JPH0676846A - Operation control device for fuel cell power generating device - Google Patents

Operation control device for fuel cell power generating device

Info

Publication number
JPH0676846A
JPH0676846A JP4227176A JP22717692A JPH0676846A JP H0676846 A JPH0676846 A JP H0676846A JP 4227176 A JP4227176 A JP 4227176A JP 22717692 A JP22717692 A JP 22717692A JP H0676846 A JPH0676846 A JP H0676846A
Authority
JP
Japan
Prior art keywords
load
fuel cell
control valve
reformer
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4227176A
Other languages
Japanese (ja)
Other versions
JP2860208B2 (en
Inventor
Tatsuya Ikeda
辰弥 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4227176A priority Critical patent/JP2860208B2/en
Publication of JPH0676846A publication Critical patent/JPH0676846A/en
Application granted granted Critical
Publication of JP2860208B2 publication Critical patent/JP2860208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Control Of Electrical Variables (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide an operation control device improving the responsiveness of the raw material and combustion air when a load is abruptly changed in a fuel cell power generating device. CONSTITUTION:An operation control device is provided with a load detector 71, a switching unit 72, and a second arithmetic unit 74 determining the opening difference between regulating valves V1, V2 based on the change quantity of a load. When the load is abruptly changed, the openings of the regulating valves V1, V2 corresponding to the load change are added to the present openings, and the responsiveness of the gas flow is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池発電装置の
運転制御装置に関し、特に負荷急変時の改質原料及び燃
焼空気の流量制御に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a fuel cell power generator, and more particularly to control of the flow rates of a reforming raw material and combustion air when the load suddenly changes.

【0002】[0002]

【従来の技術】図12は例えば特開昭62−29868
号公報に示された従来の燃料電池発電システムを示す。
図において、50はバーナ部51を有する燃料処理装置
としての改質器、V1は原料供給調節弁、Q1は原料流
量測定部、C1は原料流量調節器である。同様に、V
1,Q2,C2はそれぞれ水蒸気の調節弁、流量測定
部、流量調節器である。10は燃料電池で、11は燃料
室、12は空気室である。70は出力制御演算部で、入
力として燃料電池10の電気負荷に関係する信号を用い
て原料ガスの設定値を演算し出力する。
2. Description of the Related Art FIG. 12 shows, for example, JP-A-62-29868.
2 shows a conventional fuel cell power generation system disclosed in Japanese Patent Publication No.
In the figure, 50 is a reformer as a fuel processor having a burner section 51, V1 is a raw material supply control valve, Q1 is a raw material flow rate measuring section, and C1 is a raw material flow rate controller. Similarly, V
1, Q2 and C2 are a steam control valve, a flow rate measuring unit and a flow rate controller, respectively. Reference numeral 10 is a fuel cell, 11 is a fuel chamber, and 12 is an air chamber. An output control calculation unit 70 calculates and outputs a set value of the raw material gas using a signal relating to the electric load of the fuel cell 10 as an input.

【0003】次に動作について説明する。なお、原料ガ
スとして都市ガスを用いた場合、都市ガス中には付臭剤
として改質触媒の活性を低下させる硫黄化合物が含まれ
るため、これを除去するための脱硫反応器と、改質器で
改質されたガス(以後、改質ガスと呼ぶ)中に含まれる
一酸化炭素を二酸化炭素に変成させる一酸化炭素変成器
とを必要とするが、この図12ではこれを省略して説明
する。
Next, the operation will be described. When city gas is used as the raw material gas, the city gas contains a sulfur compound that reduces the activity of the reforming catalyst as an odorant.Therefore, a desulfurization reactor for removing this and a reformer The carbon monoxide transformer for transforming carbon monoxide contained in the gas reformed in step (hereinafter referred to as reformed gas) into carbon dioxide is required, but this is omitted in FIG. To do.

【0004】燃料電池10の燃料である水素と酸素は、
それぞれ改質ガスおよび空気として供給される。改質反
応の原料は都市ガスおよびスチームであり、原料流量調
節弁V1により制御された都市ガスと水蒸気流量調節弁
V2により制御されたスチームは混合されて、改質器5
0に送られ、燃料電池10の燃料ガスとなる。
Hydrogen and oxygen which are fuels of the fuel cell 10 are
They are supplied as reformed gas and air, respectively. The raw materials for the reforming reaction are city gas and steam, and the city gas controlled by the raw material flow rate control valve V1 and the steam controlled by the steam flow rate control valve V2 are mixed to form the reformer 5
0, and becomes the fuel gas for the fuel cell 10.

【0005】この燃料ガスは、燃料流量調節弁13を通
って燃料電池10の燃料室11に供給される。燃料室1
1をでた燃料排ガスは、燃料処理装置としての改質器5
0のバーナ部51へ送られ、改質反応に必要な熱源とし
て燃焼される。
This fuel gas is supplied to the fuel chamber 11 of the fuel cell 10 through the fuel flow rate control valve 13. Fuel chamber 1
The fuel exhaust gas leaving 1 is reformer 5 as a fuel processing device.
0 is sent to the burner section 51 and burned as a heat source necessary for the reforming reaction.

