JPS61233979A - Controller of fuel cell power generating plant - Google Patents

Controller of fuel cell power generating plant

Info

Publication number
JPS61233979A
JPS61233979A JP60074324A JP7432485A JPS61233979A JP S61233979 A JPS61233979 A JP S61233979A JP 60074324 A JP60074324 A JP 60074324A JP 7432485 A JP7432485 A JP 7432485A JP S61233979 A JPS61233979 A JP S61233979A
Authority
JP
Japan
Prior art keywords
reformer
value
flow rate
oxygen concentration
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60074324A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60074324A priority Critical patent/JPS61233979A/en
Publication of JPS61233979A publication Critical patent/JPS61233979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep combustion in a combustion chamber of reformer stable by controlling the flow rate in a fuel electrode by oxygen concentration in exhaust gas from combustion chamber of reformer which is an index of an excess of air. CONSTITUTION:When an oxygen concentration detected value 11 in reformer exhaust gas is reduced below a lower limit value 10, the operation of a reformer temperature controller in conventional control constitution is fixed constant, and a fuel electrode flow rate instruction 9 is reduced with a correction signal 16 to increase oxygen concentration detected value 11. When the oxygen concentration detected value 11 is increased above the lower limit value 10, that is a deviation signal 12 is negative, a temperature deviation correction signal 18 goes 1, and a setting flow rate correction value becomes constant, and it is the same as conventional constitution. When oxygen concentration in exhaust gas from the reformer combustion chamber is extremely reduced, by correcting the fuel electrode flow rate instruction 9 downward, extreme decrease in air excess and incomplete combustion are prevented.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、燃料電池発電プラントの制御装置、特に改質
装置燃焼室における安定な燃焼状態を維持する燃料電池
発電プラントの制御装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a control device for a fuel cell power plant, and particularly to a control device for a fuel cell power plant that maintains a stable combustion state in a reformer combustion chamber. .

[発明の技術的背景とその問題点] 燃料電池発電プラントは、改質装置を介して原料ガスか
ら水素ガスを生成し、この水素ガスを電池本体に供給し
て電極反応を行なわせて再び改質装置を回収し、改質装
置燃焼室の燃料として利用する一連の構成を有している
[Technical background of the invention and its problems] A fuel cell power generation plant generates hydrogen gas from raw material gas through a reformer, supplies this hydrogen gas to the cell body, causes an electrode reaction to occur, and then reforms the fuel cell again. It has a series of configurations in which the reformer is recovered and used as fuel for the reformer combustion chamber.

ここで前記改質装置燃焼室は、原料ガスから水素ガスを
生成するに際して必要な熱エネルギーを供給するために
有るもので、燃焼室バーナへの燃焼用空気と燃焼用燃料
の供給台によって熱エネルギーの供給量を制御する。上
記熱エネルギー供給量の制御に関する従来の構成例を以
下に記す。
The reformer combustion chamber is provided to supply the thermal energy necessary to generate hydrogen gas from the raw material gas, and the combustion chamber burner is supplied with combustion air and combustion fuel to supply thermal energy. control the amount of supply. An example of a conventional configuration for controlling the amount of thermal energy supplied will be described below.

第3図は、従来の燃料極の流量制御構成のブロック図で
あり、これによって説明する。第3図において、1は負
荷(或いは電池電流値)、2は流量設定関数、3は負荷
に基づく流量指令値、4は改質装置反応室の上部や反応
室外側のメタル上部などの代表温度に対する設定値、5
は代表温度の検出値、6は両者温度の偏差信号、7は偏
差信号6に基づき前記流量指令値に対する設定流量補正
1ia8を与える調節器である。
FIG. 3 is a block diagram of a conventional fuel electrode flow control configuration, and will be explained using this diagram. In Figure 3, 1 is the load (or battery current value), 2 is the flow rate setting function, 3 is the flow rate command value based on the load, and 4 is the representative temperature of the upper part of the reformer reaction chamber or the upper part of the metal outside the reaction chamber. Setting value for 5
6 is a detected value of the representative temperature, 6 is a deviation signal between both temperatures, and 7 is a regulator that provides a set flow rate correction 1ia8 to the flow rate command value based on the deviation signal 6.

