JPH0682797B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0682797B2
JPH0682797B2 JP60282636A JP28263685A JPH0682797B2 JP H0682797 B2 JPH0682797 B2 JP H0682797B2 JP 60282636 A JP60282636 A JP 60282636A JP 28263685 A JP28263685 A JP 28263685A JP H0682797 B2 JPH0682797 B2 JP H0682797B2
Authority
JP
Japan
Prior art keywords
trench
conductivity type
capacitor
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60282636A
Other languages
Japanese (ja)
Other versions
JPS62141753A (en
Inventor
通弘 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60282636A priority Critical patent/JPH0682797B2/en
Publication of JPS62141753A publication Critical patent/JPS62141753A/en
Publication of JPH0682797B2 publication Critical patent/JPH0682797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、トレンチキャパシタを有する半導体メモリな
どの半導体装置の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor device such as a semiconductor memory having a trench capacitor.

〔従来技術〕[Prior art]

トレンチキャパシタを有する半導体装置においては、キ
ャパシタ相互間のリークを防止することは重要な問題で
ある。
In a semiconductor device having a trench capacitor, preventing leakage between capacitors is an important issue.

第2図(a)はリーク防止のための従来のトレンチキャ
パシタの構造例を示すもので、例えばキャパシタの電荷
蓄積領域をn-層で構成する場合、P型シリコン基板1に
まずリーク防止領域としてのPウェル2を形成してか
ら、このPウェル2の表面にキャパシタ用のトレンチを
形成しそこに電荷蓄積領域となるn-層3と熱酸化膜4と
キャパシタ電極となるポリシリコン層5とを積層状に形
成することによりトレンチキャパシタを作成している。
FIG. 2A shows an example of the structure of a conventional trench capacitor for preventing leakage. For example, when the charge storage region of the capacitor is composed of an n layer, the leakage prevention region is first formed on the P-type silicon substrate 1. After the P well 2 is formed, a trench for a capacitor is formed on the surface of the P well 2, and an n layer 3 serving as a charge storage region, a thermal oxide film 4, and a polysilicon layer 5 serving as a capacitor electrode are formed therein. A trench capacitor is formed by forming the above in a laminated shape.

また、Pウェル2を作る代りに、同図(b)に示すよう
にP型シリコン基板1にまずトレンチを形成してからこ
のトレンチの内面にP型不純物を含んだ固体拡散源、例
えばボロンドープトシリケートガラス(BSG)6を堆積
させ、このBSG6からボロンを拡散させてトレンチの周囲
にリーク防止領域としてのP-層7を形成するという方法
も用いられている。
Instead of forming the P well 2, a trench is first formed in the P type silicon substrate 1 as shown in FIG. 1B, and then a solid diffusion source containing P type impurities, for example, boron doping, is formed on the inner surface of the trench. There is also used a method of depositing a tosilicate glass (BSG) 6 and diffusing boron from the BSG 6 to form a P layer 7 as a leak prevention region around the trench.

〔従来技術の問題点〕[Problems of conventional technology]

しかしながら、第1図(a)に示したPウェル2内にト
レンチキャパシタを形成する方法においては、Pウェル
2はキャパシタ相互間でリークが発生しないように高い
不純物濃度をトレンチキャパシタの深さ以上まで確保し
なくてはならないため、長時間に亘ってウェル拡散を行
わなくてはならない。そのために、半導体装置の製造時
間が長くなってしまうという問題がある。
However, in the method of forming the trench capacitor in the P well 2 shown in FIG. 1A, the P well 2 has a high impurity concentration up to the depth of the trench capacitor or more so as to prevent leakage between the capacitors. Since it must be ensured, well diffusion must be performed for a long time. Therefore, there is a problem that the manufacturing time of the semiconductor device becomes long.

また、同図(b)に示したBSG6などを用いてトレンチの
周囲にリーク防止用のP-層7を形成する方法において
は、BSG6をはく離する際に素子間分離用として形成した
酸化膜の厚みが減少し、更にトレンチの内面にひ素ドー
プトシリケートガラス(AsSG)などを堆積させてこれを
拡散源としてP-層7の内側に電荷蓄積領域となるn-層を
形成した後、AsSGをはく離する際にまた酸化膜厚が減少
してしまうという問題がある。また、P-層をまず形成し
てその後にn-層を形成するという2段階の拡散工程が必
要であるために、この方法も製造時間が長いという問題
を有している。
Further, in the method of forming the leak preventing P layer 7 around the trench by using BSG6 or the like shown in FIG. 7B, the oxide film formed for element isolation when the BSG6 is peeled off is used. As the thickness decreases, arsenic-doped silicate glass (AsSG) is deposited on the inner surface of the trench, and this is used as a diffusion source to form an n - layer serving as a charge storage region inside the P - layer 7. There is a problem that the oxide film thickness decreases again when peeling. Further, this method also has a problem that the manufacturing time is long because a two-step diffusion process of first forming the P layer and then forming the n layer is required.

〔発明の目的〕[Object of the Invention]

本発明は上記に鑑みなされたもので、トレンチキャパシ
タの電荷蓄積領域とリーク防止領域とを短時間で形成す
ることができる半導体装置の製造方法を提供することを
目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a method of manufacturing a semiconductor device capable of forming a charge storage region and a leak prevention region of a trench capacitor in a short time.

〔発明の概要〕[Outline of Invention]

上記目的を達成するために本発明は、半導体基板にキャ
パシタ用トレンチを形成した後、このトレンチの内面に
基板と同導電型の拡散係数の比較的大きい不純物とこれ
と異導電型の拡散係数の比較的小さい不純物とを両方含
有する固体拡散源を堆積させ、この拡散源からトレンチ
周囲の基板内へ両不純物を同時に各々の拡散係数に従っ
て拡散させることによって、トレンチの周囲に内側には
キャパシタの電荷蓄積領域となる基板とは異導電型の半
導体層を、またその外側にはリーク防止領域となる基板
と同導電型の半導体層を同時に形成するようにしたもの
である。
In order to achieve the above object, the present invention is to form a capacitor trench in a semiconductor substrate, and then form an impurity having a relatively large diffusion coefficient of the same conductivity type as that of the substrate and a diffusion coefficient of a different conductivity type on the inner surface of the trench. By depositing a solid diffusion source containing both relatively small impurities and diffusing both impurities simultaneously from the diffusion source into the substrate around the trench according to their respective diffusion coefficients, the charge of the capacitor is placed inside the trench. A semiconductor layer having a different conductivity type is formed on the substrate to be the accumulation region, and a semiconductor layer having the same conductivity type as the substrate to be the leak prevention region is formed on the outer side thereof at the same time.

〔発明の実施例〕Example of Invention

以下、実施例により本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.

第1図は本発明に係る半導体装置の製造方法の一実施例
を示す。
FIG. 1 shows an embodiment of a method of manufacturing a semiconductor device according to the present invention.

まず、P型シリコン基板11上に、これをエッチングする
際のマスク材となるCVD二酸化シリコン12を堆積した
後、その上にフォトレジスト13を堆積しパターニングす
る(第1図(a))。次に、このフォトレジスト13をマ
スクとして、その下にCVD二酸化シリコン12を反応性イ
オンエッチング法(RIE)によりエッチングする(同図
(b))。その後、フォトレジスト13をはく離し、エッ
チングしたCVD二酸化シリコン12をマスクとして、その
下のシリコン基板11をRIEによりエッチングしてそこに
キャパシタ用トレンチ14を形成する(同図(c))。次
に、このトレンチ14の内面にP型とn型の両不純物を含
有した固体拡散源、例えばボロンひ素ドープトシリケー
トガラス(BAsSG)15をCVD法により堆積させて950℃で3
0分間アニールし、このBAsSG15からトレンチ14の周囲の
基体内部へボロンとひ素を同時に熱拡散させる(同図
(d))。このとき、ボロンは拡散係数がひ素に比較し
て高いために同一条件下での熱拡散によって拡散深度は
ひ素よりも深い位置まで到達する。その結果、トレンチ
14の周囲には、内側にはひ素拡散による電荷蓄積領域と
なるn-層16が、またその外側にはボロン拡散によるリー
ク防止領域となるP-層17が同時に形成される。次に、BA
sSG15およびCVD二酸化シリコン12をはく離し(同図
(e))、続いて全表面にキャパシタ絶縁酸化膜を形成
した後、その上にキャパシタ電極となるポリシリコン19
を堆積する(同図(f))。これにより、リーク防止域
を備えたトレンチキャパシタが完成する。
First, a CVD silicon dioxide 12 that serves as a mask material for etching the P-type silicon substrate 11 is deposited, and then a photoresist 13 is deposited and patterned on the CVD silicon dioxide 12 (FIG. 1A). Next, using this photoresist 13 as a mask, the CVD silicon dioxide 12 is etched under the photoresist 13 by the reactive ion etching method (RIE) (FIG. 2B). Then, the photoresist 13 is peeled off, and the etched silicon dioxide 12 is used as a mask to etch the underlying silicon substrate 11 by RIE to form a capacitor trench 14 therein (FIG. 3C). Next, a solid diffusion source containing both P-type and n-type impurities, for example, boron arsenic-doped silicate glass (BAsSG) 15 is deposited on the inner surface of the trench 14 by the CVD method, and the solid-state diffusion source is deposited at 950 ° C.
Annealing is performed for 0 minutes, and boron and arsenic are simultaneously thermally diffused from this BAsSG15 into the inside of the substrate around the trench 14 (FIG. 7 (d)). At this time, since boron has a higher diffusion coefficient than arsenic, the diffusion depth reaches a position deeper than arsenic by thermal diffusion under the same conditions. As a result, the trench
Around the periphery of 14 is formed an n layer 16 which serves as a charge storage region by arsenic diffusion, and a P layer 17 which serves as a leak prevention region by boron diffusion is formed on the outside thereof at the same time. Then BA
Peel off the sSG15 and the CVD silicon dioxide 12 ((e) in the same figure), then form a capacitor insulating oxide film on the entire surface, and then use polysilicon 19 to become a capacitor electrode on it.
Are deposited ((f) in the figure). As a result, the trench capacitor having the leak prevention region is completed.

このように、ボロンとひ素の拡散係数の違いを利用して
一度の熱拡散で電荷蓄積領域(n-層16)とリーク防止領
域(P-層17)とを同時に形成することによって、製造時
間を短縮できると共に、拡散源(BAsSG15)のはく離も
1回で済むので、はく離を2回行わなければならない従
来方法(第2図(b))に比較して、はく離による素子
分離用の酸化膜の膜厚の減少が少ないという利点があ
る。
In this way, the charge accumulation region (n layer 16) and the leak prevention region (P layer 17) are simultaneously formed by one thermal diffusion by utilizing the difference in the diffusion coefficient between boron and arsenic. Since the diffusion source (BAsSG15) can be stripped only once, the oxide film for element isolation by stripping can be compared to the conventional method in which stripping must be performed twice (Fig. 2 (b)). There is an advantage that the reduction of the film thickness is small.

尚、上記実施例では電荷蓄積領域をn-層とする場合につ
いて述べたが、もちろんP-層とする場合にも本発明は適
用でき、この場合にはn型の不純物の方がP型の不純物
よりも拡散係数が大きくなるように不純物を選択するこ
とになる。
Although the above embodiment has described the case where the charge storage region is the n layer, the present invention can also be applied to the case where the charge storage region is the P layer. In this case, the n-type impurity is the p-type. The impurities are selected so that the diffusion coefficient is larger than that of the impurities.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば拡散係数の異なる
互いに異導電型の2種類の不純物を含有した固体拡散源
を用いて、キャパシタ用トレンチの周囲にキャパシタの
電荷蓄積領域となる半導体層とリーク防止領域となる半
導体層とを同時に形成するようにしているので、トレン
チキャパシタの製造時間が短縮されるという効果が得ら
れる。
As described above, according to the present invention, a solid-state diffusion source containing two kinds of impurities of different conductivity types having different diffusion coefficients is used, and a semiconductor layer serving as a charge storage region of a capacitor is formed around a capacitor trench. Since the semiconductor layer serving as the leak prevention region is formed at the same time, the manufacturing time of the trench capacitor can be shortened.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る半導体装置の製造方法の一実施例
をその工程順に示す断面図、第2図は従来のトレンチキ
ャパシタのリーク防止のための構造を示す断面図であ
る。 1,11……P型シリコン基板、2……Pウェル、3,16……
n-層、4,18……キャパシタ絶縁酸化膜、5,19……キャパ
シタ電極、6……ボロンドープトシリケートガラス、7,
17……P-層、12……CVD二酸化シリコン、13……フォト
レジスト、14……キャパシタ用トレンチ、15……ボロン
ひ素ドープトシリケートガラス。
FIG. 1 is a sectional view showing an embodiment of a method of manufacturing a semiconductor device according to the present invention in the order of steps, and FIG. 2 is a sectional view showing a conventional structure for preventing leakage of a trench capacitor. 1,11 …… P-type silicon substrate, 2 …… P well, 3,16 ……
n - layer, 4,18 ... Capacitor insulating oxide film, 5,19 ... Capacitor electrode, 6 ... Boron-doped silicate glass, 7,
17 …… P - layer, 12 …… CVD silicon dioxide, 13 …… Photoresist, 14 …… Capacitor trench, 15 …… Boron arsenic-doped silicate glass.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】トレンチキャパシタを有する半導体装置の
製造方法において、第1導電型のシリコン基板にキャパ
シタ用トレンチを形成した後に、このトレンチの内面に
拡散係数の比較的大きい第1導電型の不純物と拡散係数
の比較的小さい、第1導電型と異なる第2導電型の不純
物の双方を含有するシリケートガラスを堆積させ、この
シリケートガラスから前記トレンチの周囲の基体内へ前
記両不純物を同時に夫々の拡散係数に従って拡散させる
工程を備え、この工程により前記トレンチの周囲の内側
には前記キャパシタの電荷蓄積領域となる第2導電型の
半導体層を、またその外側にはリーク防止領域となる第
1導電型の半導体層を同時に形成するようにしたことを
特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device having a trench capacitor, wherein after a capacitor trench is formed in a silicon substrate of the first conductivity type, an impurity of the first conductivity type having a relatively large diffusion coefficient is formed on the inner surface of the trench. Depositing a silicate glass having both a first conductivity type and a second conductivity type impurity having a relatively small diffusion coefficient, and simultaneously diffusing both the impurities from the silicate glass into the substrate around the trench. A step of diffusing in accordance with a coefficient, and by this step, a semiconductor layer of a second conductivity type that becomes a charge storage region of the capacitor is provided inside the periphery of the trench, and a semiconductor layer of a first conductivity type that becomes a leak prevention region is provided outside thereof. 2. A method for manufacturing a semiconductor device, characterized in that the semiconductor layers are simultaneously formed.
【請求項2】前記シリコン基板はP型基板であり、前記
第1導電型の不純物はボロンであり、前記第2導電型の
不純物はひ素であることを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。
2. The silicon substrate is a P-type substrate, the first conductivity type impurity is boron, and the second conductivity type impurity is arsenic. A method for manufacturing a semiconductor device as described above.
JP60282636A 1985-12-16 1985-12-16 Method for manufacturing semiconductor device Expired - Fee Related JPH0682797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60282636A JPH0682797B2 (en) 1985-12-16 1985-12-16 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60282636A JPH0682797B2 (en) 1985-12-16 1985-12-16 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62141753A JPS62141753A (en) 1987-06-25
JPH0682797B2 true JPH0682797B2 (en) 1994-10-19