【0006】原料となるガスの流量及び空気の流量は燃
料電池10の出力を基に出力制御演算部70により演算
されて求められる。この演算は、電池出力と水素利用
率、空気利用率やメタン分解率などを基にして行うこと
ができる。出力制御演算部70で求められた流量設定値
S0を各流量調節器C1,C2,C3に同時に送ること
により、各ガス量の制御が行われる。
The flow rate of the raw material gas and the flow rate of the air are calculated by the output control calculation unit 70 based on the output of the fuel cell 10 and are obtained. This calculation can be performed based on the battery output, hydrogen utilization rate, air utilization rate, methane decomposition rate, and the like. The flow rate setting value S0 obtained by the output control calculation unit 70 is sent to the flow rate controllers C1, C2, C3 at the same time to control the amount of each gas.

【0007】例えば、原料ガスでは、原料ガス流量調節
部C1において、与えられた流量設定値と、流量測定部
Q1で検出された測定値とを比較し、その偏差が零にな
るように原料ガス流量調節弁V1の開度を制御する。こ
の制御を常に行うことにより、燃料電池10に必要なガ
スを供給することができる。スチーム、燃料ガスの流量
制御についても、原料ガスの制御と同様である。
For example, in the case of the raw material gas, the raw material gas flow rate adjusting section C1 compares the given flow rate set value with the measured value detected by the flow rate measuring section Q1 so that the deviation becomes zero. The opening degree of the flow rate control valve V1 is controlled. By always performing this control, the gas required for the fuel cell 10 can be supplied. The flow rate control of steam and fuel gas is the same as the control of raw material gas.

【0008】[0008]

【発明が解決しようとする課題】従来の燃料電池システ
ムは以上のように構成されているために、燃料電池10
の負荷が急激に変化した場合にも各ガスの流量を設定値
に合せる制御を行うことになるので、制御の安定化の動
作が調節弁V1,V2,V3の開閉動作を遅らせ、ガス
量の不足又は過剰を生じさせていた。
Since the conventional fuel cell system is configured as described above, the fuel cell 10
Since the control for adjusting the flow rate of each gas to the set value will be performed even when the load of No. 2 suddenly changes, the operation of stabilizing the control delays the opening / closing operation of the control valves V1, V2, V3, and It caused shortages or excesses.

【0009】また、燃料ガスの制御を燃料ガス調節弁V
3で行っているため、原料ガス(都市ガス、スチーム)
の制御と2重制御となり、構成が複雑となっていた。
Further, the fuel gas control valve V is used for controlling the fuel gas.
Raw gas (city gas, steam)
Control and double control, resulting in a complicated configuration.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、負荷が急激に変化した場合でも
原料ガスを電池に必要な流量流せるような流量調節弁の
制御を行い得ると共に、流量調節系を削減して構成が簡
素な装置を得ることを目的としており、さらに、改質器
の温度制御についても温度変化が少なく構成が簡素とな
る燃料電池発電装置の運転制御装置を得ることを目的と
している。
The present invention has been made in order to solve the above problems, and it is possible to control the flow rate control valve so that the raw material gas can flow at the required flow rate to the battery even when the load changes rapidly. The purpose of the present invention is to obtain a device with a simple structure by reducing the flow rate control system, and to obtain an operation control device for a fuel cell power generator in which the temperature change of the reformer is small and the structure is simple. Is intended.

【0011】[0011]

【課題を解決するための手段】この発明の請求項1に係
る燃料電池発電装置の運転制御装置は、原料ガス調節弁
とスチーム調節弁とにより流量制御された混合ガスを燃
料改質する改質器と、この改質器で改質された燃料ガス
の供給を受けて発電する燃料電池と、この燃料電池の直
流出力を交流に変換して負荷に供給する直交変換装置
と、この直交変換装置の出力と与えられる設定値とに基
づいて上記各調節弁の開度を制御する制御手段とを備え
た燃料電池発電装置の運転制御装置において、上記直交
変換装置の出力に基づいて負荷の急変を検出する負荷検
出部と、この負荷検出部による負荷急変検出時にその変
化分に応じて上記各調節弁の開度差分を与えその開度を
補正制御する補正制御手段とを備えたものである。
According to a first aspect of the present invention, there is provided an operation control device for a fuel cell power generation device for reforming a mixed gas, the flow rate of which is controlled by a raw material gas control valve and a steam control valve. Unit, a fuel cell that receives the supply of the fuel gas reformed by the reformer to generate electricity, an orthogonal converter that converts the DC output of the fuel cell into an AC and supplies the AC load to a load, and the orthogonal converter In the operation control device of the fuel cell power generator including the control means for controlling the opening degree of each of the control valves based on the output and the set value given, the sudden change of the load based on the output of the orthogonal conversion device. A load detection unit for detecting the load and a correction control unit for correcting and controlling the opening by giving a difference in the opening of each control valve according to the change when the load sudden change is detected by the load detection unit.

【0012】また、請求項2に係る燃料電池発電装置の
運転制御装置は、原料ガス調節弁とスチーム調節弁とに
より流量制御された混合ガスを燃料改質する改質器と、
この改質器のバーナ部への燃焼空気を供給制御する燃焼
空気調節弁と、上記改質器で改質された燃料ガスの供給
を受けて発電する燃料電池と、この燃料電池の直流出力
を交流に変換して負荷に供給する直交変換装置と、この
直交変換装置の出力と与えられる設定値とに基づいて上
記各調節弁の開度を制御する制御手段とを備えた燃料電
池発電装置の運転制御装置において、上記直交変換装置
の出力に基づいて負荷の急変を検出する負荷検出部と、
この負荷検出部による負荷急変検出時にその変化分に応
じて上記燃焼空気調節弁の開度差分を与えその開度を補
正制御する補正制御手段とを備えたものである。
An operation control device for a fuel cell power generator according to a second aspect of the present invention includes a reformer for reforming a mixed gas whose flow rate is controlled by a raw material gas control valve and a steam control valve.
A combustion air control valve that controls the supply of combustion air to the burner of the reformer, a fuel cell that receives the fuel gas reformed by the reformer to generate electricity, and a DC output of the fuel cell A fuel cell power generator including a quadrature conversion device that converts into alternating current and supplies the load, and control means that controls the opening of each of the control valves based on the output of the quadrature conversion device and a given set value. In the operation control device, a load detection unit that detects a sudden change in load based on the output of the orthogonal transformation device,
When the load detection unit detects a sudden change in the load, a correction control unit is provided for giving a difference in the opening of the combustion air control valve according to the change and correcting and controlling the opening.