本実施例では、負荷1応じた流量指令値3に対し、改質
装置代表温度検出値5が改質装置代表温度設定値4にな
るように設定流量補正値8を加え、最終的な燃料極流量
指令値9を与える構成である。
In this example, a set flow rate correction value 8 is added to the flow rate command value 3 corresponding to the load 1 so that the reformer representative temperature detected value 5 becomes the reformer representative temperature set value 4, and the final fuel electrode This configuration provides a flow rate command value of 9.

燃料極流量指令値9が与えられると、調節器32では前
記燃料極流量指令値9と燃料極流量検出値3Gとの流量
偏差31から、燃料極流量調節弁34に対して開度指令
33を与えることにより制御が行なわれる。
When the fuel electrode flow rate command value 9 is given, the regulator 32 issues an opening command 33 to the fuel electrode flow rate control valve 34 based on the flow rate deviation 31 between the fuel electrode flow rate command value 9 and the fuel electrode flow rate detection value 3G. Control is achieved by giving

[背景技術の問題点] 上記構成を有する従来装置では、例えば改質装置代表温
度検出値5が低下した場合、燃料極流量指令値9は、設
定流量補正値(補正指令)8によって増加する。即ち、
改質装置代表温度検出値5を上昇させるために燃料極流
量を増加、つまり改質装置燃焼室の燃料流量を増加させ
るよう動作する。しかし、この場合、改質装置燃焼室へ
の燃焼用空気流量で決まる改質装置燃焼室バーナの空気
過剰率が低下し、これが時に改質装置燃焼室での不完全
燃焼に繋がる問題があった。
[Problems with Background Art] In the conventional device having the above configuration, for example, when the detected reformer representative temperature value 5 decreases, the fuel electrode flow rate command value 9 increases by the set flow rate correction value (correction command) 8. That is,
In order to increase the reformer representative temperature detection value 5, the fuel electrode flow rate is increased, that is, the fuel flow rate in the reformer combustion chamber is increased. However, in this case, the air excess ratio of the reformer combustion chamber burner, which is determined by the flow rate of combustion air into the reformer combustion chamber, decreases, which sometimes leads to incomplete combustion in the reformer combustion chamber. .

[発明の目的] 本発明は上記問題点を解決するためになされたものであ
り、改質装置での空気過剰率の極度の低下及び不完全燃
焼を回避し得る燃料電池発電プラントの制御装置を提供
することを目的としている。
[Object of the Invention] The present invention has been made to solve the above problems, and provides a control device for a fuel cell power plant that can avoid an extremely low excess air ratio and incomplete combustion in a reformer. is intended to provide.

[発明の概要] 本発明では、従来例で述べた燃料電池発電プラントの制
御装置において、改質装置燃焼室からの燃焼排ガス中の
酸素濃度を検出する手段と、その検出値に応じて前記燃
料極流量指令値9を変更する制御手段を設けたことを特
徴とするものである。
[Summary of the Invention] In the present invention, in the control device for the fuel cell power generation plant described in the conventional example, there is provided a means for detecting the oxygen concentration in the combustion exhaust gas from the combustion chamber of the reformer, and a means for detecting the oxygen concentration in the combustion exhaust gas from the combustion chamber of the reformer. The present invention is characterized in that a control means for changing the extreme flow rate command value 9 is provided.

