion (the illuminance becomes lower).
  • the illuminance is divided into eight stages, and the thickness corresponding to each stage is set. Although the illuminance is shown by shading in the drawing, the illuminance value (voltage value output from the photodiode) and the thickness are actually associated with each other.
  • the thickness is 0.10 mm or less at the stage where the illuminance is the highest, the thickness is 0.11 mm or more and 0.12 mm or less at the stage where the illuminance is the second highest, and the thickness is 0.50 mm or more at the stage where the illuminance is the lowest. It is set. By using such a correspondence, the thickness of the portion of the object O facing the light receiving unit 14 can be calculated from the illuminance of the light received by the light receiving unit 14.
  • the material or the compounding ratio of the material may be changed due to a change in the required specifications as a product.
  • the thickness measuring device 10 can measure the thickness of various types of objects (inner liner in the present embodiment) having different specifications. Therefore, the thickness calculation unit 18 may maintain the correlation between the illuminance and the thickness for each of the material constituting the object O and the blending ratio of the material.
  • the correlation between the illuminance and the thickness may change depending on the type of the light source 12, the positional relationship between the light source 12 and the light receiving unit 14 and the object O (distance between them), and the like. .. Therefore, the thickness calculation unit 18 may maintain the correlation between the illuminance and the thickness for each of these parameters.
  • the correlation between the illuminance and the thickness is not obtained by actual measurement, but the known correlation is obtained by using machine learning or artificial intelligence (AI).
  • the correlation in the specification may be estimated based on the relationship. That is, it may further include an estimation unit 19 that estimates the correlation coefficient in an object configured by blending an arbitrary material at an arbitrary blending ratio based on a known correlation.
  • the existing correlation does not apply even when the measurement conditions such as the type (model number, etc.) of the light source 12 and the light receiving unit 14 and the positional relationship between the light source 12 and the light receiving unit 14 are changed instead of the specifications of the object O. It may disappear.
  • the estimation unit 19 may be applied to such a change so that a correlation under arbitrary measurement conditions can be obtained. By providing the estimation unit 19, it is not necessary to obtain the correlation by actual measurement every time the specifications and measurement conditions of the object O are changed, and the production efficiency of the object O can be improved.
  • FIG. 2 is an explanatory diagram showing an example of an actual device configuration of the thickness measuring device.
  • the thickness measuring device 10 shown in FIG. 2 measures the thickness of the inner liner 300, which is the object O.
  • the inner liner 300 has a substantially cylindrical shape (bale shape), and an opening 301 that serves as an entrance / exit for water is provided on the bottom surface of one side (upper side in FIG. 2).
  • An LED work light 302 which is a light source 12 on the line, is inserted into the inner liner 300 from the opening 301 along the axial direction of the inner liner 300.
  • the LED work light 302 is supported by a movable light source support member (not shown).
  • the light source support member is movable within a range in which the LED work light 302 can be inserted from the outside of the inner liner 300 into the inside of the inner liner 300.
  • the light irradiation direction of the LED work light 302 (the direction in which the light intensity is highest) is arranged so as to be the light receiving portion 14 direction.
  • a photodiode unit 304 in which a plurality of silicon photodiodes are linearly arranged is arranged.
  • the photodiode unit 304 is provided at a position where the LED work light 302 and the inner liner 300 are opposed to each other, and the light detection direction is directed to the LED work light 302 side.
  • the photodiode unit 304 is supported by a fixed light receiving portion support member (not shown).
  • the LED work light 302 is arranged inside the inner liner 300 and the photodiode unit 304 is arranged outside the object O.
  • the LED work light 302 is arranged outside the inner liner 300 and the photodiode unit.
  • the 304s may be arranged inside the object O, respectively.
  • the inner liner 300 is mounted on a circular turntable 310, and the turntable 310 can be rotated by a motor 306 which is a moving portion 16.
  • a motor 306 which is a moving portion 16.
  • the turntable 310 rotates, and the inner liner 300 also rotates accordingly.
  • the LED work light 302 and the photodiode unit 304 are fixed, and the inner liner 300 passes between the LED work light 302 and the photodiode unit 304.
  • the on / off of the motor 306 is controlled by the computer 308 which is the thickness calculation unit 18 and the estimation unit 19, and the rotation state (rotation angle) of the motor 306 is detected by the built-in encoder and output to the computer 308. ..
  • the thickness can be increased by aligning the split mark of the mold transferred at the time of blow molding of the inner liner 300 with the reference position mark attached to the turntable 310.
  • the measurement result can be easily collated with the position of the inner liner 300.
  • each component of the thickness measuring device 10 is arranged so that the inner liner 300 is placed so as to be placed in the vertical direction, but the inner liner 300 can be held sideways.
  • each component of the thickness measuring device 10 may be arranged so that the inner liner 300 is placed so that the axial direction is directed to the horizontal direction.
  • the computer 308, which is the calculation unit 18, associates the voltage value (illuminance data) output from the photodiode unit 304 with the rotation angle output from the encoder to correlate the position and voltage value of the inner liner 300 in the circumferential direction. And associate with. Then, the voltage value is converted into the thickness of the inner liner 300 by using the correlation as shown in FIG. 5, and the thickness at each point of the inner liner 300 is calculated. The voltage value may be converted into the thickness and then associated with the rotation angle.
  • FIG. 4 is a diagram schematically showing the measurement result of the thickness.
  • the vertical axis represents the thickness of the inner liner 300
  • the horizontal axis represents the rotation angle from the reference position.
  • Each system D1 to D4 corresponds to each photodiode of the photodiode unit 304, and indicates a position along the axial direction of the inner liner 300.
  • the photodiode unit 304 is actually composed of several tens of photodiodes, and the same number of systems are output as measurement results. ..
  • the target thickness (or threshold value) shown on the vertical axis is the minimum value of the thickness required for the inner liner 300.
  • FIG. 1 the target thickness shown on the vertical axis
  • the measured value of each system exceeds the target thickness of the inner liner 300 over the entire circumference. That is, the inner liner 300 to be measured satisfies the thickness requirement. If there is a portion that does not meet the target thickness of the inner liner 300, the coordinates of that portion can be easily specified. Further, the maximum value of the target thickness may be further set, and it may be determined whether or not the thickness of the inner liner 300 is within the range from the minimum value to the maximum value.
  • FIG. 3 is a flowchart showing a procedure for measuring the thickness by the thickness measuring device.
  • the person in charge of measurement installs the inner liner 300 to be measured on the turntable 310 (step S300). Further, the person in charge of measurement moves the light source support member, arranges the LED work light 302 (light source) inside the inner liner 300, and causes the LED work light 302 (light source) to emit light (step S302: light irradiation step).
  • the person in charge of measurement sets the section in which the thickness measuring device 10 is installed in a dark room state, and starts detecting the illuminance by the photodiode unit 304 (light receiving unit) (step S304: light receiving step). The detected illuminance is output to the computer 308.
  • the encoder detects the rotation angle of the turntable 310 and outputs it to the computer 308 (step S306: moving step).
  • the computer 308 associates the illuminance data output from the photodiode unit 304 with the rotation angle data output from the encoder (step S308). Further, the computer 308 converts the illuminance data into a thickness based on the correlation as shown in FIG. 5 (step S310), and outputs a thickness distribution indicating the thickness at each point of the inner liner 300 (step S310).