【0013】さらに、請求項3に係る燃料電池発電装置
の運転制御装置は、原料ガス調節弁とスチーム調節弁と
により流量制御された混合ガスを燃料改質する改質器
と、この改質器のバーナ部への燃焼空気を供給制御する
燃焼空気調節弁と、上記改質器で改質された燃料ガスの
供給を受けて発電する燃料電池と、この燃料電池の直流
出力を交流に変換して負荷に供給する直交変換装置と、
この直交変換装置の出力と与えられる設定値とに基づい
て上記各調節弁の開度を制御する制御手段とを備えた燃
料電池発電装置の運転制御装置において、上記改質器の
温度を検出する温度検出器と、上記直交変換装置の出力
に基づいて負荷の急変を検出する負荷検出部と、この負
荷検出部による負荷急変検出時に改良原料流量と電池電
流及び改質器温度に基づいて上記燃焼空気調節弁の開度
を補正制御する補正制御手段とを備えたものである。
Further, an operation control device of a fuel cell power generator according to a third aspect of the present invention is a reformer for reforming a mixed gas whose flow rate is controlled by a raw material gas control valve and a steam control valve, and the reformer. Combustion air control valve for controlling the supply of combustion air to the burner section, a fuel cell for generating power by receiving the supply of the fuel gas reformed by the reformer, and converting the DC output of this fuel cell into AC. Orthogonal transformation device that supplies the load to the load,
In the operation control device of the fuel cell power generation device, which includes the control means for controlling the opening degree of each of the control valves based on the output of the orthogonal conversion device and the given set value, the temperature of the reformer is detected. A temperature detector, a load detection unit that detects a sudden change in the load based on the output of the orthogonal transformation device, and the combustion based on the improved raw material flow rate, the battery current, and the reformer temperature when the load change is detected by the load detection unit. And a correction control means for correcting and controlling the opening degree of the air control valve.

【0014】[0014]

【作用】この発明の請求項1においては、原料ガス流量
の負荷急変時に早い応答性が可能となる。
According to the first aspect of the present invention, a quick response is possible when the load of the raw material gas flow rate suddenly changes.

【0015】また、請求項2では、燃焼空気の流量制御
の応答性が速くなるので、安定した改質反応が得られ
る。
Further, according to the second aspect, since the responsiveness of the flow rate control of the combustion air becomes faster, a stable reforming reaction can be obtained.

【0016】さらに、請求項3では、原料流量と改質器
の反応管温度設定値により、燃焼空気の設定値を補正す
るので、改質器の温度がさらに安定し、また、負荷に見
合った反応管温度への制御ができ、安定したシステムが
構築できる。
Further, in claim 3, since the set value of the combustion air is corrected by the flow rate of the raw material and the set value of the reaction tube temperature of the reformer, the temperature of the reformer is further stabilized, and it is suitable for the load. The temperature of the reaction tube can be controlled and a stable system can be constructed.

【0017】[0017]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1において、10は水素−酸素型の燃料電池
で、燃料室11,空気室12,電極13および14なら
びに電解液含浸マトリックスから構成されており、上記
空気室12には、空気ブロワ17を介して空気が供給さ
れている。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 10 denotes a hydrogen-oxygen type fuel cell, which is composed of a fuel chamber 11, an air chamber 12, electrodes 13 and 14, and an electrolyte impregnated matrix, and an air blower 17 is interposed in the air chamber 12. Is being supplied with air.

【0018】60は燃料電池10の出力を交流電力に変
換する直交変換装置、50は原料ガス調節弁V1とスチ
ーム調節弁V2により流量制御された混合ガスを水蒸気
改質して燃料電池10の燃料ガスとして燃料室11に供
給する改質器である。なお、図1では脱硫器、一酸化炭
素変成器等、この発明に特に関連しない機器は省いてい
る。
Reference numeral 60 is an orthogonal converter for converting the output of the fuel cell 10 into AC power, and 50 is the fuel of the fuel cell 10 by steam reforming the mixed gas whose flow rate is controlled by the raw material gas control valve V1 and the steam control valve V2. It is a reformer that supplies gas to the fuel chamber 11. In FIG. 1, equipment not particularly related to the present invention, such as a desulfurizer and a carbon monoxide shift converter, is omitted.

【0019】上記燃料室11よりでた排ガスは、改質器
50のバーナ部51に還流され、空気ブロワ17より供
給される燃焼空気により燃焼し、改質反応の熱源とな
る。
The exhaust gas from the fuel chamber 11 is recirculated to the burner portion 51 of the reformer 50 and burned by the combustion air supplied from the air blower 17 to serve as a heat source for the reforming reaction.