[発明の実施例] 以下図面を参照して実施例を説明する。第1図は、本発
明の一実施例を示すものである。図中の1〜9.30〜
34は第3図に対応している。10は改質装置燃焼室排
ガス酸素濃度の下限設定値、11は酸素濃度検出値、1
2は酸素濃度偏差である。酸素濃度偏差12は、一つに
は関数発生器11によって改質装置の代表温度制御部に
信号18を与える。信号18は、12が正値、即ち、酸
素濃度検出値11が下限設定値10以下の場合O1負値
の場合1となる。又、酸素濃度偏差12は、関数発生器
13によって補正信号14となり、更にこれが調節器1
5によって従来例における燃料極流量指令値9に対する
設定流山補正値(補正指令)16を与える。関数発生器
13は、偏差信号12が負の場合は補正信号14を0と
し、正の場合は12の信号をそのまま14の信号とする
関数である。即ち、本実施例は改質装置排ガス酸素濃度
がその下限値以下になった場合に、従来の改質装置代表
温度制御から、改質装置排ガス酸素濃度制御に切替わる
構成である。
[Embodiments of the Invention] Examples will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. 1 to 9.30 in the diagram
34 corresponds to FIG. 10 is the lower limit set value of the reformer combustion chamber exhaust gas oxygen concentration, 11 is the detected oxygen concentration value, 1
2 is the oxygen concentration deviation. The oxygen concentration deviation 12 provides a signal 18, in part by the function generator 11, to the representative temperature control section of the reformer. The signal 18 becomes 1 when 12 is a positive value, that is, when the detected oxygen concentration value 11 is less than or equal to the lower limit setting value 10 and when O1 is a negative value. Further, the oxygen concentration deviation 12 becomes a correction signal 14 by the function generator 13, which is further outputted to the regulator 1.
5 gives a set flow mountain correction value (correction command) 16 for the fuel electrode flow rate command value 9 in the conventional example. The function generator 13 is a function that sets the correction signal 14 to 0 when the deviation signal 12 is negative, and sets the signal 12 as the signal 14 when it is positive. That is, this embodiment is configured to switch from the conventional reformer representative temperature control to reformer exhaust gas oxygen concentration control when the reformer exhaust gas oxygen concentration becomes equal to or less than its lower limit.

次に本実施例の作用を説明する。改質装置排ガス酸素濃
度検出値11が過渡に低下し、下限設定値10以下にな
った場合、偏差信号12は正値となる。
Next, the operation of this embodiment will be explained. When the detected value 11 of the reformer exhaust gas oxygen concentration decreases transiently and becomes equal to or less than the lower limit set value 10, the deviation signal 12 becomes a positive value.

関数発生器11は偏差信号12が正値であるから信号1
8とし0を出力する。信号18がOの場合、改質装置の
温度偏差6は掛は算器19によって0となり、これが補
正侵の温度偏差信号20として、調節器7に入力される
。即ち、酸素濃度検出値11が下限設定値10以下にな
った場合、改質装置の温度偏差に基づく設定流量補正値
8を一定保持する作用をもたらす。
Since the deviation signal 12 is a positive value, the function generator 11 generates a signal 1.
Outputs 8 and 0. When the signal 18 is O, the temperature deviation 6 of the reformer is multiplied by a multiplier 19 to 0, and this is input to the regulator 7 as a corrected temperature deviation signal 20. That is, when the detected oxygen concentration value 11 becomes equal to or lower than the lower limit set value 10, the set flow rate correction value 8 based on the temperature deviation of the reformer is held constant.

又、同様に偏差信号12が正値となった場合、関数発生
器13は偏差信号12をそのまま補正信号14として調
節器15に入力し、更に調節器15は従来の燃料極流量
指令値9に対する減指令16を出力する。
Similarly, when the deviation signal 12 becomes a positive value, the function generator 13 inputs the deviation signal 12 as it is as a correction signal 14 to the regulator 15, and the regulator 15 further inputs the deviation signal 12 as a correction signal 14 to the regulator 15. A reduction command 16 is output.

結果として、本実施例による燃料極流量指令値21を減
少させるように作用する。
As a result, it acts to reduce the fuel electrode flow rate command value 21 according to this embodiment.