  • S312 Thickness calculation step
  • the thickness measuring device 10 irradiates the object O to be measured with light from the light source 12, and determines the thickness of the object O based on the illuminance of the transmitted light transmitted through the object O. calculate.
  • the light source 12 and the light receiving unit 14 are formed in a line shape, and move the object O with respect to the light source 12 and the light receiving unit 14.
  • the thickness can be measured in a plane, and the measurement work can be performed in a short time as compared with the case where the thickness is manually measured one by one.
  • the measured value of the thickness and the position on the object O can be accurately and automatically recorded, and the efficiency and accuracy of the measurement work can be improved.
  • the thickness measuring device 10 is based on the correlation between the thickness and the illuminance obtained by irradiating the portion of the object O whose thickness has been actually measured in advance with light from the light source 12 and receiving the illuminance by the light receiving unit 14. Since the thickness is calculated, the thickness can be measured efficiently and accurately. Further, since the thickness measuring device 10 maintains the correlation between the thickness and the illuminance for each of the material constituting the object O and the compounding ratio of the material, the thickness measuring device 10 appropriately matches the specifications of the object O (material and its compounding ratio). Measurements can be made.
  • the thickness measuring device 10 estimates the correlation coefficient in an object configured by blending an arbitrary material at an arbitrary blending ratio based on a known correlation, the specification of the object O can be changed. At times, the correlation between thickness and illuminance can be obtained without actually measuring, and the efficiency of measurement work can be improved. Further, in the thickness measuring device 10, if the honeycomb structure 20 is arranged between the light source 12 and the object O or between the light receiving portion 14 and the object O, the influence of the scattered light is reduced. However, the thickness can be measured with higher accuracy.
  • the object O is a plastic liner 300 of a fiber-reinforced plastic container, but the present invention is not limited to this, and the irradiation light emitted from one surface in the thickness direction is applied to the other surface. If the object has light transmittance that can be detected as transmitted light, and there is a difference between the illuminance of the irradiation light and the illuminance of the transmitted light according to the thickness of the part (light passing distance), the thickness of the object. The thickness can be measured by the measuring device 10.
  • Thickness measuring device 12
  • Light source 14
  • Moving part 18
  • Calculation part 19
  • Estimating part 20
  • Honeycomb structure 300
  • Inner liner 302
  • LED work light 304
  • Photodiode unit 306
  • Motor 308
  • Honeycomb core O Object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention improves efficiency in measuring the thickness of an object, over a wide range. A thickness measurement device 10 comprises: a linear array of light sources 12 that are disposed in parallel to the extension direction of an object O on the side of a first surface F1 of the object O, and that emit light toward the first surface F1; a plurality of light-receiving parts 14 that are disposed to be aligned on the side of a second surface F2 of the object O in parallel to the light sources 12 and that receive transmitted light that has been transmitted through the object O; a moving part 16 that moves the object O while maintaining the distance between the object O and the light sources 12 and the distance between the object O and the light-receiving parts 14 constant; and a thickness calculation unit 18 that calculates, on the basis of the illuminance of the transmitted light received by the respective light-receiving parts 14, the thickness at a location of the object O positioned between the light sources 12 and the light-receiving parts 14.

Description

厚さ測定装置および厚さ測定方法Thickness measuring device and thickness measuring method
 本発明は、物体の厚さを所定範囲にわたって測定する厚さ測定装置および厚さ測定方法に関する。 The present invention relates to a thickness measuring device and a thickness measuring method for measuring the thickness of an object over a predetermined range.
 従来、各種用途に用いられるFRP(Fiber Reinforced Plastics、繊維強化プラスチック)タンクの内面に配置されるライナーは、ブロー成型またはこれに類似した製法により製造される。ブロー成型は、融解したプラスチックをチューブ状に押し出し、これを内金型に沿わせながら加圧することにより中空の部材を形成する方法である。ブロー成型では、チューブ状となった際のプラスチックの肉厚が一定ではない場合があり、成型品であるライナーの膜厚についても一定ではない可能性がある。
 このため、成型品であるライナーの膜厚を超音波膜厚計を用いて測定して製品の品質を担保している。
 例えば下記特許文献1は、母管と外面ライナーの物性が類似した外面ライニング管のライナー厚を非破壊測定する方法であり、外面ライニング管の管内面側からその内面に超音波を入射する。入射した超音波の反射波に基づいてライナー厚を測定する。表面反射波および裏面反射波に影響されることなく、境界面反射波が検出される。
Conventionally, a liner arranged on the inner surface of an FRP (Fiber Reinforced Plastics) tank used for various purposes is manufactured by blow molding or a manufacturing method similar thereto. Blow molding is a method of forming a hollow member by extruding molten plastic into a tube shape and pressurizing the molten plastic along the inner mold. In blow molding, the wall thickness of the plastic when it becomes a tube may not be constant, and the film thickness of the liner, which is a molded product, may not be constant.
Therefore, the film thickness of the liner, which is a molded product, is measured using an ultrasonic film thickness meter to ensure the quality of the product.
For example, Patent Document 1 below is a method for non-destructively measuring the liner thickness of an outer lining tube having similar physical properties to the mother tube, and ultrasonic waves are incident on the inner surface of the outer lining tube from the inner surface side of the tube. The liner thickness is measured based on the reflected wave of the incident ultrasonic wave. The boundary surface reflected wave is detected without being affected by the front surface reflected wave and the back surface reflected wave.
特開平08-159742公報Japanese Patent Application Laid-Open No. 08-159742
 上述した従来技術では、超音波膜厚計を用いて膜厚を1点1点手作業で測定するので、多くの時間がかかり、生産効率が悪いという課題がある。特に、大容量タンクのライナーは表面積が大きく、全域の厚さを手作業で測定・記録すると人的コストがかさんでしまう。 In the above-mentioned conventional technique, since the film thickness is manually measured one by one using an ultrasonic film thickness meter, there is a problem that it takes a lot of time and the production efficiency is poor. In particular, the liner of a large-capacity tank has a large surface area, and if the thickness of the entire area is manually measured and recorded, human cost will increase.
 本発明は、このような事情に鑑みなされたものであり、その目的は、物体の厚さを広範囲に渡って測定する際の効率を向上させることにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to improve efficiency in measuring the thickness of an object over a wide range.
 上述の目的を達成するため、本発明の一実施の形態は、物体の厚さを所定範囲にわたって測定する厚さ測定装置であって、前記物体の一方の面側に前記物体の延在方向と平行に配置され、前記一方の面に向かって光を照射するライン状の光源と、前記物体の他方の面側に前記光源と平行に並んで配置され、前記物体を透過した透過光を受光する複数の受光部と、前記物体と前記光源との間の距離と、前記物体と前記受光部との間の距離とを一定に保ちながら前記物体を移動させる移動部と、それぞれの前記受光部で受光した前記透過光の照度に基づいて、前記光源と前記受光部との間に位置する前記物体の箇所の厚さを算出する厚さ算出部と、を備えることを特徴とする。
 また、本発明の一実施の形態は、物体の厚さを所定範囲にわたって測定する厚さ測定方法であって、前記物体の一方の面側に前記物体の延在方向と平行に配置されたライン状の光源から、前記一方の面に向かって光を照射する光照射工程と、前記物体の他方の面側に前記光源と平行に並んで配置された複数の受光部によって、前記物体を透過した透過光を受光する受光工程と、前記物体と前記光源との間の距離と、前記物体と前記受光部との間の距離とを一定に保ちながら前記物体を移動させる移動工程と、それぞれの前記受光部で受光した前記透過光の照度に基づいて、前記光源と前記受光部との間に位置する前記物体の箇所の厚さを算出する厚さ算出工程と、を含んだことを特徴とする。
In order to achieve the above object, one embodiment of the present invention is a thickness measuring device for measuring the thickness of an object over a predetermined range, and the extending direction of the object is on one surface side of the object. A line-shaped light source that is arranged in parallel and irradiates light toward one surface of the object, and a line-shaped light source that is arranged side by side in parallel with the light source on the other surface side of the object and receives transmitted light transmitted through the object. A moving unit that moves the object while keeping the distance between the plurality of light receiving units, the object and the light source, and the distance between the object and the light receiving unit constant, and each of the light receiving units. It is characterized by including a thickness calculation unit for calculating the thickness of a portion of the object located between the light source and the light receiving unit based on the illuminance of the transmitted light received.