【0020】燃料電池発電システムにおいては、高い効
率を得るために燃料電池10の特性と改質効率の相方を
考慮して、水素利用率が決定される。この利用率と各機
器の損失分を加算して、燃料電池10の負荷に相当する
原料である都市ガスとスチームの流量が決定される。こ
の流量は、安定運転時にはプロセス内の変動や外乱に対
して設定値との偏差が零となるように制御される。
In the fuel cell power generation system, the hydrogen utilization rate is determined in consideration of the characteristics of the fuel cell 10 and the reforming efficiency in order to obtain high efficiency. By adding this utilization rate and the loss of each device, the flow rates of the city gas and steam, which are the raw materials corresponding to the load of the fuel cell 10, are determined. This flow rate is controlled so that the deviation from the set value is zero with respect to fluctuations and disturbances in the process during stable operation.

【0021】しかし、急激な負荷の変化に対しては、図
7(b)に示すように、原料およびスチーム流量が、む
だ時間及び制御の一次遅れ時間により、適正流量に追い
つかない。このため、直交変換装置60により負荷に見
合う電流が取り出され、図7(d)に示すように電池電
圧が低下する。
However, with respect to a sudden change in load, the raw material and steam flow rates cannot keep up with the proper flow rates due to the dead time and the first-order delay time of control, as shown in FIG. 7 (b). For this reason, the orthogonal transformation device 60 extracts a current commensurate with the load, and the battery voltage decreases as shown in FIG.

【0022】そして、図7(c)に示すような水素利用
率が高い運転は、電池性能の劣化につながるものであ
る。このために、水素利用率を早く定常時の値に戻すよ
うに、ガス流量の制御を行う必要がある。
The operation with a high hydrogen utilization rate as shown in FIG. 7 (c) leads to deterioration of battery performance. Therefore, it is necessary to control the gas flow rate so that the hydrogen utilization rate is quickly returned to the steady state value.

【0023】負荷が急激に変化した場合、負荷検出器7
1は直交変換装置60の電池電流値に基づいて負荷の急
変を検知し検出信号を切換器72に送出する。また、第
2の演算器74は、電池電流値の前回測定値との差を演
算し、予め与えられた調節弁の開度と負荷変化量との関
数より負荷変化量に応じた開度を求め、調節弁V1,V
2の現状値に求めた開度を加算し、調節弁V1,V2に
切換器72を介して開度信号を与える。
When the load changes abruptly, the load detector 7
1 detects a sudden change in the load based on the battery current value of the orthogonal transformation device 60 and sends a detection signal to the switch 72. In addition, the second calculator 74 calculates the difference between the battery current value and the previous measured value, and determines the opening according to the load change amount from the function of the control valve opening and the load change amount given in advance. Find and control valves V1, V
The calculated opening is added to the current value of 2, and an opening signal is given to the control valves V1 and V2 via the switch 72.

【0024】この時、切換器72は負荷検出器71から
の負荷急変時の検出信号により、負荷急変後一定時間の
み第2の演算器74の出力が調節弁V1,V2に与えら
れるように、信号を切り換える。
At this time, the switch 72 receives the detection signal from the load detector 71 when the load changes suddenly so that the output of the second calculator 74 is applied to the control valves V1 and V2 only for a certain period of time after the load changes suddenly. Switch the signal.

【0025】図2に上述した原料流量調節について詳細
を示す。図2において、直交変換装置60より、電池電
流値が負荷検出器71と第2の演算器74に送られる。
第2の演算器74では、前回の電流値と今回の電流値の
差を求め、その差に対応した調節弁の開度を求める。一
般に、調節弁は、図3に示すように、調節弁の開度Vと
流量Qとがリニアになるものを選定することが可能で、
このため、電流増加分に見合う原料流量増加分と調節弁
開度との差は、図4に示す関係がある。
FIG. 2 shows details of the above-mentioned raw material flow rate adjustment. In FIG. 2, the orthogonal transformation device 60 sends the battery current value to the load detector 71 and the second computing unit 74.
The second computing unit 74 obtains the difference between the current value of the previous time and the current value of this time, and calculates the opening degree of the control valve corresponding to the difference. Generally, as the control valve, as shown in FIG. 3, it is possible to select one in which the opening V and the flow rate Q of the control valve are linear.
Therefore, the difference between the increased amount of the raw material flow rate and the control valve opening corresponding to the increased amount of the current has the relationship shown in FIG.

【0026】上記第2の演算器74では、図5に示すよ
うに、調節弁開度増減量と電流増減分との関数Fと現状
の開度より、開くべく開度を演算する。また、負荷検出
器71では設定値以上の電流の急変を検出し、設定した
時間、切換器72を動作させる。さらに、切換器72で
は、電池電流の急変検出後一定時間のみ、第2の演算器
74で求めた調節弁開度信号を出力器75に与え、調節
弁V1の開度を一定に保持する。
As shown in FIG. 5, the second calculator 74 calculates the opening to be opened from the function F of the control valve opening increase / decrease and the current increase / decrease and the current opening. Further, the load detector 71 detects a sudden change in current equal to or greater than the set value, and operates the switch 72 for the set time. Further, the switch 72 applies the control valve opening signal obtained by the second computing unit 74 to the output device 75 only for a certain period of time after the sudden change in the battery current is detected, and keeps the opening of the control valve V1 constant.