要するに、本実施例では改質装置排ガス酸素濃度検出値
11が下限設定値10以下になった場合、従来の制御構
成における改質装置温度制御部の動作を一定に固定し、
前記酸素濃度検出値11を高めるために補正信号16に
て、燃料極流量指令値9を減少させるよう作用する。
In short, in this embodiment, when the detected value 11 of the reformer exhaust gas oxygen concentration becomes equal to or lower than the lower limit set value 10, the operation of the reformer temperature control section in the conventional control configuration is fixed to a constant value,
In order to increase the detected oxygen concentration value 11, the correction signal 16 acts to decrease the fuel electrode flow rate command value 9.

なお、前記酸素濃度検出値11が下限設定値10より大
きい場合、即ち、偏差信号12が負値の場合は、温度偏
差補正信号18は1となり、又、設定流山補正値16は
一定となるから従来の構成と同様の作用をもたらす。
Note that when the oxygen concentration detection value 11 is larger than the lower limit setting value 10, that is, when the deviation signal 12 is a negative value, the temperature deviation correction signal 18 becomes 1 and the set flow mountain correction value 16 becomes constant. It provides the same effect as the conventional configuration.

本実施例に伴なう上記作用は、改質装置燃焼室からの排
ガス中の酸素濃度が極度に低下した場合に、I料極流母
指令値9を下げ方向に補正するこトニヨリ、前記濃度低
下を防ぐ効果が、即ち、改1[置燃焼室における空気過
剰率の極度の低下及び不完全燃焼を防止する効果がもた
らされる。
The above-mentioned action accompanying this embodiment is such that when the oxygen concentration in the exhaust gas from the reformer combustion chamber is extremely reduced, the I-material polar flow mother command value 9 is corrected in a downward direction. In other words, the effect of preventing the excessive air ratio in the combustion chamber from being excessively reduced and incomplete combustion is brought about.

第2図は、本発明の他の実施例を示す構成図である。図
中の1〜16.20.21.30〜34は第1図に対応
している。22は関数発生器で、偏差信号12が正値の
時は0′・□を、負値の時は比較的絶対値の大きな正値
を温度偏差補正信号23として発生する。24は偏差信
号6と補正信号23の低値優先回路である。
FIG. 2 is a configuration diagram showing another embodiment of the present invention. 1-16, 20, 21, 30-34 in the figure correspond to FIG. A function generator 22 generates 0'.□ when the deviation signal 12 has a positive value, and generates a positive value with a relatively large absolute value when the deviation signal 12 has a negative value as the temperature deviation correction signal 23. 24 is a low value priority circuit for the deviation signal 6 and the correction signal 23.

本実施例では酸素濃度検出値11が下限設定値10以下
になり、偏差信号12が正値となった場合、補正信号2
3はOとなり、低値優先回路24によって調節器7への
入力20の上限はO1即ち、信号8の増加作用のみを断
ち切る作用をもたらす。改質装置代表温度検出値5が過
渡に上昇した場合に起こる信号8の減少動作は従来例と
変わらず作用する。
In this embodiment, when the detected oxygen concentration value 11 becomes below the lower limit set value 10 and the deviation signal 12 becomes a positive value, the correction signal 2
3 becomes O, and the upper limit of the input 20 to the regulator 7 is set to O1 by the low value priority circuit 24, ie the effect of cutting off only the increasing effect of the signal 8. The reduction operation of the signal 8 that occurs when the reformer representative temperature detection value 5 rises transiently operates in the same manner as in the conventional example.

又、偏差信号12が負値の場合、補正信号23は絶対値
の大きな正値となるから低値優先回路24から出力され
る信@20は温度偏差6と同じものとなり、これも従来
例と同様の作用をもたらす。なお、偏差信号12から設
定流山補正値16への作用は、前記した実施例と同じで
ある。
Furthermore, when the deviation signal 12 has a negative value, the correction signal 23 has a large positive value, so the signal @20 output from the low value priority circuit 24 is the same as the temperature deviation 6, which is also the same as the conventional example. It has a similar effect. Note that the effect of the deviation signal 12 on the set drift mountain correction value 16 is the same as in the embodiment described above.

本実施例も、前記実施例同様、改質装置燃焼室における
空気過剰率の極度低下及び不完全燃焼を防止する効果が
もたらされる。但し、酸素濃度検出値11が下限設定値
101!下になった場合、前記した実施例では、改質装
置の代表温度制御部の動作がホールドされるのに対し、
本実施例では温度制御部の設定流量補正値(補正指令)
8の増加動作のみ制限されるが減少動作は行なわれる。
As with the previous embodiments, this embodiment also brings about the effect of extremely reducing the excess air ratio in the combustion chamber of the reformer and preventing incomplete combustion. However, the detected oxygen concentration value 11 is the lower limit set value 101! In the above-mentioned embodiment, the operation of the typical temperature control section of the reformer is held when the
In this example, the set flow rate correction value (correction command) of the temperature control section
Only the increase operation of 8 is restricted, but the decrease operation is performed.

[発明の効果] 以上説明した如く、本発明によれば負荷変化時、特に改
質装置の代表温度が低下した場合に、改質装置燃焼室で
の空気過剰率の極度の低下及び不完全燃焼が起こるよう
な従来の問題点に対して、空気過剰率の指標となる改質
装置燃焼室排ガス中の酸素濃度によって燃料極流層を制
御するようにしたので、前記問題点を解消し改質装置燃
焼室での燃焼状態をより安定にだもつことが可能となる
[Effects of the Invention] As explained above, according to the present invention, when the load changes, especially when the typical temperature of the reformer decreases, the excess air ratio in the reformer combustion chamber decreases significantly and incomplete combustion occurs. The fuel electrode flow layer is controlled by the oxygen concentration in the reformer combustion chamber exhaust gas, which is an indicator of excess air ratio, which solves the problem and improves reforming efficiency. It becomes possible to maintain a more stable combustion state in the combustion chamber of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料電池発電プラントの制御装置
の実施例の構成図、第2図は本発明による燃料電池発電
プラントの制御装置の他の実施例の構成図、第3図は従
来の燃料電池発電プラントの制御装置の構成図である。 1・・・負荷       2・・・流[I設定関数3
・・・流量指令値 4・・・改質装置代表温度設定値 5・・・改質装置代表温度検出値 6.20・・・温度偏差信号 7.15.32・・・調
節器8.16・・・設定流量補正値 9.21・・・燃料極流量指令値 10・・・下限設定値    11・・・酸素濃度検出
値12.14・・・酸素濃度偏差(補正後)13.11
.22・・・関数発生器 18.23・・・温度偏差補正信号 19・・・掛は算器     24・・・低値優先回路
30・・・燃料極流m検出値 31・・・流量偏差33
・・・開度指令     34・・・燃料極流量調節弁
(7317)代理人 弁理士 則近憲佑(他1名) 鬼1区 兇2図 11股素!!夷塗土価
FIG. 1 is a block diagram of an embodiment of the control device for a fuel cell power plant according to the present invention, FIG. 2 is a block diagram of another embodiment of the control device for a fuel cell power plant according to the present invention, and FIG. 3 is a block diagram of a conventional control device for a fuel cell power plant. FIG. 1 is a configuration diagram of a control device for a fuel cell power generation plant. 1...Load 2...Flow [I setting function 3
...Flow rate command value 4...Reformer representative temperature setting value 5...Reformer representative temperature detection value 6.20...Temperature deviation signal 7.15.32...Adjuster 8.16 ... Set flow rate correction value 9.21 ... Fuel electrode flow rate command value 10 ... Lower limit set value 11 ... Oxygen concentration detection value 12.14 ... Oxygen concentration deviation (after correction) 13.11
.. 22... Function generator 18. 23... Temperature deviation correction signal 19... Multiplication calculator 24... Low value priority circuit 30... Fuel electrode flow m detection value 31... Flow rate deviation 33
...Opening command 34...Fuel electrode flow rate control valve (7317) Agent Patent attorney Norichika Kensuke (and 1 other person) Demon 1 ward 2 diagram 11 elements! ! Einuri soil price

Claims (1)

【特許請求の範囲】[Claims] 改質装置代表温度が設定値になるような流量指令値を与
えて、改質装置からの改質ガスの流量を制御する燃料電
池発電プラントの制御装置において、前記改質装置の燃
焼排ガス中の酸素濃度を検出し、前記酸素濃度検出値に
基づく流量指令値を、前記改質装置代表温度による流量
指令値に加えることを特徴とする燃料電池発電プラント
の制御装置。
In a control device for a fuel cell power plant that controls the flow rate of reformed gas from a reformer by giving a flow rate command value such that the representative temperature of the reformer becomes a set value, A control device for a fuel cell power generation plant, characterized in that the control device detects an oxygen concentration and adds a flow rate command value based on the detected oxygen concentration value to a flow rate command value based on the reformer representative temperature.
JP60074324A 1985-04-10 1985-04-10 Controller of fuel cell power generating plant Pending JPS61233979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60074324A JPS61233979A (en) 1985-04-10 1985-04-10 Controller of fuel cell power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074324A JPS61233979A (en) 1985-04-10 1985-04-10 Controller of fuel cell power generating plant

Publications (1)

Publication Number Publication Date
JPS61233979A true JPS61233979A (en) 1986-10-18

Family

ID=13543816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074324A Pending JPS61233979A (en) 1985-04-10 1985-04-10 Controller of fuel cell power generating plant

Country Status (1)

Country Link
JP (1) JPS61233979A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393694A2 (en) * 1989-04-21 1990-10-24 International Fuel Cells Corporation Fuel cell power plant
WO1991006987A1 (en) * 1989-10-24 1991-05-16 International Fuel Cells Corporation Fuel cell power plant fuel control
JP2010211993A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Fuel cell system and control method of fuel cell system
US20130130138A1 (en) * 2011-04-26 2013-05-23 Panasonic Corporation Hydrogen generation apparatus, fuel cell system, and method of operating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393694A2 (en) * 1989-04-21 1990-10-24 International Fuel Cells Corporation Fuel cell power plant
WO1991006987A1 (en) * 1989-10-24 1991-05-16 International Fuel Cells Corporation Fuel cell power plant fuel control
EP0508991A1 (en) * 1989-10-24 1992-10-21 United Fuel Cells Corp Fuel cell power plant fuel control.
JP2010211993A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Fuel cell system and control method of fuel cell system
US20130130138A1 (en) * 2011-04-26 2013-05-23 Panasonic Corporation Hydrogen generation apparatus, fuel cell system, and method of operating the same
US9116528B2 (en) * 2011-04-26 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation apparatus, fuel cell system, and method of operating the same

Similar Documents

Publication Publication Date Title
US4943493A (en) Fuel cell power plant
JPH08153532A (en) Controlling method for operation of fuel cell power system
JP4944597B2 (en) Solid oxide fuel cell power generation system and operation control method thereof
JPS61233979A (en) Controller of fuel cell power generating plant
JPS60177565A (en) Operation method of fuel cell power generating system
JP2671523B2 (en) Operation control method for fuel cell power generator
JPS6318307B2 (en)
JPS60107268A (en) Control system for fuel cell power generation plant
JPS6345762A (en) Operation controller of fuel cell power generating plant
JP2860208B2 (en) Operation control device for fuel cell power generator
JPS6345763A (en) Operation controller of fuel cell power generating plant
JPS6297268A (en) Controller for fuel cell power generating plant
JPS61110969A (en) Operation control of fuel cell
JPH0337966A (en) Transferring method to no-load operation for fuel cell
JPS63292575A (en) Fuel cell power generating system
JPH03266367A (en) Fuel system control unit of fuel cell system
JPH0547399A (en) Temperature control method and device for reforming device of fuel cell power generating system
JPH0349185B2 (en)
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JPS6297266A (en) Controller for fuel cell power generating plant
JPH0282460A (en) Control device for fuel cell power generation system
JPS61101969A (en) Fuel cell device
JPH0556628B2 (en)
JPH0461465B2 (en)
JPS6345764A (en) Operating controller of fuel cell power generating plant