Further, one embodiment of the present invention is a thickness measuring method for measuring the thickness of an object over a predetermined range, and a line arranged on one surface side of the object parallel to the extending direction of the object. The object was transmitted by a light irradiation step of irradiating light from the shape of the light source toward the one surface and a plurality of light receiving portions arranged side by side in parallel with the light source on the other surface side of the object. A light receiving step of receiving transmitted light, a moving step of moving the object while keeping the distance between the object and the light source and the distance between the object and the light receiving portion constant, and the respective above. It is characterized by including a thickness calculation step of calculating the thickness of a portion of the object located between the light source and the light receiving portion based on the illuminance of the transmitted light received by the light receiving portion. ..
 本発明の一実施の形態によれば、物体の厚さを広範囲に渡って測定する際の効率を向上させることができる。 According to one embodiment of the present invention, it is possible to improve the efficiency when measuring the thickness of an object over a wide range.
実施の形態にかかる厚さ測定装置の概要構成を示す図である。It is a figure which shows the outline structure of the thickness measuring apparatus which concerns on embodiment. 厚さ測定装置の実際の装置構成の一例を示す説明図である。It is explanatory drawing which shows an example of the actual apparatus configuration of the thickness measuring apparatus. 厚さ測定装置による厚さ測定の手順を示すフローチャートである。It is a flowchart which shows the procedure of thickness measurement by a thickness measuring apparatus. 厚さの測定結果を模式的に示す図である。It is a figure which shows typically the measurement result of the thickness. 照度と物体の厚さとの相関関係の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the correlation between the illuminance and the thickness of an object.
 以下に添付図面を参照して、本発明にかかる厚さ測定装置および厚さ測定方法の好適な実施の形態を詳細に説明する。
 図1は、実施の形態にかかる厚さ測定装置の概要構成を示す図である。
 厚さ測定装置10は、物体Oの厚さを所定範囲にわたって測定する。本実施の形態において、所定範囲にわたって厚さを測定する、とは、例えば散発的に数箇所の厚さを測定するのではなく、少なくとも物体Oの一部の範囲について、所定の測定間隔を置いて連続的に複数の箇所の厚さを測定することを指す。
Hereinafter, preferred embodiments of the thickness measuring apparatus and the thickness measuring method according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of a thickness measuring device according to an embodiment.
The thickness measuring device 10 measures the thickness of the object O over a predetermined range. In the present embodiment, measuring the thickness over a predetermined range means, for example, not measuring the thickness at several points sporadically, but at least a part of the range of the object O at a predetermined measurement interval. Refers to continuously measuring the thickness of multiple points.
 物体Oは、例えば膜状の部材であり、本実施の形態では、繊維強化プラスチック容器のプラスチック製ライナー、具体的には、例えば円筒形(曲面形状)を呈する航空機用水タンクのインナーライナーであるものとする。物体Oは、光透過性を有し、かつ不透明な素材(透明度が所定値以下)であるものとする。すなわち、物体Oは、厚さ方向の一方の面から照射された照射光が他方の面において透過光として検出できる程度の光透過性を有し、かつ照射光の照度と透過光の照度とにその箇所の厚さ(光の通過距離)に応じた差が生じる(一般的には照射光>透過光)ものとする。 The object O is, for example, a film-like member, and in the present embodiment, is a plastic liner of a fiber reinforced plastic container, specifically, an inner liner of an aircraft water tank having a cylindrical shape (curved surface shape), for example. And. It is assumed that the object O is a light-transmitting and opaque material (transparency is equal to or less than a predetermined value). That is, the object O has a light transmittance such that the irradiation light emitted from one surface in the thickness direction can be detected as transmitted light on the other surface, and the illuminance of the irradiation light and the illuminance of the transmitted light are different. It is assumed that a difference occurs depending on the thickness of the portion (light passing distance) (generally, irradiation light> transmitted light).
 厚さ測定装置10は、物体Oを挟んで対向する位置に光源12および受光部14を備える。光源12および受光部14は、共にライン状に形成され、その延在方向が物体Oの円筒形の軸と平行に配置されるとともに、円筒形の半径方向に間隔を置いて配置されている。
 光源12は、物体Oの一方の面F1側にライン状に配置され、一方の面F1に向かって光を照射する。光源12は、複数の点光源(例えばLED)がライン状に並んでおり、それぞれの点光源が一定の光束で発光することにより、光源12の照射側に一定の照度の光を供給する。光源12として、例えばライン状に形成された高出力LEDワークライトを用いることができる。
The thickness measuring device 10 includes a light source 12 and a light receiving unit 14 at positions facing each other with the object O in between. The light source 12 and the light receiving portion 14 are both formed in a line shape, and their extending directions are arranged parallel to the cylindrical axis of the object O, and are arranged at intervals in the radial direction of the cylinder.
The light source 12 is arranged in a line on one surface F1 side of the object O, and irradiates light toward one surface F1. In the light source 12, a plurality of point light sources (for example, LEDs) are arranged in a line, and each point light source emits light with a constant luminous flux to supply light having a constant illuminance to the irradiation side of the light source 12. As the light source 12, for example, a high-power LED work light formed in a line shape can be used.
 受光部14は、物体Oの他方の面F2側に光源12と平行に並んで配置され、物体Oを透過した透過光を受光する。受光部14は、複数の受光素子がライン状に並んでおり、それぞれの受光素子が照度に応じた出力を行うことにより、各受光部14の位置における照度を検出する。なお、照度とは、単位面積当たりに入射する光の量を指し、光源によって照らされている面の明るさの程度を表す物理量である。本実施の形態では、受光部14で検出する光の強さを照度で表すが、光の強さを表す他の物理量を用いてもよい。本実施の形態では、受光部14として応答性が高く安価なシリコン(Si)フォトダイオードを用いる。シリコンフォトダイオードでは、受光によって生じた電流を電圧に変換して出力する。
 なお、厚さ測定装置10は、暗室内に設置されており、受光部14で受光する光は光源12から照射される光のみであるものとする。
The light receiving unit 14 is arranged side by side with the light source 12 on the other surface F2 side of the object O, and receives the transmitted light transmitted through the object O. In the light receiving unit 14, a plurality of light receiving elements are arranged in a line, and each light receiving element outputs an output according to the illuminance to detect the illuminance at the position of each light receiving unit 14. The illuminance refers to the amount of light incident per unit area, and is a physical quantity representing the degree of brightness of the surface illuminated by the light source. In the present embodiment, the intensity of light detected by the light receiving unit 14 is represented by illuminance, but other physical quantities representing the intensity of light may be used. In the present embodiment, a highly responsive and inexpensive silicon (Si) photodiode is used as the light receiving unit 14. In a silicon photodiode, the current generated by light reception is converted into a voltage and output.