【0027】開度保持された調節弁V1は、流量制御を
行いながら開く時に比べ、その流量変化を早く行うこと
ができる。図8にこの制御方法による流量の変化を示
す。設定時間が経過すると、切換器72は第1の演算器
73により求まる流量制御による調節弁開度を出力器7
5に与える。このため、流量が安定し、負荷に見合う流
量が保持される。
The control valve V1 whose opening is maintained can change its flow rate earlier than when it is opened while controlling the flow rate. FIG. 8 shows changes in the flow rate according to this control method. When the set time elapses, the switch 72 outputs the control valve opening by the flow rate control obtained by the first calculator 73 to the output device 7
Give to 5. Therefore, the flow rate is stable, and the flow rate suitable for the load is maintained.

【0028】図5において、電流値より直接開度指示値
を求める方法も考えられるが、その場合、長期運転後に
は、プラント内の改質器50の触媒が劣化または粉砕さ
れ、一般に系内圧力が高くなるために、初期運転時と同
じ開度関数を使用できないという問題点がある。
In FIG. 5, a method of directly determining the opening degree instruction value from the current value may be considered, but in this case, after long-term operation, the catalyst of the reformer 50 in the plant is deteriorated or crushed, and the pressure in the system is generally reduced. Therefore, there is a problem in that the same opening function as in the initial operation cannot be used because of the high value.

【0029】この実施例の場合にも厳密には同じ関数と
はならないが、現状開度に増減量を加算する方法をとる
ため、経年変化の影響が少なく、無視できる量となる。
In the case of this embodiment, the functions are not exactly the same, but the amount of increase or decrease is added to the current opening, so that there is little influence of aging and the amount becomes negligible.

【0030】なお、図2において、電池電流値から必要
なガス量を求める演算を第1の演算器73と第2の演算
器74の各々に持たせているが、流量演算を1つの演算
器にまとめても良い。
In FIG. 2, each of the first computing unit 73 and the second computing unit 74 is provided with a computation for obtaining the required gas amount from the battery current value. You may put together in.

【0031】実施例2.なお、上記実施例では改質系の
原料となる都市ガスとスチームの流量制御について示し
たが、燃料電池10の空気室12に与える空気流量の制
御についても、同じ制御方法を用いても良い。
Example 2. In addition, although the flow rate control of the city gas and the steam, which are the raw materials of the reforming system, has been described in the above-mentioned embodiment, the same control method may be used for the control of the air flow rate given to the air chamber 12 of the fuel cell 10.

【0032】図6にその実施例2を示す。図6におい
て、V3は空気流量調節弁、Q3は空気流量計である。
71は負荷検出器、72は切換器、76は第1の演算
器、77は第2の演算器である。
FIG. 6 shows the second embodiment. In FIG. 6, V3 is an air flow rate control valve, and Q3 is an air flow meter.
Reference numeral 71 is a load detector, 72 is a switch, 76 is a first arithmetic unit, and 77 is a second arithmetic unit.

【0033】電池が必要とする空気の流量は、電池電流
と空気利用率及び換算定数より算出することができる。
安定運転時は、この設定値になるように流量制御を流量
調節器C3により行い、負荷急変時には、第2の演算器
77より求める開度を切換器72を介して出力して、流
量の応答を向上させる。流量の応答は、図8に示す原料
流量の応答と同様である。
The flow rate of air required by the battery can be calculated from the battery current, the air utilization rate and the conversion constant.
During stable operation, flow rate control is performed by the flow rate controller C3 so as to achieve this set value, and when the load changes suddenly, the opening degree obtained by the second computing unit 77 is output via the switch 72 to respond to the flow rate. Improve. The flow rate response is similar to the raw material flow rate response shown in FIG.

【0034】さらに、図6では空気ブロワ17の下流に
調節弁13を入れ、調節弁の開度により、空気流量制御
を行う方法を示しているが、空気ブロワ17にインバー
タを備えて、インバータの回転数を制御する場合におい
ても同様な効果が得られる。
Further, FIG. 6 shows a method in which the control valve 13 is inserted downstream of the air blower 17 and the air flow rate is controlled by the opening degree of the control valve. Similar effects can be obtained when controlling the number of revolutions.

【0035】また、空気ブロワ17にインバータを備
え、調節弁も併用しているシステムにおいては、空気流
量に設定値を設け、設定値以上でインバータ制御、設定
値以下で調節弁制御と制御対象を分けることにより、同
様な効果を得ることができる。
Further, in a system in which the air blower 17 is provided with an inverter and a control valve is also used, a set value is set for the air flow rate, and inverter control is performed above the set value, and control valve control and control target below the set value. By dividing, the same effect can be obtained.

【0036】実施例3.次に、図9にこの発明の請求項
2に係る燃焼空気流量制御を示す。図9において、新た
な構成として、78は燃焼空気調節弁V4の開度を求め
る第1の演算器、79は負荷急変時の調節弁V4の開度
を求める第2の演算器、80は制限器、Q4は空気流量
測定部、C4は流量調節器である。なお、図9には説明
を簡単化するために図1に示す第1と第2の演算器73
と74及び出力器75が省略されているが、これら構成
を備えて原料ガスとスチームを流量制御するものとす
る。
Example 3. Next, FIG. 9 shows a combustion air flow rate control according to claim 2 of the present invention. In FIG. 9, as a new configuration, 78 is a first computing unit that obtains the opening of the combustion air control valve V4, 79 is a second computing unit that obtains the opening of the control valve V4 when the load changes suddenly, and 80 is a limit. , Q4 is an air flow rate measuring unit, and C4 is a flow rate controller. Note that FIG. 9 shows the first and second arithmetic units 73 shown in FIG. 1 for simplification of description.
, 74 and the output device 75 are omitted, the flow rate of the raw material gas and steam is controlled by providing these configurations.

【0037】燃焼空気の流量は、原料流量より得られる
水素量より電池電流より演算される燃料電池10の水素
消費量を引いた排ガス中の水素量に、必要燃焼空気の比
率を乗することができる。 QAIR ={QH2 −FH2(I)}×K×J QAIR :燃焼空気量 QH2 :改質反応により発生する水素量 FH2(I):燃料電池での水素消費量 I:電池電流 K:水素に対する必要な空気の比 J:空気過剰率
The flow rate of the combustion air can be obtained by multiplying the amount of hydrogen in the exhaust gas by subtracting the hydrogen consumption amount of the fuel cell 10 calculated from the cell current from the hydrogen amount obtained from the raw material flow rate by the ratio of the required combustion air. it can. Q AIR = {Q H2 −F H2 (I)} × K × J Q AIR : Combustion air amount Q H2 : Hydrogen amount generated by reforming reaction F H2 (I): Hydrogen consumption amount in fuel cell I: Battery Current K: ratio of required air to hydrogen J: excess air ratio

【0038】負荷が急変した場合、切換器72により第
2の演算器79の出力を調節弁指示値とする。燃焼空気
流量は最低流量を確保するため、演算器79の出力に制
限器80を用いている。その他の調節弁開度と流量との
関係は実施例1と同様である。
When the load suddenly changes, the output of the second computing unit 79 is set as the control valve command value by the switching unit 72. A limiter 80 is used for the output of the calculator 79 in order to secure the minimum flow rate of the combustion air. The other relationships between the control valve opening and the flow rate are the same as in the first embodiment.

【0039】従って、上記実施例によれば、排ガス中の
水素量に対応する空気量を早く流すため、改質器50の
反応温度を上げ過ぎたり、下げ過ぎたりせず、安定した
改質系を供することができる。
Therefore, according to the above embodiment, the amount of air corresponding to the amount of hydrogen in the exhaust gas is made to flow quickly, so that the reaction temperature of the reformer 50 does not rise or fall too much, and a stable reforming system is obtained. Can be provided.

【0040】実施例4.次に、図10にこの発明の請求
項3に係る燃焼空気流量制御を示す。実施例3において
は、燃焼空気流量は空気過剰率を定数とする関数で表わ
されることを示したが、この実施例4では改質器50の
温度変化を少なくするために、空気過剰率を改質器50
の代表温度の関数とする。
Example 4. Next, FIG. 10 shows a combustion air flow rate control according to claim 3 of the present invention. In the third embodiment, it has been shown that the combustion air flow rate is expressed by a function having the air excess ratio as a constant, but in the fourth embodiment, the air excess ratio is modified to reduce the temperature change of the reformer 50. Pawn 50
As a function of the representative temperature of.

【0041】図9に対し比較して示す図10において、
90は改質器の代表温度を測定する温度計、82はその
温度より空気過剰率を求める第3の演算器である。温度
計90よりの出力は安定運転時には改質器温度が設定値
になるように、第1の演算器81で流量が設定され、調
節器C4で制御されている。負荷が急激に変化した場合
に、第3の演算器82ににて空気過剰率Jを演算し、そ
の出力を第2の演算器79に与える。第2の演算器以後
の処理については、実施例3の請求項2で示した場合と
同じである。
In FIG. 10 shown in comparison with FIG. 9,
Reference numeral 90 is a thermometer for measuring the representative temperature of the reformer, and 82 is a third arithmetic unit for obtaining the excess air ratio from the temperature. The flow rate of the output from the thermometer 90 is set by the first calculator 81 and controlled by the controller C4 so that the reformer temperature becomes the set value during stable operation. When the load changes abruptly, the excess air ratio J is calculated by the third calculator 82, and the output is given to the second calculator 79. The processing after the second arithmetic unit is the same as that in the case of claim 2 of the third embodiment.

【0042】図11に第3の演算器82の詳細を示す。
改質器代表温度と設定値の差を求め、この差を関数とす
る比率を設定された空気過剰率JS に乗することによ
り、流量演算に使用する空気過剰率Jを求める。
FIG. 11 shows details of the third arithmetic unit 82.
The difference between the representative temperature of the reformer and the set value is obtained, and the set excess air ratio J S is multiplied by the ratio having the difference as a function to obtain the excess air ratio J used for the flow rate calculation.

【0043】[0043]

【発明の効果】以上のように、この発明の請求項1によ
れば、原料流量の調節弁の現状開度に対し、負荷急変時
に設定流量に相当する開度を加えた制御を追加したの
で、負荷応答の良い運転制御が可能となる。
As described above, according to the first aspect of the present invention, the control in which the opening corresponding to the set flow rate is added when the load suddenly changes is added to the current opening of the raw material flow rate control valve. Therefore, operation control with good load response becomes possible.

【0044】また、請求項2によれば、燃焼空気流量制
御に開度制御を用いたことにより、改質器の温度変化が
少ない運転制御が可能となる。
Further, according to the second aspect, by using the opening degree control for the combustion air flow rate control, it becomes possible to perform the operation control in which the temperature change of the reformer is small.

【0045】さらに、請求項3によれば、請求項2の燃
焼空気流量制御に、改質器温度の補正を行うので、改質
器の温度変化をより小さくすることが可能となる。
Further, according to the third aspect, since the reformer temperature is corrected in the combustion air flow rate control according to the second aspect, it is possible to further reduce the temperature change of the reformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の請求項1に係る実施例1による制御
系統を示す系統図である。
FIG. 1 is a system diagram showing a control system according to a first embodiment of the present invention.

【図2】図1の演算器を示すシステム図である。FIG. 2 is a system diagram showing the arithmetic unit of FIG.

【図3】調節弁開度と流量との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the control valve opening and the flow rate.

【図4】流量の変化量と開度差分を示すグラフである。FIG. 4 is a graph showing a flow rate change amount and an opening difference.

【図5】負荷変化量から開度指示値を求めるフロー図で
ある。
FIG. 5 is a flow chart for obtaining an opening degree instruction value from a load change amount.

【図6】この発明の請求項1に係る実施例2による制御
系統を示す系統図である。
FIG. 6 is a system diagram showing a control system according to a second embodiment of the first aspect of the present invention.

【図7】従来の装置による流量制御による状態を示すグ
ラフである。
FIG. 7 is a graph showing a state of flow rate control by a conventional device.

【図8】この発明による状態を示すグラフである。FIG. 8 is a graph showing a state according to the present invention.

【図9】この発明の請求項2に係る実施例3による制御
系統を示す系統図である。
FIG. 9 is a system diagram showing a control system according to a third embodiment of the present invention.

【図10】この発明の請求項3に係る実施例4による制
御系統を示す系統図である。
FIG. 10 is a system diagram showing a control system according to a fourth embodiment of the present invention.

【図11】この発明の請求項3で用いる補正係数の演算
を示すフロー図である。
FIG. 11 is a flowchart showing the calculation of a correction coefficient used in claim 3 of the present invention.

【図12】従来の運転制御方法による制御系統を示す系
統図である。
FIG. 12 is a system diagram showing a control system according to a conventional operation control method.

【符号の説明】[Explanation of symbols]

10 燃料電池 50 改質器 51 バース 60 直交変換装置 71 負荷検出器 72 切換器 74 第2の演算器 80 制限器 82 第3の演算器 90 温度検出器 10 Fuel Cell 50 Reformer 51 Berth 60 Orthogonal Transform Device 71 Load Detector 72 Switcher 74 Second Calculator 80 Limiter 82 Third Calculator 90 Temperature Detector

【手続補正書】[Procedure amendment]

【提出日】平成5年5月11日[Submission date] May 11, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 10 燃料電池 50 改質器 51 バー 60 直交変換装置 71 負荷検出器 72 切換器 74 第2の演算器 80 制限器 82 第3の演算器 90 温度検出器[Description of reference numerals] 10 fuel cell 50 reformer 51 burners 60 orthogonal transform apparatus 71 load detector 72 switcher 74 second operator 80 limiter 82 third computing unit 90 temperature detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料ガス調節弁とスチーム調節弁とによ
り流量制御された混合ガスを燃料改質する改質器と、こ
の改質器で改質された燃料ガスの供給を受けて発電する
燃料電池と、この燃料電池の直流出力を交流に変換して
負荷に供給する直交変換装置と、この直交変換装置の出
力と与えられる設定値とに基づいて上記各調節弁の開度
を制御する制御手段とを備えた燃料電池発電装置の運転
制御装置において、上記直交変換装置の出力に基づいて
負荷の急変を検出する負荷検出部と、この負荷検出部に
よる負荷急変検出時にその変化分に応じて上記各調節弁
の開度差分を与えその開度を補正制御する補正制御手段
とを備えたことを特徴とする燃料電池発電装置の運転制
御装置。
1. A reformer for reforming a mixed gas, the flow rate of which is controlled by a raw material gas control valve and a steam control valve, and a fuel for generating power by receiving the fuel gas reformed by the reformer. A battery, a quadrature conversion device that converts the direct current output of the fuel cell into an alternating current and supplies it to a load, and a control that controls the opening of each of the control valves based on the output of the quadrature conversion device and a given set value. In the operation control device of the fuel cell power generator including means, a load detection unit that detects a sudden change in the load based on the output of the orthogonal transformation device, and according to the change amount when the load sudden change is detected by the load detection unit. An operation control device for a fuel cell power generation device, comprising: a correction control unit that gives an opening difference of each of the control valves and corrects and controls the opening.
【請求項2】 原料ガス調節弁とスチーム調節弁とによ
り流量制御された混合ガスを燃料改質する改質器と、こ
の改質器のバーナ部への燃焼空気を供給制御する燃焼空
気調節弁と、上記改質器で改質された燃料ガスの供給を
受けて発電する燃料電池と、この燃料電池の直流出力を
交流に変換して負荷に供給する直交変換装置と、この直
交変換装置の出力と与えられる設定値とに基づいて上記
各調節弁の開度を制御する制御手段とを備えた燃料電池
発電装置の運転制御装置において、上記直交変換装置の
出力に基づいて負荷の急変を検出する負荷検出部と、こ
の負荷検出部による負荷急変検出時にその変化分に応じ
て上記燃焼空気調節弁の開度差分を与えその開度を補正
制御する補正制御手段とを備えたことを特徴とする燃料
電池発電装置の運転制御装置。
2. A reformer for reforming a mixed gas, the flow rate of which is controlled by a raw material gas control valve and a steam control valve, and a combustion air control valve for controlling the supply of combustion air to a burner section of the reformer. A fuel cell that receives the supply of the fuel gas reformed by the reformer to generate electric power; an orthogonal converter that converts the DC output of the fuel cell into an alternating current and supplies it to a load; In the operation control device of the fuel cell power generator including the control means for controlling the opening degree of each control valve based on the output and the given set value, the sudden change of the load is detected based on the output of the orthogonal conversion device. And a correction control means for correcting and controlling the opening of the combustion air control valve in response to the change in load suddenly detected by the load detector. Fuel cell power plant operation Control device.
【請求項3】 原料ガス調節弁とスチーム調節弁とによ
り流量制御された混合ガスを燃料改質する改質器と、こ
の改質器のバーナ部への燃焼空気を供給制御する燃焼空
気調節弁と、上記改質器で改質された燃料ガスの供給を
受けて発電する燃料電池と、この燃料電池の直流出力を
交流に変換して負荷に供給する直交変換装置と、この直
交変換装置の出力と与えられる設定値とに基づいて上記
各調節弁の開度を制御する制御手段とを備えた燃料電池
発電装置の運転制御装置において、上記改質器の温度を
検出する温度検出器と、上記直交変換装置の出力に基づ
いて負荷の急変を検出する負荷検出部と、この負荷検出
部による負荷急変検出時に改良原料流量と電池電流及び
改質器温度に基づいて上記燃焼空気調節弁の開度を補正
制御する補正制御手段とを備えたことを特徴とする燃料
電池発電装置の運転制御装置。
3. A reformer for reforming a mixed gas, the flow rate of which is controlled by a raw material gas control valve and a steam control valve, and a combustion air control valve for controlling the supply of combustion air to a burner section of the reformer. A fuel cell that receives the supply of the fuel gas reformed by the reformer to generate electric power; an orthogonal converter that converts the DC output of the fuel cell into an alternating current and supplies it to a load; In the operation control device of the fuel cell power generator including the control means for controlling the opening degree of each of the control valves based on the output and the set value given, a temperature detector for detecting the temperature of the reformer, A load detection unit that detects a sudden change in the load based on the output of the orthogonal transformation device, and the combustion air control valve is opened based on the improved raw material flow rate, the battery current, and the reformer temperature when the load detection unit detects a sudden change in the load. Correction control to correct the degree An operation control device for a fuel cell power generator, comprising: a step.
JP4227176A 1992-08-26 1992-08-26 Operation control device for fuel cell power generator Expired - Lifetime JP2860208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4227176A JP2860208B2 (en) 1992-08-26 1992-08-26 Operation control device for fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4227176A JP2860208B2 (en) 1992-08-26 1992-08-26 Operation control device for fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH0676846A true JPH0676846A (en) 1994-03-18
JP2860208B2 JP2860208B2 (en) 1999-02-24

Family

ID=16856681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4227176A Expired - Lifetime JP2860208B2 (en) 1992-08-26 1992-08-26 Operation control device for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2860208B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231289A (en) * 2001-02-05 2002-08-16 Ishikawajima Harima Heavy Ind Co Ltd Control method for fuel cell system
JP2003104702A (en) * 2001-09-28 2003-04-09 Osaka Gas Co Ltd Apparatus for generating hydrogen-containing gas and its operation method
US6607855B2 (en) 2000-03-24 2003-08-19 Honda Giken Kogyo Kabushiki Kaisha Control system for fuel cell
JP2008016319A (en) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd Fuel cell system
WO2013169329A3 (en) * 2012-05-11 2014-01-03 Ballard Power Systems Inc. Method of operating a fuel cell power system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607855B2 (en) 2000-03-24 2003-08-19 Honda Giken Kogyo Kabushiki Kaisha Control system for fuel cell
JP2002231289A (en) * 2001-02-05 2002-08-16 Ishikawajima Harima Heavy Ind Co Ltd Control method for fuel cell system
JP2003104702A (en) * 2001-09-28 2003-04-09 Osaka Gas Co Ltd Apparatus for generating hydrogen-containing gas and its operation method
JP2008016319A (en) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd Fuel cell system
WO2013169329A3 (en) * 2012-05-11 2014-01-03 Ballard Power Systems Inc. Method of operating a fuel cell power system

Also Published As

Publication number Publication date
JP2860208B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
KR20070089999A (en) Method for determining an air ratio in a burner for a fuel cell heater, and fuel cell heater
JPH08153532A (en) Controlling method for operation of fuel cell power system
JPH0789493B2 (en) Fuel system controller for fuel cell power plant
JP3718391B2 (en) Fuel-cell reformer air-fuel ratio control device
JP4944597B2 (en) Solid oxide fuel cell power generation system and operation control method thereof
JPH0676846A (en) Operation control device for fuel cell power generating device
JP3651927B2 (en) Load control device for fuel cell power generator
JPH0845521A (en) Control device of fuel cell
JPH07105965A (en) Fuel cell power generating device and method for controlling same
JP2671523B2 (en) Operation control method for fuel cell power generator
JPH06333587A (en) Method and device for controlling combustion air quantity of fuel cell fuel off gas
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JPS6229868B2 (en)
JPS6318307B2 (en)
JPS6229867B2 (en)
JP3985427B2 (en) Fuel cell system and reformer temperature control method
JPH0547401A (en) Fuel changeover method of fuel cell and its apparatus
JPS61233979A (en) Controller of fuel cell power generating plant
JPH0789495B2 (en) Fuel cell power plant
JPH0556628B2 (en)
JPS60189175A (en) Fuel cell power generating system
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JP2838087B2 (en) Operation control device for fuel cell power generation system
JPH02213056A (en) Fuel cell power generating plant
JPS61110969A (en) Operation control of fuel cell