JP2671523B2 - Operation control method for fuel cell power generator - Google Patents

Operation control method for fuel cell power generator

Info

Publication number
JP2671523B2
JP2671523B2 JP1261352A JP26135289A JP2671523B2 JP 2671523 B2 JP2671523 B2 JP 2671523B2 JP 1261352 A JP1261352 A JP 1261352A JP 26135289 A JP26135289 A JP 26135289A JP 2671523 B2 JP2671523 B2 JP 2671523B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
target
output
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1261352A
Other languages
Japanese (ja)
Other versions
JPH03122971A (en
Inventor
孝一 原嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1261352A priority Critical patent/JP2671523B2/en
Publication of JPH03122971A publication Critical patent/JPH03122971A/en
Priority to US07/886,607 priority patent/US5290641A/en
Application granted granted Critical
Publication of JP2671523B2 publication Critical patent/JP2671523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は化石燃料,炭化水素系燃料を水素リッチな
燃料ガスに改質して燃料電池に供給する燃料ガス供給
系、および反応空気の供給系と、燃料電池の出力電力の
変換器系とを備えた燃料電池発電装置の運転制御方法、
ことに燃料電池の負荷上昇時における運転制御方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a fuel gas supply system for reforming fossil fuels and hydrocarbon fuels into hydrogen-rich fuel gas for supply to a fuel cell, and supply of reaction air. System and a method for controlling the operation of a fuel cell power generator including a fuel cell output power converter system,
Particularly, the present invention relates to an operation control method when the load of the fuel cell increases.

〔従来の技術〕[Conventional technology]

第3図は燃料電池発電装置の一例を示す概略構成図で
あり、発電装置は単電池の積層体からなる燃料電池1
と、燃料電池の燃料極1aに燃料ガスG1を供給する燃料供
給系10と、空気極1bに反応空気Aを供給するブロワーを
含む空気系3と、燃料電池1の発生電力を負荷11に相応
する電力に変換して出力する電力変換系4とで構成さ
れ、装置全体の制御は目標電力値を指定する指令信号5S
を受ける制御系5が発する制御信号によって行われる。
FIG. 3 is a schematic configuration diagram showing an example of a fuel cell power generator. The power generator is a fuel cell 1 including a stack of unit cells.
A fuel supply system 10 for supplying the fuel gas G 1 to the fuel electrode 1a of the fuel cell, an air system 3 including a blower for supplying the reaction air A to the air electrode 1b, and the power generated by the fuel cell 1 to a load 11. It is composed of a power conversion system 4 that outputs the power after converting it to a corresponding power, and the control of the entire device is controlled by a command signal 5S that specifies the target power
The control system 5 receives the control signal.

燃料供給系10は改質触媒管6Aおよびバーナ6Bを有する
燃料改質装置6と、原料タンク7A,原料ポンプ7B,制御弁
7Cを有する原料供給系7と、燃料タンク8A,燃料ポンプ8
B,制御弁8Cからなりバーナ6Bに補助燃料を供給する補助
燃料供給系8と、燃焼空気ブロワ9とを含み、原料供給
系7が化石燃料,または炭化水素系燃料に所定量の水蒸
気を混合した原料ガスG1を燃料改質装置6に供給し、燃
料改質装置6が吸熱反応である水蒸気改質反応に基づい
て原料ガス中のメタンまたは炭化水素を水素リッチな燃
料ガスG2に改質して燃料電池1に供給するよう構成さ
れ、必要とする反応熱は燃料電池1のオフガスG3および
補助燃料を燃料とするバーナ6Bから供給される。
The fuel supply system 10 includes a fuel reformer 6 having a reforming catalyst pipe 6A and a burner 6B, a raw material tank 7A, a raw material pump 7B, and a control valve.
Raw material supply system 7 having 7C, fuel tank 8A, fuel pump 8
B, a control valve 8C, an auxiliary fuel supply system 8 for supplying auxiliary fuel to the burner 6B, and a combustion air blower 9. The raw material supply system 7 mixes a predetermined amount of steam with fossil fuel or hydrocarbon fuel. The produced raw material gas G 1 is supplied to the fuel reformer 6, and the fuel reformer 6 converts methane or hydrocarbons in the raw material gas into a hydrogen-rich fuel gas G 2 based on a steam reforming reaction which is an endothermic reaction. The required heat of reaction is supplied from the burner 6B which uses the off gas G 3 of the fuel cell 1 and the auxiliary fuel as fuel.