Family

ID=17655095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60282636A Expired - Fee Related JPH0682797B2 (en) 1985-12-16 1985-12-16 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0682797B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231677A (en) * 1975-08-19 1977-03-10 Matsushita Electronics Corp Production method of semiconductor device
JPS5270756A (en) * 1975-12-10 1977-06-13 Oki Electric Ind Co Ltd Impurity diffusion method
JPS60152059A (en) * 1984-01-20 1985-08-10 Toshiba Corp Semiconductor memory device

Also Published As

Publication number Publication date
JPS62141753A (en) 1987-06-25

Similar Documents

Publication Publication Date Title
JP2889137B2 (en) Method of fabricating a low leakage substrate plate trench DRAM cell and device formed thereby
JP2795565B2 (en) Method for manufacturing semiconductor storage element
JPH0555364A (en) Method of forming isolating film of semiconductor element
US5482869A (en) Gettering of unwanted metal impurity introduced into semiconductor substrate during trench formation
JPH0365905B2 (en)
JPS60213053A (en) Semiconductor memory element
JPH0682797B2 (en) Method for manufacturing semiconductor device
KR950014114B1 (en) Manufacturing method of insulating layer for isolation
JPH0729971A (en) Manufacture of semiconductor device
JPS6240759A (en) Semiconductor memory
JP2707536B2 (en) Method for manufacturing semiconductor device
JPH03234051A (en) Manufacture of capacitive element
JPS61225851A (en) Semiconductor device and manufacture thereof
EP0439634A1 (en) Method of manufacturing a semiconductor device including a trench capacitor
JP2820465B2 (en) Method for manufacturing semiconductor device
KR960006716B1 (en) Semiconductor integrated circuit device fabrication process
KR100215884B1 (en) Semiconductor device and manufacture thereof
JPS63122239A (en) Manufacture of semiconductor device
KR960001952B1 (en) Method of manufacturing a stacked trench capacitor
JPH0530307B2 (en)
JP3196373B2 (en) Method for manufacturing semiconductor device
JPH0695550B2 (en) Semiconductor device
JPH01251715A (en) Manufacture of semiconductor device
JPS63117461A (en) Semiconductor memory device and manufacture thereof
JPH07115138A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees