JPH0677026A - Manufacture of rare earth element-fe-n base permanent magnet - Google Patents

Manufacture of rare earth element-fe-n base permanent magnet

Info

Publication number
JPH0677026A
JPH0677026A JP4248814A JP24881492A JPH0677026A JP H0677026 A JPH0677026 A JP H0677026A JP 4248814 A JP4248814 A JP 4248814A JP 24881492 A JP24881492 A JP 24881492A JP H0677026 A JPH0677026 A JP H0677026A
Authority
JP
Japan
Prior art keywords
powder
rare earth
permanent magnet
metal
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4248814A
Other languages
Japanese (ja)
Inventor
Shinya Suzuki
信也 鈴木
Masahito Kawasaki
正仁 川崎
Toshiharu Suzuki
俊治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP4248814A priority Critical patent/JPH0677026A/en
Publication of JPH0677026A publication Critical patent/JPH0677026A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To device q manufacturing method of rare earth element-Fe-N base permanent magnet notably contributing to the increase in the manufacturing capacity and the long term stability of the performance by securing sufficient coercive force even if rough particles are used. CONSTITUTION:A metallic film comprising at least one kind of element out of Sn, Zn, Pb, In, Al and Mg is formed on the surface of an alloy particles mainly comprising rare earth metal (R), Fe and N as well as the compound in Th2Zn17 or ThMn12 type crystalline structure in main phase and mean particle diameter of 20-150mum. Next, the alloy particles whereon the metallic film is formed are molded into a molded body to be heat-treated later at the temperature of 100-600 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類−鉄−窒素系永
久磁石の製造方法に係り、さらに詳しくは粗粉末を用い
ることにより、製造性と性能的な長期安定性を改良した
永久磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-iron-nitrogen permanent magnet, and more specifically to a permanent magnet having improved manufacturability and long-term stability in performance by using coarse powder. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化に伴って高
性能なNd −Fe −B系永久磁石が広く使用されてい
る。しかしこの磁石はキュリー点が 310℃と低いために
温度特性が悪く、 150℃以上での使用が困難であった。
2. Description of the Related Art In recent years, high-performance Nd-Fe-B system permanent magnets have been widely used with the miniaturization of various electronic devices. However, since this magnet has a low Curie point of 310 ° C, its temperature characteristics are poor, making it difficult to use at temperatures above 150 ° C.

【0003】一方、希土類金属と鉄との合金に窒素を侵
入させることにより、例えばTh 2Zn 17の結晶構造の
化合物を主相とするSm −Fe −N−H系合金が、優れ
た磁気特性と約 470℃のキュリー点をもつことが報告さ
れている。また、Th Mn 12の結晶構造の化合物を主相
とするNd −Fe −Ti −N系合金も同様な磁性をもつ
ことが報告されている。
[0003] On the other hand, by entering the nitrogen alloyed with rare earth metals and iron, for example Sm -Fe -N-H alloy the main phase of a compound of the crystal structure of Th 2 Zn 17 has excellent magnetic properties And a Curie point of about 470 ° C. Further, it has been reported that Nd-Fe-Ti-N-based alloys having a compound of Th Mn 12 crystal structure as a main phase also have similar magnetism.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記希
土類−鉄−窒素系合金は、数μmの粒径に微粉砕しなけ
れば永久磁石にとって必要な保磁力が得られず、この微
粉末を用いる分、成形性が悪化して高圧成形が必要とな
り、金型寿命の低下が避けられないという問題があっ
た。またこの種の合金粉末は高温・高湿下で酸化し易
く、微粉末を用いる分、その酸化が促進され、長期的に
安定した性能を有する永久磁石を得ることが困難である
という問題もあった。
However, the above-mentioned rare earth-iron-nitrogen based alloy cannot obtain the coercive force required for a permanent magnet unless it is finely pulverized to a particle size of several .mu.m. However, there has been a problem that the moldability is deteriorated and high-pressure molding is required, and the mold life is unavoidably shortened. Further, this type of alloy powder is easily oxidized under high temperature and high humidity, and the fine powder used promotes the oxidation, which makes it difficult to obtain a permanent magnet having stable performance for a long time. It was

【0005】本発明は、上記従来の問題に鑑みてなされ
たもので、粗粉末を用いても充分なる保磁力を確保で
き、もって製造性の改善と性能の長期安定化とに大きく
寄与する希土類−鉄−窒素系永久磁石の製造方法を提供
することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to secure a sufficient coercive force even if a coarse powder is used, and thus, it is possible to improve the manufacturability and stabilize the performance for a long time. -It aims at providing the manufacturing method of an iron-nitrogen permanent magnet.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明における希土類磁石の製造方法は、希土類金
属(R),Fe およびNを主成分とし、かつTh 2 Zn
17またはTh Mn 12型結晶構造の化合物を主相とする平
均粒径20〜 150μmの合金粉末表面に、Sn ,Zn ,P
b ,In ,Al ,Mg の少なくとも一種から成る金属皮
膜を形成し、この金属皮膜を形成した粉末を用いて成形
を行った後、得られた成形体に 100〜 600℃で熱処理を
施すように構成したことを特徴とする。
In order to solve the above problems, the method for producing a rare earth magnet according to the present invention comprises a rare earth metal (R), Fe and N as main components, and Th 2 Zn.
Sn, Zn, P on the surface of an alloy powder having an average particle size of 20 to 150 μm and a compound having a 17 or Th Mn 12 type crystal structure as a main phase
After forming a metal film composed of at least one of b, In, Al and Mg and performing molding using the powder having the metal film formed thereon, the resulting molded body is subjected to heat treatment at 100 to 600 ° C. It is characterized by being configured.

【0007】本発明における希土類−鉄−窒素系合金と
しては、Th 2 Zn 17型結晶構造の化合物を主相とする
Sm2Fe17 Nx 組成、あるいはTh Mn 12型結晶構造の
化合物を主相とするNd (Fe ,M)12Nx 組成やPr
(Fe ,M)12Nx 組成が代表として挙げられる(ここ
でMは遷移元素を指す)。この場合、Nの含有量として
は数〜20数原子%が選択される。これらの合金は、窒素
の含有により飽和磁束密度、結晶磁気異方性およびキュ
リー点が大幅に向上し、永久磁石素材として優れたもの
になる。またこれらの合金は、鉄の一部をCo やTi な
ど他の遷移金属で置換したり、希土類金属として2種以
上の希土類金属を用いることができる。Co は、特にキ
ュリー点の上昇と耐食性の向上に効果がある。また上記
Nの一部をCで置き換えることによっても、良好な磁気
特性を得ることができる。
As the rare earth-iron-nitrogen based alloy in the present invention, a compound having a Th 2 Zn 17 type crystal structure as a main phase is an Sm 2 Fe 17 Nx composition or a compound having a Th Mn 12 type crystal structure is a main phase. Nd (Fe, M) 12 Nx composition and Pr
A (Fe, M) 12 Nx composition is representatively represented (where M represents a transition element). In this case, the content of N is selected to be several to 20 several atomic%. Saturation magnetic flux density, crystal magnetic anisotropy and Curie point of these alloys are significantly improved by containing nitrogen, and they are excellent as permanent magnet materials. Further, in these alloys, a part of iron can be replaced with another transition metal such as Co or Ti, or two or more kinds of rare earth metals can be used as the rare earth metal. Co is particularly effective in raising the Curie point and improving the corrosion resistance. Also, good magnetic characteristics can be obtained by replacing a part of N with C.

【0008】本発明において上記合金粉末を得る方法は
任意であり、例えば、希土類金属、鉄(および所望によ
りその他の金属)との母合金粉末を得て、これにNを侵
入させる方法を用いることができる。この場合、母合金
粉末を得る方法としては希土類金属とFe とを所定比率
で配合した原料を高周波溶解し、その合金溶湯を鋳型に
注湯して一旦合金インゴットとなし、高温で均質化処理
を行った後、ジョークラッシャーやスタンプミル、ボー
ルミル等を用いて所望の粉末とする方法、あるいは合金
溶湯を直接急冷して粉末とする急冷法を用いることがで
きる。またこの母合金粉末へのNの侵入については、こ
の母合金粉末を高温で窒素、アンモニア、あるいは窒素
と水素の混合ガス等の窒化性ガスと接触させることによ
って行うことができる。この場合、窒化温度としては、
200℃未満ではNの侵入が不充分であり、 600℃を超え
ると化合物相が分解し易くなるので、200 〜600 ℃の範
囲を選択するのが望ましい。また、この窒化処理を数十
気圧の高圧力下で行うことにより、母合金粉末への窒素
の侵入を効率的に行うことができる。さらに、この窒化
処理の後に再度粉砕を行って粉末粒径の調整を行うこと
は差し支えない。
In the present invention, any method may be used to obtain the above-mentioned alloy powder. For example, a method of obtaining a master alloy powder of a rare earth metal and iron (and optionally other metal) and injecting N into this is used. You can In this case, as a method for obtaining the mother alloy powder, a raw material in which a rare earth metal and Fe are mixed in a predetermined ratio is melted by high frequency, and the molten alloy is poured into a mold to form an alloy ingot, which is homogenized at high temperature. After that, a method of forming a desired powder using a jaw crusher, a stamp mill, a ball mill, or the like, or a rapid cooling method of directly quenching the molten alloy to obtain a powder can be used. The penetration of N into the master alloy powder can be carried out by bringing the master alloy powder into contact with a nitriding gas such as nitrogen, ammonia, or a mixed gas of nitrogen and hydrogen at a high temperature. In this case, the nitriding temperature is
If the temperature is lower than 200 ° C, the penetration of N is insufficient, and if it exceeds 600 ° C, the compound phase is easily decomposed. Therefore, it is desirable to select the range of 200 to 600 ° C. Further, by performing this nitriding treatment under a high pressure of several tens of atmospheres, it is possible to efficiently inject nitrogen into the master alloy powder. Further, it is possible to adjust the powder particle size by pulverizing again after the nitriding treatment.