上述の燃料電池発電装置における定常の負荷変動に対
する制御は、燃料電池1の出力電流Iを検出し、この検
出電流Iと目標電流との偏差に基づいて制御系5が発す
る制御信号により、主要流量制御弁やポンプ,ブロワー
等を制御(原料ガスG1の流量,改質用蒸気量,補助燃料
流量,オフガスG3の流量,オフ空気流量,改質ガスG2
流量,反応空気Aの流量等)する電流値制御が行なわれ
る。また、前記目標電流は電力変換系4の出力電力を指
定する指令信号5Sに基づいて行なわれ、出力電流の大幅
な増減は目標電流値の更改によって行なわれる。
The control for the steady load fluctuation in the above-mentioned fuel cell power generator detects the output current I of the fuel cell 1, and based on the deviation between the detected current I and the target current, a control signal issued by the control system 5 causes the main flow rate to flow. Controlling control valves, pumps, blowers, etc. (flow rate of raw material gas G 1 , reforming steam amount, auxiliary fuel flow rate, off gas G 3 flow rate, off air flow rate, reformed gas G 2 flow rate, reaction air A flow rate) Current value control is performed. Further, the target current is performed based on a command signal 5S designating the output power of the power conversion system 4, and the output current is greatly increased or decreased by updating the target current value.

負荷上昇の際、外部からの負荷上昇指令にたいして電
力変換系はミリセカンド以下の速度で応答するが、燃料
電池の応答は燃料処理系および空気系の応答に律せられ
応答が遅いのが一般的である。前記燃料供給系および空
気系の負荷上昇指令にたいしての応答速度が電力変換系
よりも遅いのは、例えば燃料処理系では応答プロセスに
おいて改質量増加(改質反応の増加)といった化学反応
を含んでいること、および配管中でのガスの移動という
物質移動の過程を含んでいることなどがその理由であ
る。また、燃料電池の温度は負荷上昇によってすぐには
上昇せず時間遅れをもっている。これは、燃料電池の熱
容量によるもので分から時間のオーダーで負荷上昇に追
従する。燃料電池の出力特性は第4図のV−I特性線図
に示すように温度依存性があり、温度が低い状態では限
界電流が小さく、同一負荷電流では低い出力電圧とな
る。
When the load rises, the power conversion system responds to the load increase command from the outside at a speed of millisecond or less, but the response of the fuel cell is generally slow due to the response of the fuel processing system and the air system. Is. The response speed of the fuel supply system and the air system to the load increase command is slower than that of the power conversion system, for example, in the fuel processing system, a chemical reaction such as an increase in the reforming amount (increase in the reforming reaction) is included in the response process. The reason is that it includes a mass transfer process such as gas transfer in piping. Further, the temperature of the fuel cell does not rise immediately due to the increase in load, but there is a time delay. This is due to the heat capacity of the fuel cell and follows the load increase on the order of minutes to hours. The output characteristic of the fuel cell has temperature dependency as shown in the VI characteristic diagram of FIG. 4, the limiting current is small when the temperature is low, and the output voltage is low at the same load current.

第5図は負荷上昇時における従来の運転制御方法を示
すタイムチャートであり、指令信号5Sにより外部出力P1
(KW)が指令され、これに基づいて制御系が出力する制
御信号により燃料電池の出力電圧V1,出力電流I1,改質
ガス流量Q1,燃料電池温度T1を保持して定常運転を行な
っている発電装置に、時刻t1からt2にかけて出力電力目
標値をP2に上昇する指令信号5Sが出されたと仮定する。
この指令信号を受けた制御系5は、燃料供給系10に改質
ガスG2の流量を時刻t2でその目標値Q2に増し、燃料電池
1の出力電圧Vおよび出力電流Iをそれぞれの目標値V2
およびI2に保つ制御信号を出力し、時刻t2以後は電流値
制御が行なわれる。ところが、この時点では燃料電池1
の温度が目標電流I2に相応する作動温度T2より低く時刻
t3に到らないと目標作動温度T2に到達しないために、第
4図に時刻t1,t2,t3におけるV・I特性の動作点を点
P1,P2,P3で示すように、時刻t2で出力電流はその目標
値I2より大きくなり、出力電圧はその目標値V2より低く
なり、電流値制御によって制御系が改質ガスG2の増大を
要求することにより、改質ガス流量Qはその目標値Q2
り大きくなる。また、この目標値との偏差は燃料電池の
温度がT2に近づくとともに減少し、時刻t3で目標値Q2
V2,I2と実測値Q,V,Iとが相互に一致する。
FIG. 5 is a time chart showing a conventional operation control method during load increase, external output P 1 by a command signal 5S
(KW) is commanded, and the control signal output by the control system based on this command causes steady operation with the output voltage V 1 , output current I 1 , reformed gas flow rate Q 1 , and fuel cell temperature T 1 of the fuel cell maintained. It is assumed that a command signal 5S that raises the output power target value to P 2 is issued from the time t 1 to the time t 2 to the power generation device that is performing.
Receiving this command signal, the control system 5 increases the flow rate of the reformed gas G 2 in the fuel supply system 10 to its target value Q 2 at time t 2 and outputs the output voltage V and the output current I of the fuel cell 1 respectively. Target value V 2
And a control signal for maintaining I 2 is output, and current value control is performed after time t 2 . However, at this point, the fuel cell 1
Temperature is lower than the operating temperature T 2 corresponding to the target current I 2
Since the target operating temperature T 2 is not reached until t 3 is reached, the operating points of the VI characteristic at the times t 1 , t 2 , and t 3 are shown in FIG.
As shown by P 1 , P 2 , and P 3 , at time t 2 , the output current becomes larger than its target value I 2 and the output voltage becomes lower than its target value V 2 , and the control system is modified by the current value control. By requesting an increase in the gas G 2 , the reformed gas flow rate Q becomes larger than its target value Q 2 . Further, the deviation from this target value decreases as the temperature of the fuel cell approaches T 2 , and at time t 3 , the target value Q 2 ,
V 2 , I 2 and the measured values Q, V, I coincide with each other.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の運転制御方法においては、出力電力の上昇指令
に基づいて制御系が発する燃料電池出力電流および出力
電圧の目標値I2,V2とそれぞれの実際値との間に差が生
じ、燃料電池温度Tがその目標作動温度T2に到達するま
での時間燃料電池が過電流状態となり、燃料電池発電装
置の出力電力の大幅な増減が繰り返されるたびに燃料電
池が過電流状態にさらされることによって燃料電池スタ
ックを構成する単電池の特性劣化が促進されるという問
題が発生する。この特性劣化は複数の単電池のうち燃料
ガス,反応空気等の反応ガスの流れが悪い単電池におい
て著しいという性質があるために、少数の単電池の劣化
によって発電運転が阻害される事態に進展することもあ
り、燃料電池の寿命を左右する重要な課題となってい
る。
In the conventional operation control method, a difference occurs between the target values I 2 and V 2 of the fuel cell output current and output voltage generated by the control system based on the output power increase command, and the respective actual values, and By the time the temperature T reaches the target operating temperature T 2 , the fuel cell is in the overcurrent state, and the fuel cell is exposed to the overcurrent state each time the output power of the fuel cell power generator is greatly increased or decreased. There is a problem that the deterioration of the characteristics of the unit cells that form the fuel cell stack is promoted. Since this characteristic deterioration is remarkable in the unit cells in which the flow of the reaction gas such as fuel gas and reaction air is bad among a plurality of unit cells, it has progressed to the situation where the power generation operation is hindered by the deterioration of a small number of unit cells. Therefore, it is an important issue that affects the life of the fuel cell.

この発明の目的は、負荷上昇時に燃料電池に生ずる過
電流状態を回避することにより、単電池の特性劣化を防
ぎ、燃料電池の寿命特性を改善することにある。
An object of the present invention is to prevent the overcurrent state that occurs in the fuel cell when the load rises, thereby preventing the deterioration of the characteristics of the single cell and improving the life characteristics of the fuel cell.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するために、この発明によれば、燃料
電池と、この燃料電池に燃料ガスを供給する燃料ガス供
給系と、前記燃料電池に反応空気を供給する反応空気供
給系と、前記燃料電池の出力を変換して外部負荷に供給
する電力変換系と、これら各系を制御する制御系とを備
えた燃料電池発電装置の負荷上昇時の運転制御方法であ
って、負荷上昇指令があったとき前記燃料電池に供給す
る燃料ガスおよび反応空気の流量を前記上昇指令値によ
って決まる目標電力値に対応する規定流量より所定量
(燃料電池の出力電圧が目標出力電圧値以上を維持する
のに要する量)多く供給して前記燃料電池の温度があら
かじめ定まる目標作動温度に到達するまでの期間運転
し、しかる後前記燃料電池の出力電流に基づいて前記燃
料供給系,反応空気供給系,燃料電池,電力変換系を制
御する電流値制御に切り換えることとし、かつ必要に応
じて燃料ガスおよび反応空気が所定量多く供給されてか
ら目標作動温度に到達するまでの期間,燃料電池の出力
電圧に基づく電圧値制御を行うこととする。
In order to solve the above problems, according to the present invention, a fuel cell, a fuel gas supply system for supplying a fuel gas to the fuel cell, a reaction air supply system for supplying a reaction air to the fuel cell, and the fuel A method for controlling the operation of a fuel cell power generator when a load rises, which includes a power conversion system that converts the battery output and supplies it to an external load, and a control system that controls each of these systems. At this time, the flow rate of the fuel gas and the reaction air supplied to the fuel cell is set to a predetermined amount (for maintaining the output voltage of the fuel cell to be equal to or higher than the target output voltage value, from the specified flow rate corresponding to the target power value determined by the increase command value). The fuel cell is operated for a period of time until the temperature of the fuel cell reaches a predetermined target operating temperature by supplying a large amount, and then the fuel supply system and reaction air supply based on the output current of the fuel cell. , Switching to current value control for controlling the fuel cell and power conversion system, and the output of the fuel cell during the period from when a predetermined amount of fuel gas and reactive air is supplied until the target operating temperature is reached, if necessary. The voltage value control based on the voltage is performed.

〔作用〕[Action]

上記手段は、燃料電池の出力電圧が燃料電池温度の上
昇に比例して大きくなり、反応ガス中の水素消費率また
は酸素消費率の減小に逆比例して大きくなる性質がある
ことに着目して構成されたものである。すなわち、負荷
上昇指令を受けたとき、燃料電池に供給する改質ガス量
および反応空気量を所定量多く供給して水素消費率およ
び酸素消費率をそれぞれ定常運転時のそれより引き下げ
ることにより、燃料電池温度が低いことによって生ずる
出力電圧の低下を補償することが可能になる。出力電力
を一定とした場合、出力電圧の上昇は出力電流の低減を
可能にするので、燃料電池の過電流状態の回避を可能に
する。また、燃料電池温度が目標とする作動温度に到達
した時点で制御系による電流値制御に切り換えれば、目
標電圧,目標電流,およびこれに相応する反応ガス量を
保持して効率のよい発電運転に移行させることができ
る。
It is noted that the above-mentioned means has a property that the output voltage of the fuel cell increases in proportion to the increase of the fuel cell temperature and increases in inverse proportion to the decrease of the hydrogen consumption rate or the oxygen consumption rate in the reaction gas. It has been configured. That is, when a load increase command is received, the amount of reformed gas and the amount of reaction air to be supplied to the fuel cell are increased by a predetermined amount to reduce the hydrogen consumption rate and the oxygen consumption rate from those during steady operation, thereby reducing the fuel consumption. It becomes possible to compensate for the drop in output voltage caused by the low battery temperature. When the output power is constant, an increase in the output voltage makes it possible to reduce the output current, so that the overcurrent state of the fuel cell can be avoided. Further, if the current value control by the control system is switched at the time when the fuel cell temperature reaches the target operating temperature, the target voltage, the target current, and the amount of reaction gas corresponding to the target voltage can be held to achieve efficient power generation operation. Can be moved to.

また、燃料電池温度が所定温度に上昇するまでの間、
燃料電池の出力電圧を検出し、これに基づいて反応ガス
量などの制御を電圧値制御するよう構成すれば、目標電
圧に対する出力実際値の偏差に基づいて反応ガス量を制
御できるので、出力電圧,出力電流の実際値を目標値に
より近づける制御が可能になる。
In addition, until the fuel cell temperature rises to a predetermined temperature,
If the output voltage of the fuel cell is detected and the control of the reaction gas amount based on this is configured to control the voltage value, the reaction gas amount can be controlled based on the deviation of the actual output value from the target voltage. Control that makes the actual value of the output current closer to the target value becomes possible.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.

第1図はこの発明の実施例である燃料電池発電装置の
運転制御法補を示すタイムチャートであり、第3図に示
す構成図を参照しつつ実施例としての運転制御方法を説
明する。時刻t1で制御系5に電力変換器系4の出力電力
をP1からP2に上昇する指令信号5Sが入力されると、制御
系5は電力P2に相応する目標電圧V2,目標電流I2を算出
するとともに、これに必要な燃料ガスG2の供給量Q2より
所定量qだけ多い量Q3を供給する制御信号を燃料供給系
10に向けて出力するとともに、空気系3にも上記と同様
に所定量多い反応空気Aの供給を指令する。所定量qが
燃料電池温度Tが目標作動温度T2より低いことによって
生ずる電圧降下V(第5図参照)を補うに見合う量であ
れば、反応ガス量QがQ3に到達する時刻t2において燃料
電池1の出力電圧Vは目標電圧V2と一旦等しくなり、ま
た出力電流Iもその目標値I2と一旦等しくなり、その後
燃料電池温度Tがその目標作動温度T2に向けて上昇し出
力電圧Vが上昇するに伴なって電圧の補償が過保証とな
って出力電圧Vがその目標値V2よりやゝ上昇すると同時
に、出力電流Iはその目標値I2より幾分小さくなる電力
値制御が行なわれる。したがって、燃料電池温度Tが目
標作動温度T2に上昇した時点で電力値制御を電流値制御
に切り換えることにより、燃料電池1が過電流状態にな
ることなく目標流量Q2,目標電圧V2,目標電流I2等を保
持した定常運転状態に移行することができる。なお、多
めに供給するガス量qは、燃料電池の種類や構造によっ
て定まるガス消費率対出力電圧特性,およびV−I特性
の温度依存性を考慮して決めることができ、制御系5の
演算部に任意関数または定数として設定される。
FIG. 1 is a time chart showing an operation control method supplement of a fuel cell power generator according to an embodiment of the present invention. An operation control method as an embodiment will be described with reference to the configuration diagram shown in FIG. When the command signal 5S for increasing the output power of the power converter system 4 from P 1 to P 2 is input to the control system 5 at time t 1 , the control system 5 outputs the target voltage V 2 corresponding to the power P 2 , the target voltage V 2 . to calculate the current I 2, the fuel supply system a control signal for supplying a predetermined quantity q by more amount Q 3 from the supply amount Q 2 of the fuel gas G 2 required for this
In addition to the output toward 10, the air system 3 is also instructed to supply a large amount of reaction air A to the air system 3 as described above. If the predetermined amount q is a sufficient amount to compensate for the voltage drop V (see FIG. 5) caused by the fuel cell temperature T being lower than the target operating temperature T 2 , the reaction gas amount Q reaches Q 3 at time t 2 In, the output voltage V of the fuel cell 1 once becomes equal to the target voltage V 2, and the output current I also becomes once equal to its target value I 2 , after which the fuel cell temperature T rises toward its target operating temperature T 2. As the output voltage V rises, the voltage compensation becomes over-guaranteed and the output voltage V rises slightly above its target value V 2 , and at the same time, the output current I becomes slightly smaller than its target value I 2. Value control is performed. Therefore, by switching the power value control to the current value control when the fuel cell temperature T rises to the target operating temperature T 2 , the target flow rate Q 2 , target voltage V 2 , It is possible to shift to a steady operation state in which the target current I 2 and the like are held. The gas amount q to be supplied in a large amount can be determined in consideration of the gas consumption rate vs. output voltage characteristic determined by the type and structure of the fuel cell and the temperature dependency of the VI characteristic, and the calculation of the control system 5 is performed. Set as an arbitrary function or constant in the section.

第2図はこの発明の異なる実施例を示すタイムチャー
トであり、前述の実施例と異なる点は燃料ガス量がQ3
到達時点t2で運転制御を燃料電池の出力電圧Vに基づく
電圧値制御に切り換えるよう構成したことである。その
結果、燃料電池温度Tが目標作動温度T2に到達する時刻
t3までの期間、出力電圧Vをその目標値V2に保持する制
御が行なわれ、これに伴なって出力電流Iもその目標値
I2に保持されるので、燃料電池の出力特性の面からは時
刻t2から目標値が保持されることになり、発電装置の負
荷応答性を大幅に改善でき、かつ反応ガスの浪費を抑制
できる利点が得られる。
FIG. 2 is a time chart showing a different embodiment of the present invention. The difference from the above-mentioned embodiment is that the operation control is performed at the time t 2 when the amount of fuel gas reaches Q 3 and the voltage value based on the output voltage V of the fuel cell. It is configured to switch to control. As a result, the time at which the fuel cell temperature T reaches the target operating temperature T 2
During the period up to t 3, control is performed to maintain the output voltage V at its target value V 2 , and the output current I is also controlled accordingly.
Since it is held at I 2 , the target value is held from time t 2 in terms of the output characteristics of the fuel cell, the load response of the power generator can be greatly improved, and the waste of reaction gas can be suppressed. The advantage that can be obtained is obtained.

なお、燃料電池の出力電圧の燃料消費率依存性は水素
消費率,酸素消費率それぞれに異なった特性値を示すの
で、電圧補償効果が最も大きくなる反応ガスの増量制御
を行なうことが好ましい。
Since the dependence of the output voltage of the fuel cell on the fuel consumption rate shows different characteristic values for the hydrogen consumption rate and the oxygen consumption rate, it is preferable to perform an increase control of the reaction gas that maximizes the voltage compensation effect.

〔発明の効果〕〔The invention's effect〕

この発明は前述のように、電力値制御に基づく出力の
上昇指令があったとき、定常運転時より所定量多く反応
ガスを燃料電池に供給し、燃料電池温度が目標作動温度
に到達した時点で電流値制御に切り換えて定常運転に移
行するよう構成した。その結果、燃料電池温度が低いこ
とによって生ずる出力電圧の低下を、反応ガス量を増
し、水素または酸素消費率を定常運転時より下げること
によって生ずる電圧上昇を利用して補償することが可能
となり、従来の運転制御方法で問題となった燃料電池の
過電流状態と、その繰り返しによって生ずる単電池の特
性劣化が回避され、したがって燃料電池の寿命特性の向
上に貢献できる利点が得られる。
As described above, according to the present invention, when the output increase command based on the power value control is issued, the reaction gas is supplied to the fuel cell by a predetermined amount more than that in the steady operation, and when the fuel cell temperature reaches the target operating temperature. It was configured to switch to current value control and shift to steady operation. As a result, it is possible to compensate for the decrease in the output voltage caused by the low temperature of the fuel cell by utilizing the voltage increase caused by increasing the reaction gas amount and lowering the hydrogen or oxygen consumption rate from that in the steady operation, It is possible to avoid the overcurrent state of the fuel cell, which is a problem in the conventional operation control method, and the characteristic deterioration of the unit cell caused by the repetition thereof, and thus it is possible to contribute to the improvement of the life characteristic of the fuel cell.

また、反応ガス供給量が所定増量レベルに達した時点
で電圧値制御に切換えるよう構成すれば、この時点から
目標電圧,目標電流を保持した運転が可能になるので、
燃料電池の負荷追従性を改善でき、かつ反応ガスの浪費
を抑制できる利点が得られる。
Further, if the control is switched to the voltage value control when the reaction gas supply amount reaches the predetermined increase level, the operation with the target voltage and the target current held from this time becomes possible.
The load followability of the fuel cell can be improved, and the waste of the reaction gas can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例である燃料電池発電装置の運
転制御方法を示すタイムチャート、第2図はこの発明の
異なる実施例を示すタイムチャート、第3図は燃料電池
発電装置の一例を示す概略構成図、第4図は燃料電池の
出力電圧対出力電流(V−I)特性線図、第5図は従来
方法を示すタイムチャートである。 1…燃料電池、3…空気系、4…電力変換系、5…制御
系、6…燃料改質装置、7…原料供給系、8…補助燃料
供給系、9…燃料空気ブロワ、10…燃料ガス供給系、G1
…原料ガス、G2…改質ガス(燃料ガス)、A…反応空
気、G3…オフガス、Q2…目標ガス流量、V2…目標電圧
値、I2…目標電流値、P2…目標電力値、q…増量ガス
量。
FIG. 1 is a time chart showing an operation control method of a fuel cell power generator according to an embodiment of the present invention, FIG. 2 is a time chart showing a different embodiment of the present invention, and FIG. 3 is an example of a fuel cell power generator. FIG. 4 is a schematic configuration diagram shown in FIG. 4, FIG. 4 is an output voltage vs. output current (VI) characteristic diagram of the fuel cell, and FIG. 5 is a time chart showing a conventional method. DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 3 ... Air system, 4 ... Electric power conversion system, 5 ... Control system, 6 ... Fuel reformer, 7 ... Raw material supply system, 8 ... Auxiliary fuel supply system, 9 ... Fuel air blower, 10 ... Fuel Gas supply system, G 1
... Source gas, G 2 ... Reformed gas (fuel gas), A ... Reaction air, G 3 ... Off gas, Q 2 ... Target gas flow rate, V 2 ... Target voltage value, I 2 ... Target current value, P 2 ... Target Electric power value, q ... Increased gas amount.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池と、この燃料電池に燃料ガスを供
給する燃料ガス供給系と、前記燃料電池に反応空気を供
給する反応空気供給系と、前記燃料電池の出力を変換し
て外部負荷に供給する電力変換系と、これら各系を制御
する制御系とを備えた燃料電池発電装置の負荷上昇時の
運転制御方法において、 負荷上昇指令があったとき前記燃料電池に供給する燃料
ガスおよび反応空気の流量を前記上昇指令値によって決
まる目標電力値に対応する規定流量より所定量多く供給
して前記燃料電池の温度があらかじめ定めた目標作動温
度に到達するまでの期間運転するものとし、 その場合の前記所定量は、燃料電池の出力電圧が目標出
力電圧値以上を維持するのに要する量とし、 前記燃料電池の温度があらかじめ定めた目標作動温度に
到達した後、前記燃料電池の出力電流に基づいて前記燃
料ガス供給系、反応空気供給系、電力変換系を制御する
電流値制御に切り換えることを特徴とする燃料電池発電
装置の運転制御方法。
1. A fuel cell, a fuel gas supply system for supplying fuel gas to the fuel cell, a reaction air supply system for supplying reaction air to the fuel cell, and an external load for converting the output of the fuel cell. In the operation control method at the time of load increase of the fuel cell power generator including the power conversion system to be supplied to the fuel cell and the control system for controlling these systems, the fuel gas to be supplied to the fuel cell when a load increase command is issued, and The flow rate of the reaction air is supplied by a predetermined amount larger than the specified flow rate corresponding to the target electric power value determined by the increase command value, and the fuel cell is operated for a period until the temperature of the fuel cell reaches a predetermined target operating temperature, The predetermined amount of the case, the output voltage of the fuel cell is an amount required to maintain a target output voltage value or more, after the temperature of the fuel cell reaches a predetermined target operating temperature, Serial fuel cell output current the fuel gas supply system on the basis of the reaction air supply system, the operation control method of a fuel cell power generation system, wherein the switching the current control for controlling the power conversion system.
【請求項2】燃料ガスおよび反応空気が所定量多く供給
されてから目標作動温度に到達するまでの期間、燃料電
池の出力電圧に基づく電圧値制御を行うことを特徴とす
る請求項請求項1記載の燃料電池発電装置の運転制御方
法。
2. The voltage value control based on the output voltage of the fuel cell is performed during a period from when a predetermined amount of fuel gas and reaction air is supplied until the target operating temperature is reached. A method for controlling the operation of the fuel cell power generator described.
JP1261352A 1989-10-06 1989-10-06 Operation control method for fuel cell power generator Expired - Fee Related JP2671523B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1261352A JP2671523B2 (en) 1989-10-06 1989-10-06 Operation control method for fuel cell power generator
US07/886,607 US5290641A (en) 1989-10-06 1992-05-21 Method of controlling operation of fuel cell power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1261352A JP2671523B2 (en) 1989-10-06 1989-10-06 Operation control method for fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH03122971A JPH03122971A (en) 1991-05-24
JP2671523B2 true JP2671523B2 (en) 1997-10-29

Family

ID=17360653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1261352A Expired - Fee Related JP2671523B2 (en) 1989-10-06 1989-10-06 Operation control method for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2671523B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979057B2 (en) 2001-10-16 2007-09-19 日産自動車株式会社 Control device for fuel cell system
JP4747495B2 (en) * 2004-03-08 2011-08-17 日産自動車株式会社 Fuel cell system
TWI344718B (en) * 2007-07-27 2011-07-01 Iner Aec Executive Yuan Method for supplying fuel to fuel cell
JP2010033900A (en) * 2008-07-29 2010-02-12 Toshiba Corp Fuel cell system and electronic device
JP5309855B2 (en) * 2008-10-02 2013-10-09 日産自動車株式会社 Fuel cell system
WO2012086736A1 (en) * 2010-12-21 2012-06-28 京セラ株式会社 Fuel cell system and operating method therefor
CN114094149B (en) * 2021-09-30 2023-12-19 东风汽车集团股份有限公司 Fuel cell pressurization control system and method

Also Published As

Publication number Publication date
JPH03122971A (en) 1991-05-24

Similar Documents

Publication Publication Date Title
CN110710040B (en) Method and system for producing hydrogen, electricity and co-production
US6960400B2 (en) Fuel cell power generation system and control method thereof
JPH09231992A (en) Method for operating fuel battery system
JP6785320B2 (en) Fuel cell load fluctuations to support the power grid
KR20040094807A (en) Fuel cell system and its control method
JPH08153532A (en) Controlling method for operation of fuel cell power system
CN101326666B (en) Fuel battery system and mobile object
JP2671523B2 (en) Operation control method for fuel cell power generator
JP2009081052A (en) Solid oxide fuel cell power generation system and operation control method of solid oxide fuel cell power generation system
JP3661826B2 (en) Fuel cell power generation control method
JP4944597B2 (en) Solid oxide fuel cell power generation system and operation control method thereof
JP3939978B2 (en) Fuel cell power generation system and operation method thereof
JP2008248851A (en) Flow rate control method and device for pump device
JP3999513B2 (en) Fuel cell power generation system and operation method thereof
JP3738888B2 (en) FUEL CELL POWER GENERATION DEVICE HAVING RAW FUEL SWITCHING FACILITY AND METHOD
JP2001338671A (en) Controller for fuel cell
JP2003217627A (en) Fuel feed control device, fuel feed control method, and power supply system
JPH04262370A (en) Fuel cell
JPS6196674A (en) Control system for power generating apparatus with fuel cell
JP4176354B2 (en) Fuel and water supply control device, fuel and water supply control method, and power supply system
JP4622244B2 (en) Operation control method of fuel cell power generator
JPS6345762A (en) Operation controller of fuel cell power generating plant
JPS6345763A (en) Operation controller of fuel cell power generating plant
JP2002008697A (en) Operation starting method of fuel cell system and its equipment
JPS6345764A (en) Operating controller of fuel cell power generating plant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees