JPS60107268A - Control system for fuel cell power generation plant - Google Patents

Control system for fuel cell power generation plant

Info

Publication number
JPS60107268A
JPS60107268A JP58213392A JP21339283A JPS60107268A JP S60107268 A JPS60107268 A JP S60107268A JP 58213392 A JP58213392 A JP 58213392A JP 21339283 A JP21339283 A JP 21339283A JP S60107268 A JPS60107268 A JP S60107268A
Authority
JP
Japan
Prior art keywords
flow rate
temperature
value
reformer
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58213392A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58213392A priority Critical patent/JPS60107268A/en
Publication of JPS60107268A publication Critical patent/JPS60107268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable the conversion rate of hydrogen in a reformer to be controlled within a given range with high reliability by using both a temperature set on the basis of the flow rate of an original gas and a delay element to control the temperature of the reaction chamber of the reformer. CONSTITUTION:The detected value (k) obtained by and sent from an original gas flow rate detector 11 is converted into a detected flow-rate value (l) including a delay by means of a delay element 12. The detected value (l) is then passed through a set-temperature-computing element to produce a temperature-setting value (m) which is based on the value (l). According to the difference (e) between the value (m) and the detected value (d) sent from the representative temperature detector 7 of a reaction chamber, a controller 8 produces a command signal (f) corresponding to the deviation of the temperature of the reaction chamber. The command signal (f) is added to a set flow rate (b) for a d.c. current to obtain a final set flow rate (g). According to the difference (i) between the detected value (h) obtained by a fuel electrode flow rate detector 10 and the set flow rate (g), an opening degree command (j) is delivered from a controller 9 to control a fuel electrode flow rate control valve 4.

Description

【発明の詳細な説明】 本発明は、燃料電池発電プラントの制御装置、特に電池
本体内への安定した水素ガスの供給が可能な燃料電池発
電プラントの制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a fuel cell power plant, and particularly to a control device for a fuel cell power plant that is capable of stably supplying hydrogen gas into a cell body.

〔発明の技術的背景〕[Technical background of the invention]

燃料電池は、改質装置を介して原料ガスから水素ガスを
生成し、この水素ガスを電池本体に供給して電極反応を
行なわせて再び改質装置に回収する一連のシステムを有
している。
A fuel cell has a series of systems that generate hydrogen gas from raw material gas through a reformer, supply this hydrogen gas to the cell body, cause an electrode reaction, and then recover it back to the reformer. .

したがって電池本体への安定した水素ガスの供給は、電
池本体への燃料極流量とその中に含まれる水素比率の安
定な供給にエシなされている。そしてそのだめの制御が
電池本体内の燃料極流量制御である。
Therefore, stable supply of hydrogen gas to the battery main body is achieved by stably supplying the fuel electrode flow rate to the battery main body and the proportion of hydrogen contained therein. The final control is the fuel electrode flow rate control within the battery body.

第1図は従来の燃料極流量制御構成のブロック図であシ
、これによって説明する。第1図において、1は改質装
置、2は電池本体であシ、改質装置1で改質されたガス
は電池本体2にて負荷に応じて消費された後、再び改質
装置1に戻り、改質装置燃焼用の燃料として回収される
。なお、3はターデコンゾレッザの補助バーナの燃料等
信の構成機器への燃料供給ラインである。この際、電池
本体への改質ガスの供給は燃料極流量調節弁4によって
次のように行なわれている。
FIG. 1 is a block diagram of a conventional fuel electrode flow rate control configuration, and will be explained using this diagram. In Fig. 1, 1 is a reformer, 2 is a battery main body, gas reformed in the reformer 1 is consumed in the battery main body 2 according to the load, and then returned to the reformer 1. It returns and is recovered as fuel for combustion in the reformer. Note that 3 is a fuel supply line to components such as fuel for the auxiliary burner of the Tardecon Sorezza. At this time, the supply of reformed gas to the cell main body is performed by the fuel electrode flow control valve 4 as follows.

即ち、燃料極流量設定値gは、負荷の大小に応じた直流
電流aを設定流量演算器5を介して導出された直流電流
に対する設定流量すと、同じく直流電流aを設定温度演
算器6を介して導出された直流電流に対する反応室代表
温度設定値Cと温度検出器7からの検出温度dとの温度
偏差eに基づく調節器8からの反応室温度偏差による指
令信号fとを加算することから得られる。ここで燃料極
流量設定値gが与えられると、調節器9は前記流量設定
値gと流量検出器10からの燃料極流量検出値(実流量
)hとの流量偏差iから、燃料極流量調節弁4に対して
開度指令jを与えることによシ流量制御が行なわれる。
That is, the fuel electrode flow rate set value g is determined by dividing the DC current a corresponding to the magnitude of the load into the set flow rate for the DC current derived via the set flow rate calculator 5, and then converting the DC current a into the set temperature calculator 6. Adding the command signal f based on the reaction chamber temperature deviation from the regulator 8 based on the temperature deviation e between the reaction chamber representative temperature set value C for the DC current derived from the temperature sensor 7 and the detected temperature d from the temperature detector 7. obtained from. When the fuel electrode flow rate setting value g is given here, the regulator 9 adjusts the fuel electrode flow rate based on the flow rate deviation i between the fuel electrode flow rate setting value g and the fuel electrode flow rate detection value (actual flow rate) h from the flow rate detector 10. Flow rate control is performed by giving an opening command j to the valve 4.

〔背景技術の問題点〕[Problems with background technology]

上記構成を有する従来装置では、負荷の大きな場合、即
ち、直流電流が大きな場合は、これが小さな時に比べて
電池本体で必要とする水素量が多くなるため、燃料極流
量は必然的に多くなり、これに応じて改質装置でも一定
の水素転化率を達成するために、より多くの改質能力が
要求される。
In the conventional device having the above configuration, when the load is large, that is, when the DC current is large, the amount of hydrogen required in the battery body is larger than when the current is small, so the fuel electrode flow rate inevitably increases. Accordingly, more reforming capacity is required in the reformer in order to achieve a constant hydrogen conversion rate.

しかし改質装置の水素転化率は改質装置の原料ガス流量
と反応室の温度環境によって決まるが、従来制御方式で
は直流電流aが原料ガス流量を示す一つの指標であるこ
とから、これに対応する反応室温度設定値Cを設定温度
演算器6により高めることで対処していた。
However, the hydrogen conversion rate of the reformer is determined by the flow rate of the raw material gas in the reformer and the temperature environment of the reaction chamber, but in the conventional control method, the DC current a is one indicator of the flow rate of the raw material gas. This was dealt with by increasing the reaction chamber temperature set value C using the set temperature calculator 6.

即ち、第2図に示すように直流電流値aがalかも82
になった場合、反応室設定温度TをTIからT2に上昇
させ、改質装置における改質反応速度をより速めること
により改質能力を高めている。
That is, as shown in FIG. 2, the DC current value a may be 82
When this occurs, the reaction chamber set temperature T is raised from TI to T2 to further speed up the reforming reaction rate in the reformer, thereby increasing the reforming capacity.

ところが改質装置の原料ガスには、燃料極流入燃料の他
に、ターボコンプレッサの補助ノ々−す燃料及び場合に
よっては、電池本体温度制御系での蒸気生成用バーナの
燃料も含んでいるため、何らかの原因で他構成機器への
燃料供給ライン3の流量が増加した場合、必らずしも直
流電流値と改質装置原料ガス流量とが一意に対応すると
は限らない。したがって、例え反応室温度が設定値に制
御されている状態であっても、その時の改質装置での水
素転化率が一定範囲に保たれているとは云えない。
However, in addition to the fuel flowing into the fuel electrode, the raw material gas for the reformer also contains fuel for the auxiliary nozzle of the turbo compressor and, in some cases, fuel for the steam generation burner in the temperature control system of the cell body. If the flow rate of the fuel supply line 3 to other components increases for some reason, the direct current value and the reformer raw material gas flow rate do not necessarily correspond uniquely. Therefore, even if the reaction chamber temperature is controlled to a set value, it cannot be said that the hydrogen conversion rate in the reformer is maintained within a certain range at that time.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決することを目的としてなされ
たものであり、改質装置での水素転化率を一定範囲に確
実に制御することの可能な燃料電池発電プラントの制御
装置を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a control device for a fuel cell power plant that can reliably control the hydrogen conversion rate in a reformer within a certain range. It is an object.

〔発明の概要〕[Summary of the invention]

本発明では改質装置原料ガスの実流量に対する反応室設
定温度をもうけ、実際の反応室温度を設定温度に制御す
ることによシ、改質装置における水素転化率を一定範囲
に保とうとするものである。
In the present invention, a reaction chamber temperature setting is set for the actual flow rate of the reformer raw material gas, and the hydrogen conversion rate in the reformer is maintained within a certain range by controlling the actual reaction chamber temperature to the set temperature. It is.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して実施例を説明する。第3図は本発明
による燃料電池発電プラントの制御装置の一実施例構成
図である。図中の符号1ないし5及び7カいし10は第
1図に対応している。11は原料ガス検出器、12は遅
れ要素(後述する)、13は設定温度演算器である。本
実施例では原料ガス検出器11からの原料ガス検出値k
を遅れ要素12によシ遅れを加味した流量検出値tとし
、更に設定温度演算器13を介して前記tに基づく温度
設定値mを導出し、これと反応室の代表温度検出器7か
らの検出値dとの偏差Cから、調節器8により反応室温
度偏差に対する指令信号fを与え、こitを直流電流に
対する設定流量すに加算して、最終的な設定流量gとす
るものである。以降は第1図同様、燃料極流量検出器1
0の検出値りとgとの偏差1によシ調節器9から開度指
令jを出力し燃料極流量調節弁4を制御する。要するに
電池本体において負荷に応じて消費される水素ガス以外
に、他構成機器での燃料消費分があるため、これらを加
味した補正を改質装置へ流入する原料ガスの検出値から
導出し、これと反応室代表温度との偏差によシ、よシき
めの細かい制御を可能とするものである。
Examples will be described below with reference to the drawings. FIG. 3 is a configuration diagram of an embodiment of a control device for a fuel cell power generation plant according to the present invention. Reference numerals 1 to 5 and 7 to 10 in the figure correspond to those in FIG. 11 is a raw material gas detector, 12 is a delay element (described later), and 13 is a set temperature calculator. In this embodiment, the raw material gas detection value k from the raw material gas detector 11
is the flow rate detection value t which takes into account the delay due to the delay element 12, and further derives the temperature set value m based on the above t via the set temperature calculator 13, and combines this with the value from the representative temperature detector 7 of the reaction chamber. A command signal f for the reaction chamber temperature deviation is given by the controller 8 from the deviation C from the detected value d, and this is added to the set flow rate S for the DC current to obtain the final set flow rate g. From then on, as in Figure 1, the fuel electrode flow rate detector 1
Based on the deviation 1 between the detected value 0 and g, the opening command j is output from the regulator 9 to control the fuel electrode flow rate control valve 4. In other words, in addition to the hydrogen gas consumed in the battery itself according to the load, there is also fuel consumption by other components, so a correction that takes these into consideration is derived from the detected value of the raw material gas flowing into the reformer, and this This allows for very fine control of the deviation between the temperature and the typical temperature of the reaction chamber.

第4図は改質装置原料ガス流量に基づく反応室設定温度
の特性図であり、本実施例によれば改質装置原料ガス流
量がG1から02へ増加した場合に、反応室設定温度は
TIからT2へ高められ、反応室温度もとiLに従うよ
う制御される。
FIG. 4 is a characteristic diagram of the reaction chamber set temperature based on the reformer raw material gas flow rate. According to this example, when the reformer raw material gas flow rate increases from G1 to 02, the reaction chamber set temperature is TI The reaction chamber temperature is also controlled to follow iL.

第5図は従来方式による制御と本実施例による温度設定
との作用の違いを対比して示した図である。図において
上の図は従来の直流電流値による作用を示し、下の図は
本実施911による作用を示す。
FIG. 5 is a diagram comparing and showing the difference in operation between the conventional control method and the temperature setting according to this embodiment. In the figure, the upper figure shows the effect of the conventional DC current value, and the lower figure shows the effect of the present embodiment 911.

実線La、LGは夫々直流電流値、改質装置原料ガス流
量に基づく設定温度線である。又、設定温度線Laは電
池本体及び改質装置バーナに加えて、ターボコンプレッ
サ用補助バーナや電池本体温度制御系での蒸気生成用バ
ーナ等の全体に要する燃料のttTh1条件下でのバラ
ンスを考慮して与えられる。
Solid lines La and LG are set temperature lines based on the DC current value and the reformer raw material gas flow rate, respectively. In addition, the set temperature line La takes into account the balance under ttTh1 conditions of the fuel required for the entire battery body and reformer burner, as well as the auxiliary burner for the turbo compressor and the steam generation burner in the battery body temperature control system. It is given as follows.

今、このようなバランスが保たれている場合について考
えると、負荷としての直流電流値が81の場合、従来制
御におけるバランス点Palと本実施ψ11によるバラ
ンス点P。1とは、ともに設定温度TIとなり、同じ作
用をもたらす。又、直流電流値が82になった場合も、
バランス点は夫々P8□。
Now, considering the case where such a balance is maintained, when the DC current value as a load is 81, the balance point Pal in the conventional control and the balance point P in the present implementation ψ11. 1 and 1 are both set temperatures TI, and bring about the same effect. Also, when the DC current value reaches 82,
The balance points are P8□ respectively.

PG2となって、設定温度はT2となり同じである。The temperature becomes PG2, and the set temperature becomes T2, which is the same.

しかしながら負荷に応じた直流電流値がalでありなが
ら、何らかの原因により、ターボコンプレッサの補助バ
ーナ燃料要求量が多くなシ、シたがって他構成機器への
燃料供給ライン3の燃料流量が増加した場合を考える。
However, even though the DC current value corresponding to the load is al, for some reason the amount of fuel required by the auxiliary burner of the turbo compressor is large, and therefore the fuel flow rate in the fuel supply line 3 to other components increases. think of.

この場合は改質装置1から出てゆく燃料ガス流量が同じ
であれば、他構成機器へ側路される燃料ガス分だけ電池
本体への燃料ガス流量は減少し、しかもこの場合、電池
本体で消費される水素量が変らないため、電池本体2か
ら改質装置lへ流入する燃料ガス流量は減少し、結果と
して改質装置反応室温度の低下を招くことになる。ここ
で第5図における破線”AI +La2はこの関係を示
すもので、夫々直流電流が81の時の前記燃料供給ライ
ン3の燃料流量が増加する以前と以後の原料ガス流量と
反応室温度との関係を示す。
In this case, if the fuel gas flow rate leaving the reformer 1 is the same, the fuel gas flow rate to the battery body will decrease by the amount of fuel gas diverted to other components; Since the amount of hydrogen consumed does not change, the flow rate of fuel gas flowing into the reformer l from the battery main body 2 decreases, resulting in a decrease in the temperature of the reformer reaction chamber. Here, the broken line "AI + La2" in FIG. 5 shows this relationship, and the raw material gas flow rate and reaction chamber temperature before and after the fuel flow rate in the fuel supply line 3 increases when the DC current is 81, respectively. Show relationships.

この様な場合を比較検討する。従来方式の場合は、他構
成機器への燃料供給ラインへの燃料増加が発生しても、
負荷電流に応じた直流電流値a1が変らない限り、反応
室設定温度Tlはそのままであシ、したがってPa(で
記したポイントに状態は整定される。したがって、この
場合、改質装置1への原料ガス流量が増加したにも拘ら
ず、反応室の温度環境は変化しないことになる。
Let's compare and consider these cases. In the case of the conventional method, even if there is an increase in fuel to the fuel supply line to other components,
As long as the DC current value a1 corresponding to the load current does not change, the reaction chamber set temperature Tl remains unchanged, and the state is therefore settled at the point marked Pa. Therefore, in this case, the Even though the raw material gas flow rate has increased, the temperature environment of the reaction chamber remains unchanged.

一方、本実施例の場合は前記燃料供給ライン3の燃料流
量が増加した場合、原料ガスの流入増加分による補正量
が加わるため、改質装置原料ガスと反応室温度との関係
はLa□からLaSへと移シ、その結果図に記しだポイ
ン)P。′にてバランスする。
On the other hand, in the case of this embodiment, when the fuel flow rate in the fuel supply line 3 increases, a correction amount is added based on the increased inflow of the raw material gas, so the relationship between the reformer raw material gas and the reaction chamber temperature changes from La□. Moved to LaS, resulting in points marked in the figure) P. Balance at '.

このように本実施例では改質装置への原料ガス流量が増
加して改質装置での反応処理の負担が犬きくなると、確
実に反応室の温度を高めて反応が促進し易いように作用
する。
In this way, in this embodiment, when the flow rate of raw material gas to the reformer increases and the burden of reaction processing on the reformer becomes heavier, the temperature in the reaction chamber is reliably raised to facilitate the reaction. do.

又、本実施例では制御量、即ち改質装置反応室温度の設
定値が、操作量でちる燃料極流量とほとんど遅れを有さ
ない原料ガ゛ス流量で与えられている。したがって遅れ
要素12を加味しないと、原料ガス流量値kが増加する
と反応室温度設定値mは直ちに上昇するのに対して、反
応室実温度dは改質装置の原料ガスが増加してから、こ
れが電池本体を介して再び改質装置燃焼室の燃料となる
間の流量の遅れと、これが増加してから温度が上昇する
間の遅れとによって、直ちに上昇することはない。
Further, in this embodiment, the controlled variable, ie, the set value of the reformer reaction chamber temperature, is given by the raw material gas flow rate that has almost no delay with the fuel electrode flow rate, which is determined by the manipulated variable. Therefore, if the delay element 12 is not taken into account, when the raw material gas flow rate value k increases, the reaction chamber temperature set value m immediately increases, whereas the reaction chamber actual temperature d increases after the raw material gas in the reformer increases. This does not increase immediately due to the delay in the flow rate while it becomes fuel in the reformer combustion chamber via the battery body and the delay in the temperature rising after this increase.

第6図は本実施例において遅れ要素を用いなかった場合
の直流電流増加時における反応室設定温度と実温度との
応答図である。即ち、第6図に示されるように、時刻t
1において直流電流値が増加し)燃料極流量を増加する
必要が生じた場合を考えると、図中の実線で示した反応
室設定温度の時間に対する上昇に対して、破線で示した
反応室実温度の上昇が追いつかず、設定温度と実温度と
の温度偏差DTは増大し、両温度とも限シなく上昇を続
けることになる。この原因は改質装置流量の増加が反応
室温度の上昇となって現われる過程において遅れを加味
していないことによる。
FIG. 6 is a response diagram between the set temperature of the reaction chamber and the actual temperature when the DC current increases when no delay element is used in this embodiment. That is, as shown in FIG.
Considering the case where it is necessary to increase the fuel electrode flow rate due to an increase in the DC current value in step 1, the reaction chamber actual temperature shown by the broken line increases with respect to the increase in the reaction chamber set temperature over time shown by the solid line in the figure. The temperature increase cannot keep up, and the temperature deviation DT between the set temperature and the actual temperature increases, and both temperatures continue to rise without limit. This is because the delay in the process in which the increase in the flow rate of the reformer appears as a rise in the reaction chamber temperature is not taken into account.

したがって遅れ要素を加え、原料ガス流量変化に対する
反応室実温度より、設定温度の応答速度を少なくとも遅
くするよう、遅れ時間を設定すれば解決できる。
Therefore, the problem can be solved by adding a delay element and setting a delay time so that the response speed of the set temperature is at least slower than the actual temperature of the reaction chamber in response to a change in the raw material gas flow rate.

第7図は本実施例において遅れ要素を用いた場合の反応
室設定温度と実温度との応答図であシ、実線で設定温度
、破線で実温度の各応答が得られ、安定な制御が可能と
なる。
Figure 7 is a response diagram between the reaction chamber set temperature and actual temperature when a delay element is used in this example.The solid line shows the set temperature response, and the broken line shows the actual temperature response, and stable control is achieved. It becomes possible.

第8図は本発明の他の実施例構成図である。本実施例で
は原料ガス流量に代えて生成ガス流量を検出することに
よシ、きめ細かい制御を行なおうとするものである。図
中の符号1ないし5,7ないし10及び12.13は第
3図に対応する。
FIG. 8 is a block diagram of another embodiment of the present invention. In this embodiment, fine control is attempted by detecting the produced gas flow rate instead of the raw material gas flow rate. Reference numerals 1 to 5, 7 to 10, and 12.13 in the figure correspond to those in FIG.

14は流量検出器であって改質装置1からの生成ガス流
量を検出する。即ち、生成ガスの検出値nに基づき、設
定温度演算器13によシ、先ず遅れを加味しない反応室
設定温度0をめ、次いで遅れ要素12から設定温度mを
与えている。その他の構成は第3図と同様である。以降
の作用は第3図と同様であるため省略する。
Reference numeral 14 denotes a flow rate detector that detects the flow rate of generated gas from the reformer 1. That is, based on the detected value n of the produced gas, the set temperature calculator 13 first determines the reaction chamber set temperature 0 without taking into account the delay, and then gives the set temperature m from the delay element 12. The other configurations are the same as in FIG. 3. The subsequent operations are the same as those shown in FIG. 3, and will therefore be omitted.