【0009】本発明において、合金粉末の粒径は、20μ
m未満ではボンド磁石化するに際して高圧成形を必要と
するために量産上好ましくないばかりか、製造工程中で
酸化し易くなり、一方、 150μmを越える粒径ではNの
侵入が充分に行われないため、これを20〜 150μmの範
囲とした。
In the present invention, the grain size of the alloy powder is 20 μm.
If it is less than m, it is not preferable for mass production because it requires high-pressure molding to form a bonded magnet, and it is easily oxidized in the manufacturing process. On the other hand, if the particle size exceeds 150 μm, N is not sufficiently penetrated. This was in the range of 20 to 150 μm.

【0010】本発明において、上記したように合金粉末
の表面に低融点金属であるSn ,Zn ,Pb ,In ,A
l ,Mg の少なくとも一種からなる皮膜を形成すること
を特徴とするが、これら低融点金属を選択したのは、こ
れらの金属類は、ボンド磁石用のバインダーとして機能
する他に、後述の熱処理により合金粉末と一部反応して
保磁力を増加させる働きがあるためである。合金粉末の
表面に金属皮膜を形成する方法としてはメッキ処理法ま
たは機械的結合処理法を用いることができる。メッキ処
理法としては薬品を用いる化学的方法、あるいは蒸着、
スパッタリング等の物理的方法があり、一方、機械的結
合処理法としては、振動ミルにより強い機械力を加える
方法がある。
In the present invention, as mentioned above, Sn, Zn, Pb, In and A which are low melting point metals are formed on the surface of the alloy powder.
It is characterized in that it forms a film consisting of at least one of l and Mg, but these low melting point metals were selected because these metals function as binders for bonded magnets and by heat treatment described later. This is because it has a function of partially reacting with the alloy powder to increase the coercive force. As a method for forming a metal film on the surface of the alloy powder, a plating method or a mechanical bonding method can be used. As a plating method, a chemical method using chemicals, or vapor deposition,
There is a physical method such as sputtering, and on the other hand, as a mechanical bonding treatment method, there is a method of applying a strong mechanical force to a vibration mill.

【0011】本発明において、上記成形においては、加
圧によって合金粉末に被覆された皮膜金属が粉末相互を
強く固着し、数 Ton/cm2 の加圧成形によって硬い成形
体が得られるようになる。本発明は、金属皮膜を形成し
た粉末に、この皮膜金属と同種の金属バインダーを数重
量%加えて温間成形を行うようにすることができる他、
温間成形後にエポキシ樹脂やワニスなどの有機物を成形
体に含浸させることができ、何れの場合も、一層優れた
強度を有する成形体を得ることができる。また、この成
形は圧縮、射出、押し出し等の各種方法を用いることが
できる。
In the present invention, in the above-mentioned molding, the film metal coated on the alloy powder is strongly fixed to each other by the pressure, and a hard molded product can be obtained by the pressure molding of several Ton / cm 2. . The present invention, in addition to the powder forming the metal film, a metal binder of the same kind as the film metal can be added by several wt% to perform warm forming,
After the warm molding, the molded product can be impregnated with an organic substance such as epoxy resin or varnish, and in any case, a molded product having further excellent strength can be obtained. Further, for this molding, various methods such as compression, injection and extrusion can be used.

【0012】成形後の熱処理は、成形体を不活性ガス雰
囲気中あるいは真空中で粉末と成形金型とを加熱するこ
とによって行うことができ、この熱処理によって磁気特
性特に保磁力が向上する。この保磁力の向上理由は、合
金粉末に少量含まれている軟磁性の鉄成分が皮膜金属と
反応を起こして消滅するためと推察される。加熱温度と
しては、 100℃未満では前述の向上がみられず、 600℃
を越えると化合物の分解を引き起こして磁気特性が低下
する傾向にあるため、これを 100〜 600℃の範囲とし
た。
The heat treatment after molding can be carried out by heating the powder and the molding die in an inert gas atmosphere or in a vacuum, and this heat treatment improves the magnetic properties, especially the coercive force. It is presumed that the reason for the improvement of the coercive force is that the soft magnetic iron component contained in the alloy powder in a small amount reacts with the coating metal and disappears. As for the heating temperature, if the temperature is less than 100 ° C, the above-mentioned improvement is not seen, and 600 ° C
If it exceeds, the decomposition of the compound tends to occur and the magnetic properties tend to deteriorate, so this was made the range of 100 to 600 ° C.

【0013】[0013]

【作用】上述の希土類−鉄−窒素系永久磁石の製造方法
においては、合金粉末への低融点金属皮膜の形成とその
後の温間成形により、磁気特性特に保磁力が増大し、そ
の分、粗粉末の使用が可能になる。
In the above-described method for producing a rare earth-iron-nitrogen permanent magnet, the formation of the low melting point metal coating on the alloy powder and the subsequent warm forming increase the magnetic properties, especially the coercive force, and Allows the use of powder.

【0014】[0014]

【実施例】以下、本発明の実施例を図面も参照して説明
する。
Embodiments of the present invention will now be described with reference to the drawings.

【0015】実施例1 純度99.9%のサマリウムおよび電解鉄を所定の比率で配
合し、高周波溶解してTh 2 Zn 17型結晶構造の化合物
を主相とするSm2Fe17 組成の合金インゴットを製作し
た。これを1200℃、12時間、Ar ガス雰囲気下で均質化
処理を行った後、スタンプミルとボールミルによって平
均粒径3〜 200μmの各種母合金粉末を得た。次に、こ
の母合金粉末を5気圧のNガス中で、 450℃、2〜36時
間保持してNを侵入させて窒化粉末(合金粉末)を得
た。続いて、これらの窒化粉末を、触媒を用いた亜鉛の
化学めっき浴に浸して粉末表面に亜鉛皮膜を形成した。
なお重量法により求めた窒化粉末への亜鉛の付着量は、
膜厚平均で 1.6μmであった。次に、この金属被覆粉末
を成形金型に供給して、15KOe の磁界を印加しながら
7 Ton/cm2 の圧力で圧縮成形して成形体を製作した。
その後、成形体を電気炉に装入して、アルゴンガス雰囲
気中、425 ℃で6時間の熱処理を行って磁石体試料を
得、これらをB−Hトレーサーによる磁気特性の測定試
験に供し、併せてX線回折法によって結晶構造を確認し
た。
EXAMPLE 1 Samarium having a purity of 99.9% and electrolytic iron were blended in a predetermined ratio, and high frequency melting was performed to produce an alloy ingot of Sm 2 Fe 17 composition containing a compound having a Th 2 Zn 17 type crystal structure as a main phase. did. This was homogenized at 1200 ° C. for 12 hours in an Ar gas atmosphere, and various mother alloy powders having an average particle diameter of 3 to 200 μm were obtained by a stamp mill and a ball mill. Next, this mother alloy powder was held in N gas at 5 atm at 450 ° C. for 2 to 36 hours to allow N to infiltrate to obtain a nitride powder (alloy powder). Subsequently, these nitride powders were immersed in a zinc chemical plating bath using a catalyst to form a zinc film on the powder surface.
Note that the amount of zinc adhered to the nitride powder obtained by the gravimetric method is
The average film thickness was 1.6 μm. Next, this metal-coated powder was supplied to a molding die and compression-molded at a pressure of 7 Ton / cm 2 while applying a magnetic field of 15 KOe to produce a molded body.
After that, the molded body was placed in an electric furnace and subjected to heat treatment at 425 ° C. for 6 hours in an argon gas atmosphere to obtain magnet body samples, which were subjected to a magnetic characteristic measurement test by a BH tracer. The crystal structure was confirmed by X-ray diffraction.

【0016】図1は、磁石体試料の最大磁気エネルギー
積BHmax 、保磁力 iHc および残留磁束密度Br に及
ぼす窒化粉末の平均粉末粒径の影響を見たものである。
図1より、最大磁気エネルギー積BHmax と保磁力 iH
c は、平均粉末粒径が約25μmでピークとなるものの、
20〜150 μmの範囲において高値となっている。一方、
保磁力 iHc は、単磁区粒子理論に従って窒化粉末粒径
が小さくなるにつれて増大している。したがって本実施
例における実用的な成形圧力の元で良好な磁気特性を得
るには、平均粉末粒径が20〜150 μmの範囲にあること
が必要であることが分かった。なお、X線回折の結果、
ここで用いた窒化粉末はいずれも所望のTh 2 Zn 17
結晶構造の主相を有していることが確認できた。
FIG. 1 shows the effect of the average particle size of the nitride powder on the maximum magnetic energy product BHmax, the coercive force iHc and the residual magnetic flux density Br of the magnet sample.
From Fig. 1, the maximum magnetic energy product BHmax and the coercive force iH
c has a peak when the average powder particle size is about 25 μm,
High price in the range of 20 to 150 μm. on the other hand,
The coercive force iHc increases as the grain size of the nitriding powder becomes smaller according to the single domain grain theory. Therefore, it was found that the average powder particle size was required to be in the range of 20 to 150 μm in order to obtain good magnetic properties under the practical molding pressure in this example. As a result of X-ray diffraction,
It was confirmed that each of the nitride powders used here had a desired main phase of the Th 2 Zn 17 type crystal structure.

【0017】実施例2 実施例1と同様にしてサマリウムと電解鉄とを原料にし
てSm2Fe17 組成の合金インゴットを製作し、均質化処
理を行った後、粉砕し平均粉末粒径25μmの母合金粉末
を得た。次にこの母合金粉末を5気圧のNガス中で 450
℃、12時間保持して窒化粉末を得た。その後、この窒化
粉末に物理的めっき処理法の1種である蒸着法を採用
し、これを真空蒸着機の回転小皿にセットし、真空度1
×10-5torr下でZn ,Sn ,Pb ,In ,Al ,Mg の
それぞれを抵抗加熱により蒸着せしめた。なお、蒸着金
属量は、被覆膜厚として 1.5〜2μmになるように製作
条件を調整した。その後、この金属被覆粉末を用いて実
施例1と同様の条件で成形を起こって成形体を得、しか
る後にこれを電気炉に装入してアルゴンガス中で100〜7
00 ℃、1時間の熱処理を行い、磁石体試料1〜7を
得、これらを実施例1と同様の磁気特性の測定試験に供
した。また比較のため、Cu を蒸着した試料8および金
属蒸着を全く行わない試料9を得、これらも同様の測定
試験に供した。結果を表1に示す。
Example 2 Similar to Example 1, an alloy ingot of Sm 2 Fe 17 composition was prepared from samarium and electrolytic iron as raw materials, homogenized, and then pulverized to obtain an average powder particle size of 25 μm. A mother alloy powder was obtained. Next, this mother alloy powder is 450 in N gas at 5 atm.
The temperature was kept at 12 ° C for 12 hours to obtain a nitriding powder. Then, the vapor deposition method, which is one of the physical plating treatment methods, was adopted for this nitride powder, and this was set on a rotary small plate of a vacuum vapor deposition machine, and the vacuum degree 1
Each of Zn, Sn, Pb, In, Al and Mg was vapor-deposited by resistance heating under x10 -5 torr. The deposition conditions were adjusted so that the amount of deposited metal was 1.5 to 2 μm as the coating film thickness. Then, using this metal-coated powder, molding was performed under the same conditions as in Example 1 to obtain a molded body, which was then placed in an electric furnace and placed in an argon gas at 100 to 7%.
Heat treatment was carried out at 00 ° C. for 1 hour to obtain magnet body samples 1 to 7, which were subjected to the same magnetic characteristic measurement test as in Example 1. Further, for comparison, a sample 8 on which Cu was vapor-deposited and a sample 9 on which no metal vapor deposition was performed were obtained, and these were also subjected to the same measurement test. The results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1より明らかなように、低融点金属皮膜
を形成した粉末を用いた本発明にかかる試料1〜7は、
いずれも高い残留磁束密度Br と保磁力 iHc が得られ
ている。これに対して、Cu を蒸着した試料8は保磁力
iHc の向上がほとんど認められず、また蒸着を実施し
なかった試料9は保磁力 iHc が著しく小さくなってい
る。したがって本発明で規定した低融点金属類が、優れ
た磁気特性を得るために必要であることが明らかになっ
た。また窒化粉末への金属皮膜形成に蒸着法を適用して
も問題ないことが確認された。
As is clear from Table 1, the samples 1 to 7 according to the present invention using the powder having the low melting point metal film formed thereon,
In each case, high residual magnetic flux density Br and coercive force iHc are obtained. On the other hand, sample 8 with Cu vapor deposition has a coercive force.
Almost no improvement in iHc was observed, and the coercive force iHc of Sample 9 which was not vapor-deposited was remarkably small. Therefore, it became clear that the low melting point metals specified in the present invention are necessary for obtaining excellent magnetic properties. It was also confirmed that there is no problem even if the vapor deposition method is applied to the formation of a metal film on the nitride powder.

【0020】実施例3 実施例2において製作した窒化粉末を、亜鉛を内張りし
たステンレス鋼製のボールミル容器に装入し、容器内を
Nガスで置換した後、乾式にて24時間運転して、粉末表
面に機械的に亜鉛皮膜を形成した。次にこの金属被覆粉
末を用いて実施例1と同様の条件で成形を行い、成形
後、真空炉に装入して、窒素ガス中、 100〜 700℃で1
時間の熱処理を行い、得られた磁石体試料の磁気特性を
測定した。
Example 3 The nitride powder produced in Example 2 was charged into a zinc-lined stainless steel ball mill container, the interior of the container was replaced with N gas, and the dry operation was performed for 24 hours. A zinc film was mechanically formed on the powder surface. Next, this metal-coated powder is used to perform molding under the same conditions as in Example 1, and after molding, the powder is placed in a vacuum furnace and heated in a nitrogen gas at 100 to 700 ° C. for 1 hour.
The heat treatment was performed for a time, and the magnetic characteristics of the obtained magnet body sample were measured.

【0021】図2は、磁石体試料の保磁力 iHc に及ぼ
す熱処理温度の影響を見たものである。同図より、保磁
力 iHc は成形温度 400〜500 ℃付近でピークとなる
が、 100〜 600℃の温度範囲であれば、2000Oe 以上の
優れた値となることが明らかとなった。また窒化粉末へ
の金属皮膜形成に機械的結合処理法を適用しても問題な
いことが確認できた。
FIG. 2 shows the effect of heat treatment temperature on the coercive force iHc of the magnet sample. From the figure, it is clear that the coercive force iHc has a peak near the molding temperature of 400 to 500 ° C, but has an excellent value of 2000 Oe or more in the temperature range of 100 to 600 ° C. It was also confirmed that there is no problem even if the mechanical bonding treatment method is applied to the formation of the metal film on the nitride powder.

【0022】実施例4 純度99.9%のサマリウム、コバルト、および電解鉄を所
定の比率で配合し、高周波溶解してTh 2 Zn 17型結晶
構造の化合物を主相とするSm2(Fe0.8Co0.217組成
の合金インゴットを製作した。これを1150℃、12時間、
Ar ガス雰囲気下で均質化処理を行った後急冷し、スタ
ンプミルとボールミルによって平均粒径50μmおよび3
μmの母合金粉末を得た。次に、この母合金粉末を電気
炉に装入して、5気圧のNガス中、 500℃で8時間保持
してNを侵入させ、続いてこれらの窒化粉末を、実施例
1と同様に触媒を用いた亜鉛の化学めっき浴に浸して粉
末表面に 0.6μmの亜鉛皮膜を形成した。次に、これら
の金属被覆粉末に10重量%の亜鉛粉末を混合し、15KO
e の磁界を印加しながら4〜10 Ton/cm2 の圧力で圧縮
成形して成形体を製作し、その後、これを電気炉に装入
してアルゴンガス雰囲気中、450 ℃で8時間の熱処理を
行った。得られた磁石体試料を最大エネルギー積BH m
axと成形体密度との測定試験に供し、併せて長期安定性
を知るために、上述の窒化粉末を 125℃の恒温槽に 500
時間保持して、粉末の重量変化を測定した。
Example 4 Sm 2 (Fe 0.8 Co 0.2) containing samarium, cobalt, and electrolytic iron having a purity of 99.9% at a predetermined ratio and high-frequency-melted to have a compound having a Th 2 Zn 17 type crystal structure as a main phase. ) A 17 composition alloy ingot was produced. This is 1150 ℃, 12 hours,
After homogenizing under Ar gas atmosphere, quenching is performed, and the average particle size is 50 μm and 3 by a stamp mill and a ball mill.
A master alloy powder of μm was obtained. Next, this mother alloy powder was charged into an electric furnace and kept at 500 ° C. for 8 hours in N gas at 5 atm to allow N to infiltrate. Then, these nitride powders were treated in the same manner as in Example 1. A 0.6 μm zinc film was formed on the powder surface by immersing in a zinc electroplating bath using a catalyst. Next, these metal-coated powders were mixed with 10% by weight of zinc powder to obtain 15KO.
While applying a magnetic field of e, compression molding is performed at a pressure of 4 to 10 Ton / cm 2 to produce a molded body, which is then placed in an electric furnace and heat-treated at 450 ° C. for 8 hours in an argon gas atmosphere. I went. The maximum energy product BH m
In order to perform the measurement test of ax and compact density, and also to know the long-term stability, the above-mentioned nitriding powder was placed in a constant temperature bath at 125 ° C for 500 times.
The weight change of the powder was measured while keeping the time.

【0023】図3は、磁石体試料の最大エネルギー積B
H maxと密度に及ぼす平均粉末粒径と成形圧力の影響を
見たものである。同図より、平均粒径50μmの粗粉末を
使用した磁石体試料は、成形圧力1 Ton/cm2 以上で最
大エネルギー積(BH max)10MGOe 以上の優れた磁
気特性を有し、また比較的低圧成形においても高密度化
することが可能であることが明らかとなった。
FIG. 3 shows the maximum energy product B of the magnet sample.
The effect of the average powder particle size and the molding pressure on the H max and the density is examined. From the figure, the magnet body sample using the coarse powder having the average particle diameter of 50 μm has excellent magnetic characteristics such as the maximum energy product (BH max) of 10 MGOe or more at the molding pressure of 1 Ton / cm 2 or more, and the relatively low pressure. It has been clarified that it is possible to increase the density in molding.

【0024】図4は重量増加率に及ぼす保持時間の影響
を見たものである。同図より、平均粒径50μmの粗粉末
は、平均粒径3μmの微粉末に比して酸化による重量増
加率が著しく小さく、長期安定性に優れた磁石の製造に
好適となることが明らかである。
FIG. 4 shows the effect of holding time on the rate of weight increase. From the figure, it is clear that the coarse powder having an average particle size of 50 μm has a significantly smaller weight increase rate due to oxidation than the fine powder having an average particle size of 3 μm, and is suitable for manufacturing a magnet having excellent long-term stability. is there.

【0025】実施例5 純度99%以上のネオジウム、電解鉄、コバルト、および
フェロチタンを所定の比率で配合し、高周波溶解してT
h Mn 12型結晶構造の化合物を主相とするNdFe8Co3
Ti 組成の合金インゴットを製作し、これをアルゴンガ
ス雰囲気中で1100℃、24時間保持して均質化処理を行っ
た後、スタンプミルとボールミルによってこの合金イン
ゴットを粉砕し、粒径3〜 180μmの母合金粉末を得
た。次に、この母合金粉末を5気圧のNガス中で 350
℃、1〜24時間保持してNを侵入させて窒化粉末を得、
続いてこれをニッケル触媒を用いたスズの化学めっき浴
に浸して粉末表面に約 0.6μmのスズ皮膜を形成した。
次に、得られた粉末に10重量%のスズ粉末を添加混合
し、15KOe の磁界を印加しながら7 Ton/cm2 の圧力
で圧縮成形し、得られた磁石試料の磁気特性をB−Hト
レーサーによって測定した。
Example 5 Neodymium having a purity of 99% or more, electrolytic iron, cobalt, and ferrotitanium were mixed in a predetermined ratio, and the mixture was melted at a high frequency to obtain T.
NdFe 8 Co 3 having a compound of h Mn 12 type crystal structure as the main phase
An alloy ingot having a Ti composition was produced, and this was held in an argon gas atmosphere at 1100 ° C. for 24 hours for homogenization treatment, and then this alloy ingot was crushed by a stamp mill and a ball mill to have a grain size of 3 to 180 μm. A mother alloy powder was obtained. Next, this mother alloy powder is heated in N gas at 5 atm for 350
Hold at ℃ for 1 to 24 hours to infiltrate N and obtain nitride powder.
Then, this was immersed in a tin chemical plating bath using a nickel catalyst to form a tin film of about 0.6 μm on the powder surface.
Next, 10% by weight of tin powder was added to and mixed with the obtained powder, and compression-molded at a pressure of 7 Ton / cm 2 while applying a magnetic field of 15 KOe. Measured by tracer.

【0026】図5は、磁石体試料の最大磁気エネルギー
積BHmax 、保磁力 iHc および残留磁束密度Br に及
ぼす窒化粉末の平均粉末粒径の影響を見たものである。
図5より、最大磁気エネルギー積BHmax と保磁力 iH
c は、実施例1と同様に平均粉末粒径が約25μmでピー
クとなるものの、20〜150 μmの範囲において高値とな
っており、また保磁力 iHc は、単磁区粒子理論に従っ
て窒化粉末粒径が小さくなるにつれて増大している。
FIG. 5 shows the effect of the average particle size of the nitride powder on the maximum magnetic energy product BHmax, the coercive force iHc and the residual magnetic flux density Br of the magnet sample.
From Fig. 5, the maximum magnetic energy product BHmax and the coercive force iH
c has a peak at an average powder particle size of about 25 μm as in Example 1, but has a high value in the range of 20 to 150 μm, and the coercive force iHc is a nitride powder particle size according to the single domain particle theory. Is increasing as is smaller.

【0027】実施例6 実施例1における粒径25μmの窒化粉末を用いて製作さ
れた成形体を、粘度 150CPSのエポキシ樹脂に浸漬
し、約10Torrの減圧下で1時間保持して成形体にエポキ
シ樹脂を含浸し、 120℃で2時間キュア処理を行った。
得られた試料の磁気特性は、含浸しないものと同じく最
大磁気エネルギー積BHmax は11.5MGOe であった
が、試料の圧縮強度は含浸しないものに比べ、 1.6倍に
あたる60 kgf/mm2 となり、成形体の強度向上に大きく
寄与することが分かった。
Example 6 A molded body produced by using the nitride powder having a particle diameter of 25 μm in Example 1 was dipped in an epoxy resin having a viscosity of 150 CPS and held under a reduced pressure of about 10 Torr for 1 hour to form an epoxy resin on the molded body. It was impregnated with resin and cured at 120 ° C. for 2 hours.
As for the magnetic properties of the sample obtained, the maximum magnetic energy product BHmax was 11.5 MGOe, which was the same as that of the sample without impregnation, but the compressive strength of the sample was 60 kgf / mm 2 , which is 1.6 times that of the sample without impregnation. It was found that it greatly contributes to the improvement of strength.

【0028】[0028]

【発明の効果】以上詳細に説明したように、本発明にか
かる希土類−鉄−窒素系永久磁石の製造方法によれば、
平均粉末粒径20〜 150μmという粗粉末を用いても磁気
特性に優れた磁石を製造することができ、この粗粉末を
用いる分、高圧力で成形する必要がなくなって型寿命が
延長し、製造性が大幅に改善される。また粗粉末を用い
ることにより、製造過程において粉末の酸化が抑制さ
れ、得られた磁石の性能が長期的に安定する。
As described in detail above, according to the method for producing a rare earth-iron-nitrogen permanent magnet of the present invention,
Magnets with excellent magnetic properties can be manufactured even with coarse powder having an average powder particle size of 20 to 150 μm, and the use of this coarse powder eliminates the need for molding at high pressure, extending the mold life, and manufacturing Sex is greatly improved. Further, by using the coarse powder, the oxidation of the powder is suppressed in the manufacturing process, and the performance of the obtained magnet is stable for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で得た希土類−鉄−窒素系磁石体
試料の磁気特性に及ぼす合金粉末の平均粉末粒径の影響
を示すグラフである。
FIG. 1 is a graph showing the influence of the average powder particle size of alloy powder on the magnetic properties of rare earth-iron-nitrogen based magnet samples obtained by the method of the present invention.

【図2】本発明の方法で得た磁石体試料の磁気特性に及
ぼす熱処理温度の影響を示すグラフである。
FIG. 2 is a graph showing the effect of heat treatment temperature on the magnetic properties of a magnet body sample obtained by the method of the present invention.

【図3】本発明の方法で得た磁石体試料の磁気特性およ
び密度に及ぼす平均粉末粒径と成形圧力の影響を示すグ
ラフである。
FIG. 3 is a graph showing the influence of the average powder particle size and molding pressure on the magnetic properties and density of the magnet sample obtained by the method of the present invention.

【図4】本発明で用いる粉末の酸化重量増加に及ぼす平
均粉末粒径と保持時間の影響を示すグラフである。
FIG. 4 is a graph showing the influence of the average powder particle size and the holding time on the increase in oxidized weight of the powder used in the present invention.

【図5】本発明の方法で得た希土類−鉄−コバルト−窒
素系磁石体試料の磁気特性に及ぼす合金粉末の平均粉末
粒径の影響を示すグラフである。
FIG. 5 is a graph showing the influence of the average powder particle size of the alloy powder on the magnetic properties of the rare earth-iron-cobalt-nitrogen based magnet sample obtained by the method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類金属(R),Fe およびNを主成
分とし、かつTh 2Zn 17またはTh Mn 12型結晶構造
の化合物を主相とする平均粒径20〜 150μmの合金粉末
表面に、Sn ,Zn ,Pb ,In ,Al ,Mg の少なく
とも一種から成る金属皮膜を形成し、この金属皮膜を形
成した粉末を用いて成形を行った後、得られた成形体に
100〜 600℃で熱処理を施すことを特徴とする希土類−
鉄−窒素系永久磁石の製造方法。
1. An alloy powder having an average particle size of 20 to 150 μm, which contains a rare earth metal (R), Fe and N as main components and a compound having a Th 2 Zn 17 or Th Mn 12 type crystal structure as a main phase, A metal film made of at least one of Sn, Zn, Pb, In, Al and Mg is formed, and molding is performed using the powder having the metal film formed thereon.
Rare earths characterized by heat treatment at 100-600 ℃
Method for manufacturing iron-nitrogen permanent magnet.
【請求項2】 金属皮膜を形成した粉末に、この皮膜金
属と同種の金属バインダーを加えて成形を行うことを特
徴とする請求項1に記載の希土類−鉄−窒素系永久磁石
の製造方法。
2. The method for producing a rare earth-iron-nitrogen permanent magnet according to claim 1, wherein the powder having a metal coating is added with a metal binder of the same kind as the coating metal to carry out molding.
【請求項3】 成形体に熱処理を施した後、該成形体に
有機物系バインダーを含浸させることを特徴とする請求
項1に記載の希土類−鉄−窒素系永久磁石の製造方法。
3. The method for producing a rare earth-iron-nitrogen permanent magnet according to claim 1, wherein the molded body is heat-treated and then the molded body is impregnated with an organic binder.
JP4248814A 1992-08-25 1992-08-25 Manufacture of rare earth element-fe-n base permanent magnet Pending JPH0677026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248814A JPH0677026A (en) 1992-08-25 1992-08-25 Manufacture of rare earth element-fe-n base permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248814A JPH0677026A (en) 1992-08-25 1992-08-25 Manufacture of rare earth element-fe-n base permanent magnet

Publications (1)

Publication Number Publication Date
JPH0677026A true JPH0677026A (en) 1994-03-18

Family

ID=17183810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248814A Pending JPH0677026A (en) 1992-08-25 1992-08-25 Manufacture of rare earth element-fe-n base permanent magnet

Country Status (1)

Country Link
JP (1) JPH0677026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252033A (en) * 2007-03-30 2008-10-16 Tdk Corp Method of manufacturing rare-earth magnet, and magnet manufactured by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252033A (en) * 2007-03-30 2008-10-16 Tdk Corp Method of manufacturing rare-earth magnet, and magnet manufactured by the method

Similar Documents

Publication Publication Date Title
US20150187494A1 (en) Process for preparing rare earth magnets
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
EP0249973B1 (en) Permanent magnetic material and method for producing the same
US20020043301A1 (en) Density enhanced, DMC, bonded permanent magnets
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JP2002105503A (en) Method for manufacturing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JP3248077B2 (en) Manufacturing method of rare earth-iron-nitrogen permanent magnet
JP3168484B2 (en) Method for manufacturing rare earth-iron-nitrogen permanent magnet
JPH0677026A (en) Manufacture of rare earth element-fe-n base permanent magnet
JPH0677025A (en) Manufacture of rare earth element-iron-nitrogen permanent magnet
JPH05234729A (en) Manufacture of rare earth-iron-nitrogen magnet powder and manufacture thereof
JPH05230501A (en) Alloy powder for rare-earth element-iron magnet and bond magnet using the powder
JPH06279915A (en) Rare earth magnet material and rare earth bonded magnet
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH04354104A (en) Manufacture of rare earth bond magnet
JPH05315114A (en) Manufacture of rare earth magnet material
JPH04354105A (en) Manufacture of rare earth bond magnet
JPH0525592A (en) Rare earth magnet material
JPH0620815A (en) Manufacture of rare earth bonded magnet
JPH0521217A (en) Production of rare-earth bond magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS63232304A (en) Permanent magnet excellent in oxidation resistance and manufacture thereof
JPH04365840A (en) Rare earth magnet material