It is assumed that the thickness measuring device 10 is installed in a dark room, and the light received by the light receiving unit 14 is only the light emitted from the light source 12.
 本実施の形態では、光源12と物体Oとの間または受光部14と物体Oとの間のうち少なくとも一方にハニカム構造体20が配置されている。図1の例では、光源12と物体Oとの間および受光部14と物体Oとの間の両方にハニカム構造体20(ハニカムコア)が配置されている。
 ハニカム構造体20を設置することによって、当該箇所を通過する光の向きを一方向に揃えることができ、後述する算出部18での厚さの算出精度を向上させることができる。すなわち、光源12が照射する照射光L1は拡散光であり、様々な方向を向いている。照射光L1がハニカム構造体20を通過する際に、ハニカム構造体20の開口の延在方向に沿った光のみが反対側(物体O側)に到達し、物体Oの一方の面F1に対して垂直に入射する照射光L1’となる。物体Oの一方の面F1に到達した照射光L1’は、物体O内を通過し、透過光L2として物体Oの他方の面F2から透過するが、物体O内でも一部の光が散乱する。このため、他方の面F2側にもハニカム構造体20を設置し、ハニカム構造体20を通過することで散乱光の影響を低減した透過光L2’を受光部14で受光するようにする。
In the present embodiment, the honeycomb structure 20 is arranged between the light source 12 and the object O or at least one of the light receiving unit 14 and the object O. In the example of FIG. 1, the honeycomb structure 20 (honeycomb core) is arranged both between the light source 12 and the object O and between the light receiving portion 14 and the object O.
By installing the honeycomb structure 20, the directions of the light passing through the portion can be aligned in one direction, and the thickness calculation accuracy in the calculation unit 18 described later can be improved. That is, the irradiation light L1 emitted by the light source 12 is diffused light and faces various directions. When the irradiation light L1 passes through the honeycomb structure 20, only the light along the extending direction of the opening of the honeycomb structure 20 reaches the opposite side (object O side) with respect to one surface F1 of the object O. The irradiation light L1'is vertically incident. The irradiation light L1'that has reached one surface F1 of the object O passes through the object O and is transmitted from the other surface F2 of the object O as transmitted light L2, but some light is scattered even in the object O. .. Therefore, the honeycomb structure 20 is also installed on the other surface F2 side, and the transmitted light L2'which has reduced the influence of the scattered light by passing through the honeycomb structure 20 is received by the light receiving unit 14.
 移動部16は、物体Oと光源12との間の距離と、物体Oと受光部14との間の距離とを一定に保ちながら物体Oを移動させる。本実施の形態では、物体Oは円筒形を呈するため、移動部16は、円筒形の軸を中心に物体Oを回転させる。すなわち、光源12および受光部14の延在方向に対して直交する方向(物体Oの円筒形の接線方向)に物体Oを移動させる。
 移動部16は、例えば物体Oを支持する支持部材と、支持部材を所定方向に移動させるアクチュエータ(モータ)と、アクチュエータの移動量を検出する検出部(例えばエンコーダ)とを含んでいる。
 厚さ測定装置10は、ライン状の光源12および受光部14を有することにより、当該ラインに沿った物体Oの厚さを測定することができ、更に移動部16により物体Oを移動させることによって、物体Oの厚さを面的に(所定範囲にわたって)測定することができる。
The moving unit 16 moves the object O while keeping the distance between the object O and the light source 12 and the distance between the object O and the light receiving unit 14 constant. In the present embodiment, since the object O has a cylindrical shape, the moving portion 16 rotates the object O around the cylindrical axis. That is, the object O is moved in a direction orthogonal to the extending direction of the light source 12 and the light receiving unit 14 (the cylindrical tangential direction of the object O).
The moving unit 16 includes, for example, a support member that supports the object O, an actuator (motor) that moves the support member in a predetermined direction, and a detection unit (for example, an encoder) that detects the amount of movement of the actuator.
The thickness measuring device 10 can measure the thickness of the object O along the line by having the line-shaped light source 12 and the light receiving unit 14, and further, by moving the object O by the moving unit 16. , The thickness of the object O can be measured in a plane (over a predetermined range).
 厚さ算出部18は、それぞれの受光部14で受光した透過光の照度に基づいて、光源12と受光部14との間に位置する物体Oの箇所の厚さを算出する。厚さ算出部18は、例えば予め厚さを超音波膜厚計等で実測した物体Oの箇所に光源12から光を照射し、受光部14で照度を受光することにより得られた厚さと照度との相関関係に基づいて厚さを算出する。 The thickness calculation unit 18 calculates the thickness of the portion of the object O located between the light source 12 and the light receiving unit 14 based on the illuminance of the transmitted light received by each light receiving unit 14. The thickness calculation unit 18 irradiates light from the light source 12 to the location of the object O whose thickness has been measured in advance with an ultrasonic film thickness meter or the like, and the light receiving unit 14 receives the illuminance to obtain the thickness and illuminance. The thickness is calculated based on the correlation with.
 図5は、照度と物体の厚さとの相関関係の一例を模式的に示す説明図である。
 物体Oは不透明な素材であり、入射光の照度が一定の場合、その箇所の厚さに応じて透過光の照度が変化する。より詳細には、厚みがある箇所ほど物体O内で吸収または散乱される成分が多くなり、相対的に暗く(照度が低く)なる。
 図5の例では、照度を8段階に分割し、各段階に対応する厚さを設定している。なお、図面では照度を網掛けの濃淡によって示しているが、実際には照度値(フォトダイオードから出力される電圧値)と厚さとが対応付けられている。
 例えば1番照度が高い段階では厚さ0.10mm以下、2番目に照度が高い段階では厚さ0.11mm以上0.12mm以下、1番照度が低い段階では厚さ0.50mm以上、などと設定されている。このような対応関係を用いることによって、受光部14で受光した光の照度から受光部14に対向する物体Oの箇所の厚さを算出することができる。
FIG. 5 is an explanatory diagram schematically showing an example of the correlation between the illuminance and the thickness of the object.
The object O is an opaque material, and when the illuminance of the incident light is constant, the illuminance of the transmitted light changes according to the thickness of the portion. More specifically, the thicker the portion, the more components are absorbed or scattered in the object O, and the darker the portion (the illuminance becomes lower).
In the example of FIG. 5, the illuminance is divided into eight stages, and the thickness corresponding to each stage is set. Although the illuminance is shown by shading in the drawing, the illuminance value (voltage value output from the photodiode) and the thickness are actually associated with each other.
For example, the thickness is 0.10 mm or less at the stage where the illuminance is the highest, the thickness is 0.11 mm or more and 0.12 mm or less at the stage where the illuminance is the second highest, and the thickness is 0.50 mm or more at the stage where the illuminance is the lowest. It is set. By using such a correspondence, the thickness of the portion of the object O facing the light receiving unit 14 can be calculated from the illuminance of the light received by the light receiving unit 14.
 ここで、物体Oは、例えば製品としての要求仕様の変更などにより材料や材料の配合比率等が変更される場合がある。また、厚さ測定装置10は、仕様が異なる様々なタイプの物体(本実施の形態ではインナーライナー)の厚さを計測できることが好ましい。
 このため、厚さ算出部18は、物体Oを構成する材料および当該材料の配合比率ごとに、照度と厚さの相関関係を保持するようにしてもよい。
 また、この他、光源12の種類や、光源12および受光部14と物体Oとの位置関係(それぞれとの距離)などのパラメータによっても、照度と厚さの相関関係が変化することが考えられる。よって、厚さ算出部18は、これらのパラメータ毎に照度と厚さの相関関係を保持するようにしてもよい。
Here, in the object O, for example, the material or the compounding ratio of the material may be changed due to a change in the required specifications as a product. Further, it is preferable that the thickness measuring device 10 can measure the thickness of various types of objects (inner liner in the present embodiment) having different specifications.
Therefore, the thickness calculation unit 18 may maintain the correlation between the illuminance and the thickness for each of the material constituting the object O and the blending ratio of the material.
In addition, the correlation between the illuminance and the thickness may change depending on the type of the light source 12, the positional relationship between the light source 12 and the light receiving unit 14 and the object O (distance between them), and the like. .. Therefore, the thickness calculation unit 18 may maintain the correlation between the illuminance and the thickness for each of these parameters.
 また、物体Oを構成する材料や材料の配合比率等の仕様を変更した際に、実測により照度と厚さと相関関係を得るのではなく、機械学習や人工知能(AI)を用いて既知の相関関係に基づいて当該仕様における相関関係を推定するようにしてもよい。
 すなわち、既知の相関関係に基づいて、任意の材料を任意の配合比率で配合して構成された物体における相関係数を推定する推定部19を更に備えるものとしてもよい。
 また、物体Oの仕様ではなく、例えば光源12や受光部14の種類(型番など)、光源12と受光部14との位置関係等の測定条件を変更した場合にも、既存の相関関係が当てはまらなくなる可能性がある。このような変更に対しても、上記推定部19を適用し、任意の測定条件における相関関係を得られるようにしてもよい。
 推定部19を設けることによって、物体Oの仕様や測定条件を変更するごとに実測により相関関係を求める必要がなくなり、物体Oの生産効率を向上させることができる。
In addition, when the specifications such as the materials constituting the object O and the compounding ratio of the materials are changed, the correlation between the illuminance and the thickness is not obtained by actual measurement, but the known correlation is obtained by using machine learning or artificial intelligence (AI). The correlation in the specification may be estimated based on the relationship.
That is, it may further include an estimation unit 19 that estimates the correlation coefficient in an object configured by blending an arbitrary material at an arbitrary blending ratio based on a known correlation.
Further, the existing correlation does not apply even when the measurement conditions such as the type (model number, etc.) of the light source 12 and the light receiving unit 14 and the positional relationship between the light source 12 and the light receiving unit 14 are changed instead of the specifications of the object O. It may disappear. The estimation unit 19 may be applied to such a change so that a correlation under arbitrary measurement conditions can be obtained.
By providing the estimation unit 19, it is not necessary to obtain the correlation by actual measurement every time the specifications and measurement conditions of the object O are changed, and the production efficiency of the object O can be improved.
 図2は、厚さ測定装置の実際の装置構成の一例を示す説明図である。
 図2に示す厚さ測定装置10は、物体Oであるインナーライナー300の厚さを測定する。インナーライナー300は、略円筒形(俵型)を呈し、一方(図2では上側)の底面に水の出入り口となる開口301が設けられている。
FIG. 2 is an explanatory diagram showing an example of an actual device configuration of the thickness measuring device.
The thickness measuring device 10 shown in FIG. 2 measures the thickness of the inner liner 300, which is the object O. The inner liner 300 has a substantially cylindrical shape (bale shape), and an opening 301 that serves as an entrance / exit for water is provided on the bottom surface of one side (upper side in FIG. 2).
 開口301からインナーライナー300の内部に、ライン上の光源12であるLEDワークライト302がインナーライナー300の軸方向に沿って挿入されている。LEDワークライト302は、図示しない可動式の光源支持部材によって支持されている。光源支持部材は、LEDワークライト302をインナーライナー300の外部からインナーライナー300の内部へと挿入できる範囲で移動可能である。
 LEDワークライト302の光の照射方向(光の強度が最も高くなる方向)は、受光部14方向となるようによう配置されている。
An LED work light 302, which is a light source 12 on the line, is inserted into the inner liner 300 from the opening 301 along the axial direction of the inner liner 300. The LED work light 302 is supported by a movable light source support member (not shown). The light source support member is movable within a range in which the LED work light 302 can be inserted from the outside of the inner liner 300 into the inside of the inner liner 300.
The light irradiation direction of the LED work light 302 (the direction in which the light intensity is highest) is arranged so as to be the light receiving portion 14 direction.
 LEDワークライト302の前面(光の照射方向)には、ハニカム構造体20であるハニカムコア314が配置されており、LEDワークライト302からの照射光のうち、インナーライナー300の半径方向に向かう光のみがインナーライナー300側に到達する。 A honeycomb core 314, which is a honeycomb structure 20, is arranged on the front surface (light irradiation direction) of the LED work light 302, and among the irradiation light from the LED work light 302, the light directed in the radial direction of the inner liner 300. Only reaches the inner liner 300 side.
 インナーライナー300の外部には、複数のシリコンフォトダイオードを直線状に配置したフォトダイオードユニット304が配置されている。フォトダイオードユニット304は、LEDワークライト302とインナーライナー300をはさんで対向する位置に設けられており、光の検知方向をLEDワークライト302側に向けている。フォトダイオードユニット304は、図示しない固定式の受光部支持部材によって支持されている。 Outside the inner liner 300, a photodiode unit 304 in which a plurality of silicon photodiodes are linearly arranged is arranged. The photodiode unit 304 is provided at a position where the LED work light 302 and the inner liner 300 are opposed to each other, and the light detection direction is directed to the LED work light 302 side. The photodiode unit 304 is supported by a fixed light receiving portion support member (not shown).
 フォトダイオードユニット304の前面(光の検知方向)には、ハニカム構造体20であるハニカムコア314が配置されており、インナーライナー300からの透過光のうち、インナーライナー300の半径方向に向かう光のみがフォトダイオードユニット304側に到達する。
 フォトダイオードユニット304の各ダイオードから出力された電圧は、A/Dコンバータ312を介してデジタル信号に変換され、コンピュータ308に入力される。
A honeycomb core 314, which is a honeycomb structure 20, is arranged on the front surface (light detection direction) of the photodiode unit 304, and of the transmitted light from the inner liner 300, only the light directed in the radial direction of the inner liner 300. Reaches the photodiode unit 304 side.
The voltage output from each diode of the photodiode unit 304 is converted into a digital signal via the A / D converter 312 and input to the computer 308.
 なお、図2ではLEDワークライト302をインナーライナー300の内部に、フォトダイオードユニット304を物体Oの外部に、それぞれ配置しているが、LEDワークライト302をインナーライナー300の外部に、フォトダイオードユニット304を物体Oの内部に、それぞれ配置してもよい。 In FIG. 2, the LED work light 302 is arranged inside the inner liner 300 and the photodiode unit 304 is arranged outside the object O. However, the LED work light 302 is arranged outside the inner liner 300 and the photodiode unit. The 304s may be arranged inside the object O, respectively.
 インナーライナー300は、円形のターンテーブル310に載置されており、ターンテーブル310は移動部16であるモータ306によって回転可能である。
 モータ306が回転すると、ターンテーブル310が回転し、これに伴ってインナーライナー300も回転する。一方、LEDワークライト302およびフォトダイオードユニット304は固定されており、LEDワークライト302とフォトダイオードユニット304との間をインナーライナー300が通過していく。
 モータ306は、厚さ算出部18および推定部19であるコンピュータ308によってオンオフが制御されるとともに、モータ306の回転状態(回転角度)は内蔵されたエンコーダによって検出され、コンピュータ308へと出力される。
The inner liner 300 is mounted on a circular turntable 310, and the turntable 310 can be rotated by a motor 306 which is a moving portion 16.
When the motor 306 rotates, the turntable 310 rotates, and the inner liner 300 also rotates accordingly. On the other hand, the LED work light 302 and the photodiode unit 304 are fixed, and the inner liner 300 passes between the LED work light 302 and the photodiode unit 304.
The on / off of the motor 306 is controlled by the computer 308 which is the thickness calculation unit 18 and the estimation unit 19, and the rotation state (rotation angle) of the motor 306 is detected by the built-in encoder and output to the computer 308. ..
 なお、例えばインナーライナー300をターンテーブル310に載置する際に、インナーライナー300のブロー成型時に転写される金型の割り印をターンテーブル310に付された基準位置印に合わせることによって、厚さの測定結果とインナーライナー300の位置との照合を容易に行うことができる。 For example, when the inner liner 300 is placed on the turntable 310, the thickness can be increased by aligning the split mark of the mold transferred at the time of blow molding of the inner liner 300 with the reference position mark attached to the turntable 310. The measurement result can be easily collated with the position of the inner liner 300.
 また、図2ではインナーライナー300の軸方向を鉛直方向に向けて載置するように厚さ測定装置10の各構成部を配置しているが、インナーライナー300が横向きにしても保持できる程度の硬さを有する場合には、インナーライナー300の軸方向を水平方向に向けて載置するように厚さ測定装置10の各構成部を配置してもよい。 Further, in FIG. 2, each component of the thickness measuring device 10 is arranged so that the inner liner 300 is placed so as to be placed in the vertical direction, but the inner liner 300 can be held sideways. When it has hardness, each component of the thickness measuring device 10 may be arranged so that the inner liner 300 is placed so that the axial direction is directed to the horizontal direction.
 算出部18であるコンピュータ308は、フォトダイオードユニット304から出力される電圧値(照度データ)と、エンコーダから出力される回転角度とを対応づけることで、インナーライナー300の周方向の位置と電圧値とを対応づける。そして、図5に示すような相関関係を用いて電圧値をインナーライナー300の厚さに変換して、インナーライナー300の各点における厚さを算出する。なお、電圧値を厚さに変換してから回転角度と対応づけてもよい。 The computer 308, which is the calculation unit 18, associates the voltage value (illuminance data) output from the photodiode unit 304 with the rotation angle output from the encoder to correlate the position and voltage value of the inner liner 300 in the circumferential direction. And associate with. Then, the voltage value is converted into the thickness of the inner liner 300 by using the correlation as shown in FIG. 5, and the thickness at each point of the inner liner 300 is calculated. The voltage value may be converted into the thickness and then associated with the rotation angle.
 図4は、厚さの測定結果を模式的に示す図である。
 図4において、縦軸はインナーライナー300の厚さ、横軸は基準位置からの回転角を示す。各系統D1~D4はフォトダイオードユニット304の各フォトダイオードに対応し、インナーライナー300の軸方向に沿った位置を示す。なお、図4には4系統のみを図示しているが、実際にはフォトダイオードユニット304は数十個単位のフォトダイオードで構成され、それらと同数の系統が測定結果として出力されることとなる。
 縦軸上に示す目標厚さ(または閾値)は、インナーライナー300に要求される厚さの最低値である。図4では、各系統の測定値が全周に渡ってインナーライナー300の目標厚さを上回っている。すなわち、測定対象のインナーライナー300は、厚さの要求を満たしている。仮にインナーライナー300の目標厚さを満たしていない箇所ある場合には、その箇所の座標を容易に特定することができる。
 また、目標厚さの最大値を更に設定し、最低値から最大値までの間にインナーライナー300の厚さが収まっているかを判定してもよい。
FIG. 4 is a diagram schematically showing the measurement result of the thickness.
In FIG. 4, the vertical axis represents the thickness of the inner liner 300, and the horizontal axis represents the rotation angle from the reference position. Each system D1 to D4 corresponds to each photodiode of the photodiode unit 304, and indicates a position along the axial direction of the inner liner 300. Although only four systems are shown in FIG. 4, the photodiode unit 304 is actually composed of several tens of photodiodes, and the same number of systems are output as measurement results. ..
The target thickness (or threshold value) shown on the vertical axis is the minimum value of the thickness required for the inner liner 300. In FIG. 4, the measured value of each system exceeds the target thickness of the inner liner 300 over the entire circumference. That is, the inner liner 300 to be measured satisfies the thickness requirement. If there is a portion that does not meet the target thickness of the inner liner 300, the coordinates of that portion can be easily specified.
Further, the maximum value of the target thickness may be further set, and it may be determined whether or not the thickness of the inner liner 300 is within the range from the minimum value to the maximum value.
 図3は、厚さ測定装置による厚さ測定の手順を示すフローチャートである。
 まず、測定担当者は、測定対象のインナーライナー300をターンテーブル310に設置する(ステップS300)。また、測定担当者は、光源支持部材を移動させ、インナーライナー300の内部にLEDワークライト302(光源)を配置し、発光させる(ステップS302:光照射工程)。
 次に、測定担当者は、厚さ測定装置10が設置された区画を暗室状態とし、フォトダイオードユニット304(受光部)での照度の検出を開始する(ステップS304:受光工程)。検出された照度は、コンピュータ308に出力される。測定担当者がターンテーブル310の回転を開始させると、エンコーダがターンテーブル310の回転角度を検出し、コンピュータ308に出力する(ステップS306:移動工程)。
 コンピュータ308は、フォトダイオードユニット304から出力された照度データとエンコーダから出力される回転角データとを対応づける(ステップS308)。また、コンピュータ308は、図5に示すような相関関係に基づいて照度データを厚さに変換し(ステップS310)、インナーライナー300の各点における厚さを示す厚さ分布を出力して(ステップS312:厚さ算出工程)、本フローチャートの処理を終了する。
FIG. 3 is a flowchart showing a procedure for measuring the thickness by the thickness measuring device.
First, the person in charge of measurement installs the inner liner 300 to be measured on the turntable 310 (step S300). Further, the person in charge of measurement moves the light source support member, arranges the LED work light 302 (light source) inside the inner liner 300, and causes the LED work light 302 (light source) to emit light (step S302: light irradiation step).
Next, the person in charge of measurement sets the section in which the thickness measuring device 10 is installed in a dark room state, and starts detecting the illuminance by the photodiode unit 304 (light receiving unit) (step S304: light receiving step). The detected illuminance is output to the computer 308. When the person in charge of measurement starts the rotation of the turntable 310, the encoder detects the rotation angle of the turntable 310 and outputs it to the computer 308 (step S306: moving step).
The computer 308 associates the illuminance data output from the photodiode unit 304 with the rotation angle data output from the encoder (step S308). Further, the computer 308 converts the illuminance data into a thickness based on the correlation as shown in FIG. 5 (step S310), and outputs a thickness distribution indicating the thickness at each point of the inner liner 300 (step S310). S312: Thickness calculation step), the process of this flowchart is completed.
 以上説明したように、実施の形態にかかる厚さ測定装置10は、測定対象の物体Oに光源12から光を照射し、物体Oを透過した透過光の照度に基づいて物体Oの厚さを算出する。光源12および受光部14はライン状に形成されており、光源12および受光部14に対して物体Oを移動させる。これにより、面的に厚さを測定することができ、1点1点手動で厚さを測定するのと比較して、短時間に測定作業を行うことができる。また、厚さの測定値と物体O上の位置とを正確かつ自動的に記録することができ、測定作業の効率と精度を向上させることができる。
 また、厚さ測定装置10は、予め厚さを実測した物体Oの箇所に光源12から光を照射し、受光部14で照度を受光することにより得られた厚さと照度との相関関係に基づいて厚さを算出するので、効率的かつ精度よく厚さの測定を行うことができる。
 また、厚さ測定装置10は、物体Oを構成する材料および当該材料の配合比率ごとに厚さと照度の相関関係を保持するので、物体Oの仕様(材料やその配合比率)に合わせて適切に測定を行うことができる。
 また、厚さ測定装置10において、既知の相関関係に基づいて、任意の材料を任意の配合比率で配合して構成された物体における相関係数を推定するようにすれば、物体Oの仕様変更時にも実測を行うことなく厚さと照度の相関関係を得ることができ、測定作業の効率を向上させることができる。
 また、厚さ測定装置10において、光源12と物体Oとの間または受光部14と物体Oとの間のうち少なくとも一方にハニカム構造体20を配置するようにすれば、散乱光の影響を低減し、より高精度に厚さの測定を行うことができる。
As described above, the thickness measuring device 10 according to the embodiment irradiates the object O to be measured with light from the light source 12, and determines the thickness of the object O based on the illuminance of the transmitted light transmitted through the object O. calculate. The light source 12 and the light receiving unit 14 are formed in a line shape, and move the object O with respect to the light source 12 and the light receiving unit 14. As a result, the thickness can be measured in a plane, and the measurement work can be performed in a short time as compared with the case where the thickness is manually measured one by one. In addition, the measured value of the thickness and the position on the object O can be accurately and automatically recorded, and the efficiency and accuracy of the measurement work can be improved.
Further, the thickness measuring device 10 is based on the correlation between the thickness and the illuminance obtained by irradiating the portion of the object O whose thickness has been actually measured in advance with light from the light source 12 and receiving the illuminance by the light receiving unit 14. Since the thickness is calculated, the thickness can be measured efficiently and accurately.
Further, since the thickness measuring device 10 maintains the correlation between the thickness and the illuminance for each of the material constituting the object O and the compounding ratio of the material, the thickness measuring device 10 appropriately matches the specifications of the object O (material and its compounding ratio). Measurements can be made.
Further, if the thickness measuring device 10 estimates the correlation coefficient in an object configured by blending an arbitrary material at an arbitrary blending ratio based on a known correlation, the specification of the object O can be changed. At times, the correlation between thickness and illuminance can be obtained without actually measuring, and the efficiency of measurement work can be improved.
Further, in the thickness measuring device 10, if the honeycomb structure 20 is arranged between the light source 12 and the object O or between the light receiving portion 14 and the object O, the influence of the scattered light is reduced. However, the thickness can be measured with higher accuracy.
 なお、本実施の形態では、物体Oを繊維強化プラスチック容器のプラスチック製ライナー300であるものとしたが、これに限らず、厚さ方向の一方の面から照射された照射光が他方の面において透過光として検出できる程度の光透過性を有し、かつ照射光の照度と透過光の照度とにその箇所の厚さ(光の通過距離)に応じた差が生じる物体であれば、厚さ測定装置10での厚さ測定が可能である。 In the present embodiment, the object O is a plastic liner 300 of a fiber-reinforced plastic container, but the present invention is not limited to this, and the irradiation light emitted from one surface in the thickness direction is applied to the other surface. If the object has light transmittance that can be detected as transmitted light, and there is a difference between the illuminance of the irradiation light and the illuminance of the transmitted light according to the thickness of the part (light passing distance), the thickness of the object. The thickness can be measured by the measuring device 10.
 10 厚さ測定装置
 12 光源
 14 受光部
 16 移動部
 18 算出部
 19 推定部
 20 ハニカム構造体
 300 インナーライナー
 302 LEDワークライト
 304 フォトダイオードユニット
 306 モータ
 308 コンピュータ
 310 ターンテーブル
 312 コンバータ
 314 ハニカムコア
 O 物体
10 Thickness measuring device 12 Light source 14 Light receiving part 16 Moving part 18 Calculation part 19 Estimating part 20 Honeycomb structure 300 Inner liner 302 LED work light 304 Photodiode unit 306 Motor 308 Computer 310 Turntable 312 Converter 314 Honeycomb core O Object

Claims (9)

  1.  物体の厚さを所定範囲にわたって測定する厚さ測定装置であって、
     前記物体の一方の面側に前記物体の延在方向と平行に配置され、前記一方の面に向かって光を照射するライン状の光源と、
     前記物体の他方の面側に前記光源と平行に並んで配置され、前記物体を透過した透過光を受光する複数の受光部と、
     前記物体と前記光源との間の距離と、前記物体と前記受光部との間の距離とを一定に保ちながら前記物体を移動させる移動部と、
     それぞれの前記受光部で受光した前記透過光の照度に基づいて、前記光源と前記受光部との間に位置する前記物体の箇所の厚さを算出する厚さ算出部と、
     を備えることを特徴とする厚さ測定装置。
    A thickness measuring device that measures the thickness of an object over a predetermined range.
    A line-shaped light source arranged on one surface side of the object parallel to the extending direction of the object and irradiating light toward the one surface.
    A plurality of light receiving portions arranged side by side in parallel with the light source on the other surface side of the object and receiving the transmitted light transmitted through the object.
    A moving unit that moves the object while keeping the distance between the object and the light source and the distance between the object and the light receiving unit constant.
    A thickness calculation unit that calculates the thickness of a portion of the object located between the light source and the light receiving unit based on the illuminance of the transmitted light received by each light receiving unit.
    A thickness measuring device comprising.
  2.  前記厚さ算出部は、予め厚さを実測した前記物体の箇所に前記光源から光を照射し、前記受光部で照度を受光することにより得られた前記厚さと前記照度との相関関係に基づいて前記厚さを算出する、
     ことを特徴とする請求項1記載の厚さ測定装置。
    The thickness calculation unit is based on the correlation between the thickness and the illuminance obtained by irradiating the portion of the object whose thickness has been actually measured in advance with light from the light source and receiving the illuminance by the light receiving unit. To calculate the thickness,
    The thickness measuring apparatus according to claim 1.
  3.  前記厚さ算出部は、前記物体を構成する材料および当該材料の配合比率ごとに前記相関関係を保持する、
     ことを特徴とする請求項2記載の厚さ測定装置。
    The thickness calculation unit maintains the correlation for each of the materials constituting the object and the blending ratio of the materials.
    2. The thickness measuring device according to claim 2.
  4.  既知の前記相関関係に基づいて、任意の材料を任意の配合比率で配合して構成された物体における前記相関係数を推定する推定部を更に備える、
     ことを特徴とする請求項3記載の厚さ測定装置。
    Further provided is an estimation unit that estimates the correlation coefficient in an object constructed by blending an arbitrary material at an arbitrary blending ratio based on the known correlation.
    3. The thickness measuring device according to claim 3.
  5.  前記光源と前記物体との間または前記受光部と前記物体との間のうち少なくとも一方にハニカム構造体が配置されている、
     ことを特徴とする請求項1から4のいずれか1項記載の厚さ測定装置。
    A honeycomb structure is arranged between the light source and the object or at least one of the light receiving portion and the object.
    The thickness measuring device according to any one of claims 1 to 4, wherein the thickness measuring device is characterized.
  6.  前記物体は円筒形を呈し、
     前記移動部は、前記円筒形の軸を中心に前記物体を回転させる、
     ことを特徴とする請求項1から5のいずれか1項記載の厚さ測定装置。
    The object has a cylindrical shape
    The moving portion rotates the object around the cylindrical axis.
    The thickness measuring device according to any one of claims 1 to 5, wherein the thickness measuring device is characterized.
  7.  前記物体は、繊維強化プラスチック容器のプラスチック製ライナーである、
     ことを特徴とする請求項6記載の厚さ測定装置。
    The object is a plastic liner of a fiber reinforced plastic container,
    The thickness measuring apparatus according to claim 6.
  8.  物体の厚さを所定範囲にわたって測定する厚さ測定方法であって、
     前記物体の一方の面側に前記物体の延在方向と平行に配置されたライン状の光源から、前記一方の面に向かって光を照射する光照射工程と、
     前記物体の他方の面側に前記光源と平行に並んで配置された複数の受光部によって、前記物体を透過した透過光を受光する受光工程と、
     前記物体と前記光源との間の距離と、前記物体と前記受光部との間の距離とを一定に保ちながら前記物体を移動させる移動工程と、
     それぞれの前記受光部で受光した前記透過光の照度に基づいて、前記光源と前記受光部との間に位置する前記物体の箇所の厚さを算出する厚さ算出工程と、
     を含んだことを特徴とする厚さ測定方法。
    A thickness measuring method for measuring the thickness of an object over a predetermined range.
    A light irradiation step of irradiating light from a line-shaped light source arranged on one surface side of the object parallel to the extending direction of the object toward the one surface.
    A light receiving step of receiving the transmitted light transmitted through the object by a plurality of light receiving portions arranged side by side in parallel with the light source on the other surface side of the object.
    A moving step of moving the object while keeping the distance between the object and the light source and the distance between the object and the light receiving portion constant.
    A thickness calculation step of calculating the thickness of a portion of the object located between the light source and the light receiving portion based on the illuminance of the transmitted light received by each of the light receiving portions.
    A thickness measuring method characterized by containing.
  9.  前記物体は円筒形を呈し、
     前記移動工程による前記物体の移動は、前記円筒形の軸を中心として前記物体を回転させることでなされ、
     前記移動工程では、前記物体の回転角度を検出し、
     前記厚さ算出工程では、検出された前記物体の回転角度と算出された前記物体の箇所の厚さとを対応づけた厚さ分布を出力する、
     ことを特徴とする請求項8記載の厚さ測定方法。
    The object has a cylindrical shape
    The movement of the object by the moving step is performed by rotating the object around the cylindrical axis.
    In the moving step, the rotation angle of the object is detected.
    In the thickness calculation step, a thickness distribution in which the detected rotation angle of the object is associated with the calculated thickness of the portion of the object is output.
    The thickness measuring method according to claim 8, wherein the thickness is measured.
PCT/JP2021/003070 2020-03-19 2021-01-28 Thickness measurement device and thickness measurement method WO2021186910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-049284 2020-03-19
JP2020049284A JP2021148630A (en) 2020-03-19 2020-03-19 Thickness measurement device and thickness measurement method

Publications (1)

Publication Number Publication Date
WO2021186910A1 true WO2021186910A1 (en) 2021-09-23

Family

ID=77771189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003070 WO2021186910A1 (en) 2020-03-19 2021-01-28 Thickness measurement device and thickness measurement method

Country Status (2)

Country Link
JP (1) JP2021148630A (en)
WO (1) WO2021186910A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181016A (en) * 1993-12-22 1995-07-18 Toppan Printing Co Ltd Method and apparatus for measuring film thickness
JP2013190224A (en) * 2012-03-12 2013-09-26 Konica Minolta Inc Thickness measurement device and thickness measurement method
CN110869698A (en) * 2017-07-25 2020-03-06 科磊股份有限公司 Multilayer film metrology using effective medium approximation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279322B2 (en) * 2007-02-20 2009-06-17 三菱重工業株式会社 Wavelength selection method, film thickness measuring method, film thickness measuring apparatus, and thin film silicon device manufacturing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181016A (en) * 1993-12-22 1995-07-18 Toppan Printing Co Ltd Method and apparatus for measuring film thickness
JP2013190224A (en) * 2012-03-12 2013-09-26 Konica Minolta Inc Thickness measurement device and thickness measurement method
CN110869698A (en) * 2017-07-25 2020-03-06 科磊股份有限公司 Multilayer film metrology using effective medium approximation

Also Published As

Publication number Publication date
JP2021148630A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
US7474416B2 (en) System and method for measuring an object and monitoring the surface of an object
US6620352B1 (en) Automated material distribution control for stretch blow molded articles
US11199395B2 (en) Profile inspection system for threaded and axial components
US6985221B2 (en) Method and apparatus for measuring wall thickness of plastic container
US7710558B2 (en) Automated online measurement of glass part geometry
JP4018071B2 (en) Optical fiber defect detection apparatus and method
US11590578B2 (en) Internal defect detection system, three-dimensional additive manufacturing device, internal defect detection method, method of manufacturing three-dimensional additive manufactured product, and three-dimensional
KR20180097609A (en) A terahertz measurement method and a terahertz measurement device for determining a layer thickness or a distance of a measurement object
US10434729B2 (en) Devices and methods for depositing reinforcing fiber tapes and detecting laying errors
KR20200123825A (en) Method and apparatus for measuring tubular strands
CN113029036B (en) Non-contact type object three-dimensional contour optical detection device and detection method
CN106304845A (en) Optical detecting device and method of optically measuring
WO2021186910A1 (en) Thickness measurement device and thickness measurement method
CA2050316A1 (en) Process and device for the contactless testing of areal and spatial test pieces
KR101376273B1 (en) Vision inspection apparatus for inspecting object having mirror surface area and method thereof
CA2599765C (en) Charger scanner system
US9772295B2 (en) Laying head, fibre placement device and method
US4791287A (en) Apparatus and an associated method for detecting haze or pearlescence in containers
US20240027182A1 (en) Thz measuring device and thz measuring method for performing a measurement on a corrugated pipe
JPH01291107A (en) Method and device for measuring profile of plastic sheet
CN102012367A (en) Method and device for determining the mass and/or mass proportion of a wall section with a plastic surface
JP2006071560A (en) Apparatus for detecting defect of optical fiber
CN208012545U (en) A kind of Spectral Confocal measuring device for drilling quality detection
CN206683577U (en) The image collection system of product of rubber and plastic
JP2870908B2 (en) Method and apparatus for measuring perspective distortion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771417

Country of ref document: EP

Kind code of ref document: A1