なお、生成ガス流量に基づいて設定温度を与えることは
、原料ガス流量に基づく場合と基本的には同等であシ、
又、遅れ要素12に関しても設定温度を与えてから遅れ
を加味することと、流量検出値に遅れを与えてから設定
温度を与えることとは結果的には等しいことは勿論であ
る。
Note that giving the set temperature based on the generated gas flow rate is basically the same as giving the set temperature based on the raw material gas flow rate.
Regarding the delay element 12, it goes without saying that adding a delay after giving a set temperature is the same as adding a delay to the detected flow rate value and then giving a set temperature.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば原料ガス流量に基づ
く設定温度を用い、しかも遅れ要素をもうけて改質装置
反応室温度を制御する構成としたので、改質装置におけ
る水素転化率を一定範囲に確実に制御し得る燃料電池発
電プラントの制御装置を提供できる。
As explained above, according to the present invention, the temperature set based on the raw material gas flow rate is used and a delay element is provided to control the temperature of the reformer reaction chamber, so that the hydrogen conversion rate in the reformer can be controlled within a certain range. Accordingly, it is possible to provide a control device for a fuel cell power generation plant that can reliably control the power generation plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料極流量制御構成のブロック図、第2
図は従来制御で使われていた直流電流値に基づく反応室
設定温度関係図、第3図は本発明による燃料電池発足プ
ラントの制御装置の一実施例構成図、第4図は改質装置
原料ガス流量に基づく反応室設定温度の特性図、第5図
は従来方式による制御と本発明との作用の違いを対比し
て示した図、第6図は本’t9明において遅れ要素を用
いなかった場合の直流電流増加時における反応室設定温
度と実温度との応答を示した図、第7図は遅れ要素を用
いた場合の応答を示した図、第8図は本発明の他の実施
例構成ト1である。 1・・・改質装置、 2・・・電池本体、3・・・他の
構成機器への燃料供給ライン、4・・・燃料極流量調節
弁、5・・・設定流量演算器、6.13・・・設定温度
演算器、 7・・・温度検出器、8.9・・・調節器、
 10,11.14・・・流量検出値、12・・・遅れ
要素、 a・・・直流電流値、b・・・直流電流に対す
る設定流量、C・・・反応室温度設定値、d・・・反応
室温度検出値、C・・・温度偏差、f・・・反応室温度
偏差による指令信号、g・・・燃料極流量設定値、h・
・・燃料極流量検出値、l・・・流量偏差、 j・・・
開度指令、k・・・原料ガス流量検出値、 t・・・遅れを加味した原料ガス流量検出値、m・・・
反応室温度設定値、n・・・生成ガス流量検出値、0・
・・遅れを加味してない反応室温度設定値。 特許出願人 東京芝浦電気株式会社 代 理 人 弁理士 石 井 紀 男 第1図 第4図 を父震装@原料力゛ス流量 G 第5図 改算I更置、原料力゛ズ2M、量 G い 磨間 L 第8図
Figure 1 is a block diagram of a conventional fuel electrode flow rate control configuration;
The figure is a diagram showing the relationship between reaction chamber temperature settings based on the DC current value used in conventional control, Figure 3 is a configuration diagram of an embodiment of the control system for a fuel cell starting plant according to the present invention, and Figure 4 is a raw material for the reformer. A characteristic diagram of the temperature set in the reaction chamber based on the gas flow rate. Figure 5 is a diagram comparing the effects of conventional control and the present invention. Figure 6 is a diagram showing the characteristics of the temperature set in the reaction chamber based on the gas flow rate. Figure 7 is a diagram showing the response between the reaction chamber set temperature and actual temperature when the DC current is increased when the DC current is increased, Figure 7 is a diagram showing the response when a delay element is used, and Figure 8 is a diagram showing another implementation of the present invention. Example configuration 1. DESCRIPTION OF SYMBOLS 1... Reformer, 2... Battery body, 3... Fuel supply line to other components, 4... Fuel electrode flow rate control valve, 5... Set flow rate calculator, 6. 13... Set temperature calculator, 7... Temperature detector, 8.9... Controller,
10, 11.14... Flow rate detection value, 12... Delay element, a... DC current value, b... Set flow rate for DC current, C... Reaction chamber temperature set value, d...・Reaction chamber temperature detection value, C...Temperature deviation, f...Command signal based on reaction chamber temperature deviation, g...Fuel electrode flow rate setting value, h.
...Fuel electrode flow rate detection value, l...Flow rate deviation, j...
Opening command, k...Detected raw gas flow rate, t...Detected raw gas flow rate with delay taken into account, m...
Reaction chamber temperature set value, n...Produced gas flow rate detection value, 0.
...Reaction chamber temperature set value without taking into account delay. Patent applicant Tokyo Shibaura Electric Co., Ltd. Representative Patent attorney Nori Ishii Figure 1 Figure 4 has been changed to the original vibration system @ raw material flow rate G Figure 5 revised I, raw material power 2M, amount G Mama L Figure 8

Claims (1)

【特許請求の範囲】[Claims] 改質装置からの改質ガスを燃料極流量調節弁を介して電
池本体に導入し、電池本体内の電極反応後の排ガスを改
質装置に回収する燃料電池発電プラントにおいて、改質
装置反応室の温度を検出する代表温度検出器と、改質装
置への原料がス流量を検出する流量検出器と、前記流量
検出器による検出値に遅れ時間を与える遅れ要素と、前
記遅れ要素からの信号を基に代表室設定温度を与える設
定温度演算器とを夫々そガえ、前記燃料極流量調節弁は
前記設定温度演算器による温度設定値と前記代表温度検
出器による検出値との偏差と、負荷に応じた流量指令値
との加IS価号によシ調節器を介して制御することを特
徴とする燃料電池発電プラントの制御装置。
In a fuel cell power generation plant, the reformed gas from the reformer is introduced into the cell main body via the fuel pole flow control valve, and the exhaust gas after the electrode reaction in the cell main body is collected into the reformer. a representative temperature detector that detects the temperature of the raw material, a flow rate detector that detects the flow rate of the raw material to the reformer, a delay element that gives a delay time to the value detected by the flow rate detector, and a signal from the delay element. and a set temperature calculator that gives a representative room set temperature based on the difference between the temperature set value by the set temperature calculator and the detected value by the representative temperature detector, and 1. A control device for a fuel cell power generation plant, characterized in that control is performed via a power regulator based on an IS value added to a flow rate command value according to a load.
JP58213392A 1983-11-15 1983-11-15 Control system for fuel cell power generation plant Pending JPS60107268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213392A JPS60107268A (en) 1983-11-15 1983-11-15 Control system for fuel cell power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213392A JPS60107268A (en) 1983-11-15 1983-11-15 Control system for fuel cell power generation plant

Publications (1)

Publication Number Publication Date
JPS60107268A true JPS60107268A (en) 1985-06-12

Family

ID=16638439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213392A Pending JPS60107268A (en) 1983-11-15 1983-11-15 Control system for fuel cell power generation plant

Country Status (1)

Country Link
JP (1) JPS60107268A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143153A (en) * 1987-11-27 1989-06-05 Ishikawajima Harima Heavy Ind Co Ltd Temperature control method for fused carbonate type fuel cell power generator
WO1991006987A1 (en) * 1989-10-24 1991-05-16 International Fuel Cells Corporation Fuel cell power plant fuel control
WO1996006387A1 (en) * 1994-08-22 1996-02-29 Ballard Power Systems Inc. Method and apparatus for the oxidation of carbon monoxide
JP2005251766A (en) * 2005-05-31 2005-09-15 Sanyo Electric Co Ltd Fuel cell system
JP2008078016A (en) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd Fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143153A (en) * 1987-11-27 1989-06-05 Ishikawajima Harima Heavy Ind Co Ltd Temperature control method for fused carbonate type fuel cell power generator
WO1991006987A1 (en) * 1989-10-24 1991-05-16 International Fuel Cells Corporation Fuel cell power plant fuel control
EP0508991A1 (en) * 1989-10-24 1992-10-21 United Fuel Cells Corp Fuel cell power plant fuel control.
JPH05504436A (en) * 1989-10-24 1993-07-08 株式会社東芝 Fuel cell plant fuel flow control
WO1996006387A1 (en) * 1994-08-22 1996-02-29 Ballard Power Systems Inc. Method and apparatus for the oxidation of carbon monoxide
US5518705A (en) * 1994-08-22 1996-05-21 Ballard Power Systems Inc. Method and apparatus for the two-stage selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
JP2005251766A (en) * 2005-05-31 2005-09-15 Sanyo Electric Co Ltd Fuel cell system
JP2008078016A (en) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
JPH0239441B2 (en)
JP2000251911A (en) Fuel cell power generating system
JPH08153532A (en) Controlling method for operation of fuel cell power system
JPS60107268A (en) Control system for fuel cell power generation plant
JPH0129029B2 (en)
JP3517260B2 (en) Fuel cell power generator and control method for fuel cell power generator
JPS6356672B2 (en)
JPS6356673B2 (en)
JP2671523B2 (en) Operation control method for fuel cell power generator
JPS6229868B2 (en)
JPS6318307B2 (en)
JPS61233979A (en) Controller of fuel cell power generating plant
JPS6332868A (en) Fuel cell power generating system
JP3387234B2 (en) Fuel cell generator
JPS61110969A (en) Operation control of fuel cell
JPS6345762A (en) Operation controller of fuel cell power generating plant
JPS58133783A (en) Fuel cell power generating system
JPH03266366A (en) Control unit of fuel cell generating system
JPH03266367A (en) Fuel system control unit of fuel cell system
JP2695860B2 (en) Control unit for fuel cell power generation system
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JPS6049569A (en) Fuel cell power generating plant
JPH02213056A (en) Fuel cell power generating plant
JPH0932510A (en) Combined power generation plant control device
JPH03149760A (en) Solid electrolyte type fuel cell generating system