JPH03122971A - Operation control method for fuel cell power generating system - Google Patents

Operation control method for fuel cell power generating system

Info

Publication number
JPH03122971A
JPH03122971A JP1261352A JP26135289A JPH03122971A JP H03122971 A JPH03122971 A JP H03122971A JP 1261352 A JP1261352 A JP 1261352A JP 26135289 A JP26135289 A JP 26135289A JP H03122971 A JPH03122971 A JP H03122971A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
gas
power
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1261352A
Other languages
Japanese (ja)
Other versions
JP2671523B2 (en
Inventor
Koichi Harashima
原嶋 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1261352A priority Critical patent/JP2671523B2/en
Publication of JPH03122971A publication Critical patent/JPH03122971A/en
Priority to US07/886,607 priority patent/US5290641A/en
Application granted granted Critical
Publication of JP2671523B2 publication Critical patent/JP2671523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the life of a fuel cell by supplying fuel gas and reaction air more than a specified rate by a specified amount when load increase is instructed, and by switching to current value control based on output current after cell temperature reaches the target operation temperature. CONSTITUTION:When load increase is instructed, fuel gas and reaction air are supplied more than a specified rate by a specified amount. After the fuel cell temperature reaches the target operation temperature, each operation of a fuel supply line 7, an air line 3, a fuel cell 1, and a power conversion line 4 are switched to current value control based on output current. The amount of reformed gas and that of reaction air supplied to the fuel cell 1 are supplied more than a specified rate by a specific amount, and hydrogen consumption rate and oxygen consumption rate are decreased than those in steady-state operation. Decrease in output voltage caused by low fuel cell temperature is compensated and overload operation is avoided. The life of the fuel cell 1 can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は化石燃料、炭化水素系燃料を水素リッチな燃
料ガスに改質して燃料電池に供給する燃料ガス供給系、
および反応空気の供給系と、燃料電池の出力電力の変換
器系とを備えた燃料電池発電装置の運転制御方法、こと
に燃料電池の負荷上昇指令おける運転制御方法に関する
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a fuel gas supply system that reformes fossil fuel or hydrocarbon fuel into hydrogen-rich fuel gas and supplies it to a fuel cell;
The present invention also relates to a method of controlling the operation of a fuel cell power generation device equipped with a reaction air supply system and a converter system for converting the output power of a fuel cell, and particularly to a method of controlling the operation in response to a fuel cell load increase command.

〔従来の技術〕[Conventional technology]

第3図は燃料電池発電装置の一例を示す概略構成図であ
り、発電装置は単電池の積層体からなる燃料電池1と、
燃料電池の燃料極1aK燃料ガスG1  k供給する燃
料供給系1oと、空気極1bに反応空気Aを供給するブ
ロワ−を含む空気系3と、燃料電池1の発生電力を負荷
11に相応する電力に変換して出力する電力変換系4と
で構成され、装置全体の制御は目標電力値を指定する指
令信号5STh受ける制御系5が発する制御信号によっ
て行われる。
FIG. 3 is a schematic configuration diagram showing an example of a fuel cell power generation device, and the power generation device includes a fuel cell 1 consisting of a stack of single cells,
A fuel supply system 1o that supplies fuel gas G1 to the fuel electrode 1a of the fuel cell, an air system 3 that includes a blower that supplies reaction air A to the air electrode 1b, and an electric power corresponding to the load 11 that converts the power generated by the fuel cell 1 into electric power. The entire apparatus is controlled by a control signal issued by a control system 5 which receives a command signal 5STh specifying a target power value.

燃料供給系10は改質触媒管6Aおよびバーナ6Bfe
有する燃料改質装置6と、原料タンク7A。
The fuel supply system 10 includes a reforming catalyst pipe 6A and a burner 6Bfe.
A fuel reformer 6 and a raw material tank 7A.

原料ポンプ7B、制御弁7Cを有する原料供給系7と、
燃料タンク8A、燃料ボンダ8B、制御弁8Cからなり
バーナ6Bに補助燃料を供給する補助燃料供給系8と、
燃焼空気プロワ9とを含み、原料供給系7が化石燃料、
または炭化水素系燃料に所定量の水蒸気を混合した原料
ガスG1t−燃料改質装置6に供給し、燃料改質装置6
が吸熱反応である水蒸気改質反応に基づいて原料ガス中
のメタ/ま九は炭化水素を水素リッチな燃料ガスG。
A raw material supply system 7 having a raw material pump 7B and a control valve 7C;
an auxiliary fuel supply system 8 comprising a fuel tank 8A, a fuel bonder 8B, and a control valve 8C and supplying auxiliary fuel to the burner 6B;
combustion air blower 9, and the raw material supply system 7 uses fossil fuel,
Alternatively, the raw material gas G1t, which is a mixture of hydrocarbon fuel and a predetermined amount of water vapor, is supplied to the fuel reformer 6.
Based on the steam reforming reaction, which is an endothermic reaction, meta/magnetic gas in the raw material gas converts hydrocarbons into hydrogen-rich fuel gas G.

に改質して燃料電池1に供給するよう構成され、必要と
する反応熱は燃料電池1のオフガスG、および補助燃料
を燃料とするバーナ6Bから供給される。
The required reaction heat is supplied from a burner 6B that uses offgas G of the fuel cell 1 and auxiliary fuel as fuel.

上述の燃料電池発電装置における定常の負荷変動に対す
る制御は、燃料電池1の出力電流工を検出し、この検出
電流工と目標電流との偏差に基づいて制御系5が発する
制御信号により、主要流量制御弁やポンプ、プロワ−等
を制御(原料ガスG1の流量、改質用蒸気量、補助燃料
流量、オフガスG3の流量、オフ空気流量、改質ガスG
2の流量。
Control over steady load fluctuations in the above-mentioned fuel cell power generation system involves detecting the output current of the fuel cell 1, and adjusting the main flow rate using a control signal issued by the control system 5 based on the deviation between the detected current and the target current. Controls control valves, pumps, blowers, etc. (flow rate of raw gas G1, amount of reforming steam, flow rate of auxiliary fuel, flow rate of off gas G3, flow rate of off air, reformed gas G
2 flow rate.

反応9気Aの流量等)する電流値制御が行なわれる。ま
た、前記目標電流は電力変換系4の出力電力を指定する
指令信号5Sに基づいて行なわれ、出力電流の大幅な増
減は目標電流値の更改によって行なわれる。
The current value control is performed (the flow rate of reaction 9 A, etc.). Further, the target current is set based on a command signal 5S specifying the output power of the power conversion system 4, and a significant increase or decrease in the output current is performed by updating the target current value.

負荷上昇の際、外部からの負荷上昇指令にたいして電力
変換系はミリセカンド以下の速度で応答群電池の応答は
燃料処理系および空気系の応答に律せられ応答が遅いの
が一般的である。前記燃料供給系およびを気系の負荷上
昇指令にたいしての応答速度が電力変換系よりも遅いの
は、例えば燃料処理系では応答プロセスにおいて改質量
増加(改質反応の増加)といった化学反応を含んでいる
こと、および配管中でのガスの移動という物質移動の過
程を含んでいることなどがその理由である。
When the load increases, the power conversion system responds to the load increase command from the outside at a speed of milliseconds or less, and the response of the response group battery is generally controlled by the response of the fuel processing system and the air system, and the response is slow. The reason why the response speed of the fuel supply system and the gas system to the load increase command is slower than that of the power conversion system is because, for example, in the fuel processing system, the response process includes a chemical reaction such as an increase in the reforming amount (increase in the reforming reaction). The reason for this is that it involves the process of mass transfer, i.e. the movement of gas in piping.

また、燃料電池の温度は負荷上昇によってすぐには上昇
せず時間遅れをもっている。これは、燃料電池の熱容量
によるもので分から時間のオーダーで負荷上昇に追従す
る。燃料電池の出力特性は第4図のV−I特性線図に示
すように温度依存性があり、温度が低い状態では限界電
流が小さく、同一負荷電流では低い出力電圧となる。
Furthermore, the temperature of the fuel cell does not rise immediately due to an increase in load, but there is a time delay. This is due to the heat capacity of the fuel cell and follows the load increase on the order of minutes to hours. The output characteristics of a fuel cell are temperature dependent, as shown in the VI characteristic diagram of FIG. 4, and when the temperature is low, the limiting current is small, and at the same load current, the output voltage is low.

第5図は負荷上昇時における従来の運転制御方法を示す
タイムチャートで69、指令信号5SKより外部出力p
!(xw)が指令され、これに基づいて制御系が出力す
る制御信号により燃料電池の出力電圧v1.出力電流工
、、改質ガス流量Q1、燃料電池温度Ts t−保持し
て定常運転を行なっている発電装置に1時刻t、からt
、にかけて出力′電力目標値をP、に上昇する指令信号
5Sが出されたと仮定する。この指令信号を受けた制御
系5は、燃料供給系10に改質ガスG!の流量を時刻1
.でその目標値Q、に増し、燃料電池1の出力電圧Vお
よび出力電流工をそれぞれの目標値■3および工2に保
つ制御信号を出力し、時刻t2以後は電流値制御が行な
われる。ところが、この時点では燃料電池1の温度が目
標電流工、に相応する作動温度T、よプ低く時刻t、に
到らないと目標作動温度T3に到達しないために、第4
図に時刻t1 * tl s tS におけるV・工時
性の動作点を点p* 、 pg −ps  で示すよう
に、時刻t、で出力電流はその目標値工、より大きくな
シ、出力電圧はその目標値V、より低くなり、電流値制
御によって制御系が改質ガスG!の増大を要求すること
により、改質ガス流量Qはその目標値Q、より大きくな
る。また、この目標値との偏差は燃料電池のilfがT
、 K近づくとともに減少し、時刻t。
Figure 5 is a time chart showing the conventional operation control method when the load increases.69, from the command signal 5SK, the external output p
! (xw) is commanded, and based on this command, the control system outputs a control signal to output the fuel cell output voltage v1. Output current, reformed gas flow rate Q1, fuel cell temperature Ts t- The power generator which is in steady operation while maintaining
Assume that a command signal 5S is issued to increase the output power target value to P by increasing the output power to P. Upon receiving this command signal, the control system 5 sends the reformed gas G! to the fuel supply system 10! The flow rate at time 1
.. Then, the output voltage V and the output current of the fuel cell 1 are increased to the target value Q, and a control signal is outputted to keep the output voltage V and the output current of the fuel cell 1 at the respective target values 3 and 2, and the current value control is performed after time t2. However, at this point, the target operating temperature T3 will not be reached unless the temperature of the fuel cell 1 reaches the operating temperature T, which is much lower than the target current value, at time t.
As shown in the figure, the operating point of V and workability at time t1 * tl s tS is indicated by point p*, pg - ps. At time t, the output current reaches its target value, and the output voltage becomes The target value V becomes lower, and the control system controls the reformed gas G! By requesting an increase in , the reformed gas flow rate Q becomes larger than its target value Q. Also, the deviation from this target value is determined by the ilf of the fuel cell being T
, decreases as K approaches, and at time t.

で目標値Q2 * vM sl3 と実際値Q、’V、
工とが相互に一致する。
and the target value Q2 * vM sl3 and the actual value Q, 'V,
and are mutually consistent.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の運転制御方法においては、出力電力の上昇指令に
基づいて制御系が発する燃料電池出方電流および出力電
圧の目標値I、、V、とそれぞれの実際値との間に差が
生じ、燃料電池温度Tがその目標作動温度Ts K到達
するまでの時間燃料電池が過負荷状態となシ、燃料電池
発電装置の出方電力の大幅な増減が繰り返されるたびに
燃料電池が過負荷状態にさらされることによって燃料電
池スタックを構成する単電池の特性劣化が促進されると
いう問題が発生する。この特性劣化は複数の単電池のう
ち燃料ガス、反応空気等の反応ガスの流れが悪い単電池
において著しいという性質があるために、少数の単電池
の劣化によって発電運転が阻害される事態に進展するこ
ともあり、燃料電池の寿命を左右する重要な課題となっ
ている。
In the conventional operation control method, a difference occurs between the target values I, V, of the fuel cell output current and output voltage, which are issued by the control system based on the command to increase the output power, and their actual values. The time it takes for the battery temperature T to reach its target operating temperature Ts K is that the fuel cell is not overloaded, and each time the output power of the fuel cell power generator is repeatedly increased or decreased, the fuel cell is exposed to the overloaded state. This causes a problem in that the characteristics of the single cells constituting the fuel cell stack are accelerated. This characteristic deterioration is most pronounced in single cells where the flow of reactant gases such as fuel gas and reaction air is poor among multiple single cells, so the deterioration of a small number of single cells can lead to a situation where power generation operation is hindered. This is an important issue that affects the lifespan of fuel cells.

この発明の目的は、負荷上昇時に燃料電池に生ずる過負
荷状態を回避することによ)、単電池の特性劣化を防ぎ
、燃料電池の寿命特性を改善することにある。
An object of the present invention is to prevent deterioration of the characteristics of a single cell and improve the life characteristics of the fuel cell by avoiding overload conditions that occur in the fuel cell when the load increases.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、燃料電
池と、この燃料電池に燃料ガスを供給する燃料ガス供給
系と、前記燃料電池に反応空気を供給する空気系と、前
記燃料電池の出力を変換して外部負荷に供給する電力変
換系と、これら各系を制御する制御系とを備えた燃料電
池発電装置の負荷上昇時の運転制御方法であって、負荷
上昇指令があったとき前記燃料電池に供給する燃料ガス
および反応空気の流tを前記上昇指令値によって決まる
目標電力値に対応する規定流量より所定量多く供給して
前記燃料電池の温度があらかじめ定まる目標作動温度に
到達するまでの期間運転し、しかる後前記燃料電池の出
力電流に基づいて前記燃料供給系、空気系、燃料電池、
電力変換系を制御する電流値制御に切シ換えることとし
、かつ必要に応じて燃料ガスおよび反応空気が所定量多
く供給されてから目標作動温度に到達するまでの期間。
In order to solve the above problems, the present invention includes a fuel cell, a fuel gas supply system for supplying fuel gas to the fuel cell, an air system for supplying reaction air to the fuel cell, and a fuel cell for supplying reaction air to the fuel cell. A method for controlling the operation of a fuel cell power generation device when the load increases, which is equipped with a power conversion system that converts the output and supplies it to an external load, and a control system that controls each of these systems, when a load increase command is issued. The temperature of the fuel cell reaches a predetermined target operating temperature by supplying a flow t of fuel gas and reaction air to the fuel cell in a predetermined amount greater than a specified flow rate corresponding to a target power value determined by the increase command value. The fuel supply system, air system, fuel cell,
The period from when the power conversion system is switched to current value control and a predetermined amount of fuel gas and reaction air are supplied as needed until the target operating temperature is reached.

燃料電池の出力電圧に基づく電圧値制御を行うこととす
る。
The voltage value will be controlled based on the output voltage of the fuel cell.

〔作用〕[Effect]

上記手段は、燃料電池の出力電圧が燃料電池温度の上昇
に比例して大きくなシ、反応ガス中の水素消費率または
酸素消費率の減小に逆比例して大きくなる性質があるこ
とに着目して構成されたものでるる。すなわち、負荷上
昇IH令を受けたとき、燃料電池に供給する改質ガス量
および反応空気量を所定量多く供給して水素消費率およ
び酸素消費率tそれぞれ定常運転時のそれよ)引き下げ
ることKより、燃料電池温度が低いことによって生ずる
出力電圧の低下全補償することが可能になる。
The above means focuses on the fact that the output voltage of a fuel cell increases in proportion to an increase in fuel cell temperature, and increases in inverse proportion to a decrease in the hydrogen consumption rate or oxygen consumption rate in the reaction gas. It is composed of the following. That is, when a load increase IH command is received, the amount of reformed gas and the amount of reaction air supplied to the fuel cell are increased by a predetermined amount to lower the hydrogen consumption rate and the oxygen consumption rate (t, respectively, compared to those during steady operation). This makes it possible to fully compensate for the drop in output voltage caused by the low fuel cell temperature.

出力電力を一定とした場合、出力電圧の上昇は出力電流
の低減を可能にするので、燃料を池の過負荷状態の回避
を可能にする。また、燃料電池温度が目標とする作動温
度に到達した時点で制御系による電流値制御に−vJり
換えれば、目標電圧、目標電流、およびこれに相応する
反応ガス量を保持して効率のよい発電運転に移行させる
ことができる。
If the output power is constant, an increase in the output voltage makes it possible to reduce the output current, thereby making it possible to avoid overloading the fuel pond. In addition, if the control system switches to current value control at -vJ when the fuel cell temperature reaches the target operating temperature, the target voltage, target current, and corresponding amount of reactant gas can be maintained and efficient. It is possible to shift to power generation operation.

また、燃料電池温度が所定温度に上昇するまでの間、燃
料電池の出力電圧を検出し、これに基づいて反応ガス量
などの制御を電圧値制御するよう構成すれば、目標電圧
に対する出力実際値の偏差に基づいて反応ガスtを制御
できるので、出力電圧、出力電流の実際値を目標値によ
り近づける制御が可能になる。
In addition, if the output voltage of the fuel cell is detected until the fuel cell temperature rises to a predetermined temperature, and the control of the amount of reactant gas, etc. is controlled based on this, the actual output value with respect to the target voltage can be Since the reaction gas t can be controlled based on the deviation of , it is possible to control the actual values of the output voltage and output current closer to the target values.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例である燃料電池発電装置の運
転制御方法を示すタイムチャートであシ、第3図に示す
構成図を参照しつつ実施例としての運転制御方法を説明
する。時刻t、で制御系5に電力変換器系4の出力電力
’kPtからP2に上昇する指令信号5Sが入力される
と、制御系5は電力P、に相応する目標電圧v2+  
目標電流工、を算出するとともに、これに必要な燃料ガ
スG、の供給tQ、より所定量qだけ多い量Q3を供給
する制御信号を燃料供給系10に向けて出力するととも
に、空気系3にも上記と同様に所定量多い反応空気Aの
供給を指令する。所定量qが燃料電池温度Tが目標作動
温度T!よう低いことKよって生ずる電圧降下V(第5
図参照)を補うに見合う蛍であれば、反応ガス量Qが9
3に到達する時刻1、において燃料電池1の出力電圧V
は目標電圧V!と一旦等しくなり、また出力電流工もそ
の目標値工2と一旦等しくなり、その後燃料電池温度T
がその目標作動m度T!に向けて上昇し出力電圧Vが上
昇するに伴なって電圧の補償が過保証となって出力電圧
Vがその目標値v2 よりや\上昇すると同時K、出力
電流工はその目標値工、より幾分小さくなる電力値制御
が行なわれる。したがって、燃料電池温度Tが目標作動
温度T!に上昇した時点で電力値制御を電流値制御に切
り換えることにより、燃料電池1が過負荷状態になるこ
となく目標流量Qs、  目標電圧v8.目標電流工2
等を保持した定常運転状態に移行することができる。な
お、多めに供給するガス量qは、燃料電池の種類や構造
によって定まるガス消費率対出力電圧特性、およびV−
工時性の温度依存性を考慮して決めるこ七ができ、制御
系5の演算部に任意関数または定数として設定される。
FIG. 1 is a time chart showing a method for controlling the operation of a fuel cell power generation apparatus according to an embodiment of the present invention.The method for controlling the operation according to the embodiment will be explained with reference to the configuration diagram shown in FIG. When the command signal 5S to increase the output power of the power converter system 4 from 'kPt to P2 is input to the control system 5 at time t, the control system 5 sets the target voltage v2+ corresponding to the power P,
A control signal is output to the fuel supply system 10 to supply an amount Q3 that is a predetermined amount q more than the supply tQ of the fuel gas G necessary for this, and a control signal is output to the fuel supply system 10. Similarly to the above, a command is given to supply a predetermined amount of reaction air A. The predetermined amount q is the fuel cell temperature T is the target operating temperature T! The voltage drop V (5th
If the firefly is suitable for supplementing the amount (see figure), the amount of reactive gas Q is 9
At time 1, when the output voltage V of the fuel cell 1 reaches V
is the target voltage V! , the output current becomes equal to its target value 2, and then the fuel cell temperature T
is the target operating degree T! As the output voltage V increases, the voltage compensation becomes overguaranteed and the output voltage V rises more than its target value v2. Power value control is performed to make it somewhat smaller. Therefore, the fuel cell temperature T is the target operating temperature T! By switching power value control to current value control at the time when the target flow rate Qs and target voltage v8. Target electrician 2
It is possible to shift to a steady state of operation in which the following conditions are maintained. Note that the amount of gas q to be supplied is determined by the gas consumption rate vs. output voltage characteristic determined by the type and structure of the fuel cell, and by V-
This value is determined by considering the temperature dependence of workability, and is set as an arbitrary function or constant in the calculation section of the control system 5.

第2図はこの発明の異なる実施例を示すタイムチャート
であり、前述の実施例と異なる点は燃料ガス量が93に
到達時点t!で運転制御を燃料電池の出力電圧Vに基づ
く電圧値制御に切り換えるよう構成したことである。そ
の結果、燃料電池温度Tが目標作動温度T、に到達する
時刻t3までの期間・出力電圧Vをその目標値V!に保
持する制御が行なわれ、これに伴なって出方電流Iもそ
の目標値工2に保持されるので、燃料電池の出方特性の
面からは時刻t、から目標値が保持されることKなり、
発電装置の負荷応答性を大幅に改善でき、かつ反応ガス
の浪5Rを抑制できる利点が得られる。
FIG. 2 is a time chart showing a different embodiment of the present invention, and the difference from the above embodiment is that the fuel gas amount reaches 93 at the time t! The configuration is such that the operation control is switched to voltage value control based on the output voltage V of the fuel cell. As a result, the period/output voltage V until time t3 when the fuel cell temperature T reaches the target operating temperature T is set to its target value V! Since the output current I is also held at the target value 2, from the viewpoint of the output characteristics of the fuel cell, the target value is maintained from time t. K becomes,
This provides the advantage that the load response of the power generation device can be significantly improved and that the wave 5R of the reactant gas can be suppressed.

なお、燃料電池の出方電圧の燃料消費率依存性は水素消
費率、酸素消費率それぞれに異なった特性値を示すので
、電圧補償効果が最も大きくなる反応ガスの増量制御を
行なうことが好ましい。
Note that since the dependence of the output voltage of the fuel cell on the fuel consumption rate shows different characteristic values for the hydrogen consumption rate and the oxygen consumption rate, it is preferable to control the amount of reactant gas to increase the voltage compensation effect.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、電力値制御に基づぐ出力の上
昇指令があったとき、定常運転時より所定蓋多い反応ガ
スを燃料電池に供給し、燃料電池m度が目標作動m度に
到達した時点で電流値制御に切シ換えて定常運転に移行
するよう構成した。
As described above, when there is a command to increase the output based on power value control, this invention supplies a predetermined amount more reactant gas to the fuel cell than during steady operation, so that the fuel cell m degrees reaches the target operating m degrees. The configuration is such that when the current value is reached, the current value control is switched to steady operation.

その結果、燃料電池m度が低いことによって生ずる出力
電圧の低下を、反応ガスtを増し、水素または酸素消費
率を定常運転時より下げることによって生ずる電圧上昇
を利用して補償することが可能となり、従来の運転制御
方法で問題となった燃#4を池の過負荷状態と、その様
り返しによって生ずる単電池の特性劣化が回避され、し
たがって燃料電池の寿命特性の向上に貢献できる利点が
得られる。
As a result, it is possible to compensate for the drop in output voltage caused by a low fuel cell temperature by increasing the reactant gas t and lowering the hydrogen or oxygen consumption rate from that during steady operation. This method has the advantage of avoiding overloading of the #4 fuel cell, which was a problem with conventional operation control methods, and deterioration of the characteristics of the single cells caused by such a situation, thereby contributing to improving the life characteristics of the fuel cell. can get.

また、反応ガス供給量が所定増量レベルに達した時点で
電圧値制御に切換えるよう構成すれば、この時点から目
標電圧、目標電流を保持した運転が可能になるので、燃
料電池の負荷追従性を改善でき、かつ反応ガスの浪費を
抑制できる利点が得られる。
Additionally, if the configuration is configured to switch to voltage value control when the reactant gas supply amount reaches a predetermined increase level, it will be possible to operate while maintaining the target voltage and current from this point on, thereby improving the load followability of the fuel cell. This has the advantage of being able to be improved and to suppress waste of reaction gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例である燃料電池発電装置の運
転制御方法を示すタイムチャート、第2図はこの発明の
異なる実施例を示すタイムチャート、第3図は燃料電池
発電装置の一例を示す概略構成図、第4図は燃料電池の
出方電圧対出方電流(V−工)%性線図、第5図は従来
方法を示すタイムチャートである。 1・・・燃料電池、3・・・空気系、4・・・電力変換
系、5・・・制御系、6・・・燃料改質装置、7・・・
原料供給系8・・・補助燃料供給系、9・・・燃料空気
ブロワ、10・・・燃料ガス供給系、G1  ・・・原
料ガス、G2・・・改質ガス、(燃料ガス)、A・・・
反応空気、G3・・・オフガス、Q!・・・目標ガス流
量、■2・・・目標電圧値、I2・・・ 目標電流値、
P2川目環電力値、q・・・増撥第4図
FIG. 1 is a time chart showing an operation control method for a fuel cell power generator according to an embodiment of the present invention, FIG. 2 is a time chart showing a different embodiment of the present invention, and FIG. 3 is an example of a fuel cell power generator. FIG. 4 is a diagram showing the output voltage versus output current (V-F)% of the fuel cell, and FIG. 5 is a time chart showing the conventional method. DESCRIPTION OF SYMBOLS 1... Fuel cell, 3... Air system, 4... Power conversion system, 5... Control system, 6... Fuel reformer, 7...
Raw material supply system 8... Auxiliary fuel supply system, 9... Fuel air blower, 10... Fuel gas supply system, G1... Raw material gas, G2... Reformed gas, (fuel gas), A ...
Reaction air, G3...off gas, Q! ...Target gas flow rate, ■2...Target voltage value, I2...Target current value,
P2 river eye ring power value, q... Increased plectrum Figure 4

Claims (1)

【特許請求の範囲】 1)燃料電池と、この燃料電池に燃料ガスを供給する燃
料ガス供給系と、前記燃料電池に反応空気を供給する空
気系と、前記燃料電池の出力を変換して外部負荷に供給
する電力変換系と、これら各系を制御する制御系とを備
えた燃料電池発電装置の負荷上昇時の運転制御方法であ
って、負荷上昇指令があったとき前記燃料電池に供給す
る燃料ガスおよび反応空気の流量を前記上昇指令値によ
って決まる目標電力値に対応する規定流量より所定量多
く供給して前記燃料電池の温度があらかじめ定まる目標
作動温度に到達するまでの期間運転し、しかる後前記燃
料電池の出力電流に基づいて前記燃料供給系、空気系、
燃料電池、電力変換系を制御する電流値制御に切り換え
ることを特徴とする燃料電池発電装置の運転制御方法。 2)燃料ガスおよび反応空気が所定量多く供給されてか
ら目標作動温度に到達するまでの期間、燃料電池の出力
電圧に基づく電圧値制御を行うことを特徴とする請求項
1記載の燃料電池発電装置の運転制御方法。
[Claims] 1) A fuel cell, a fuel gas supply system that supplies fuel gas to the fuel cell, an air system that supplies reaction air to the fuel cell, and an external system that converts the output of the fuel cell. A method for controlling the operation of a fuel cell power generation device when the load increases, which includes a power conversion system that supplies power to the load and a control system that controls each of these systems, the method comprising supplying power to the fuel cell when a load increase command is issued. The fuel cell is operated for a period of time until the temperature of the fuel cell reaches a predetermined target operating temperature by supplying a flow rate of fuel gas and reaction air that is a predetermined amount greater than the specified flow rate corresponding to the target power value determined by the increase command value, and then Then, based on the output current of the fuel cell, the fuel supply system, the air system,
A method for controlling the operation of a fuel cell power generation device, characterized by switching to current value control for controlling a fuel cell and a power conversion system. 2) The fuel cell power generation according to claim 1, wherein voltage value control is performed based on the output voltage of the fuel cell during a period from when a predetermined amount of fuel gas and reaction air are supplied until the target operating temperature is reached. How to control the operation of the device.
JP1261352A 1989-10-06 1989-10-06 Operation control method for fuel cell power generator Expired - Fee Related JP2671523B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1261352A JP2671523B2 (en) 1989-10-06 1989-10-06 Operation control method for fuel cell power generator
US07/886,607 US5290641A (en) 1989-10-06 1992-05-21 Method of controlling operation of fuel cell power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1261352A JP2671523B2 (en) 1989-10-06 1989-10-06 Operation control method for fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH03122971A true JPH03122971A (en) 1991-05-24
JP2671523B2 JP2671523B2 (en) 1997-10-29

Family

ID=17360653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1261352A Expired - Fee Related JP2671523B2 (en) 1989-10-06 1989-10-06 Operation control method for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2671523B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251693A (en) * 2004-03-08 2005-09-15 Nissan Motor Co Ltd Fuel cell system
US7052789B2 (en) 2001-10-16 2006-05-30 Nissan Motor Co., Ltd. Control device for fuel cell system and control method
JP2009032634A (en) * 2007-07-27 2009-02-12 Inst Nuclear Energy Research Rocaec Fuel supply method of fuel cell
WO2010013709A1 (en) * 2008-07-29 2010-02-04 株式会社 東芝 Fuel cell system, and electronic device
JP2010086906A (en) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd Fuel cell system
WO2012086736A1 (en) * 2010-12-21 2012-06-28 京セラ株式会社 Fuel cell system and operating method therefor
CN114094149A (en) * 2021-09-30 2022-02-25 东风汽车集团股份有限公司 Fuel cell pressurization control system and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052789B2 (en) 2001-10-16 2006-05-30 Nissan Motor Co., Ltd. Control device for fuel cell system and control method
JP2005251693A (en) * 2004-03-08 2005-09-15 Nissan Motor Co Ltd Fuel cell system
JP2009032634A (en) * 2007-07-27 2009-02-12 Inst Nuclear Energy Research Rocaec Fuel supply method of fuel cell
WO2010013709A1 (en) * 2008-07-29 2010-02-04 株式会社 東芝 Fuel cell system, and electronic device
JP2010086906A (en) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd Fuel cell system
WO2012086736A1 (en) * 2010-12-21 2012-06-28 京セラ株式会社 Fuel cell system and operating method therefor
JP5597725B2 (en) * 2010-12-21 2014-10-01 京セラ株式会社 Fuel cell system and operation method thereof
US9502724B2 (en) 2010-12-21 2016-11-22 Kyocera Corporation Fuel cell system and operation method thereof
CN114094149A (en) * 2021-09-30 2022-02-25 东风汽车集团股份有限公司 Fuel cell pressurization control system and method
CN114094149B (en) * 2021-09-30 2023-12-19 东风汽车集团股份有限公司 Fuel cell pressurization control system and method

Also Published As

Publication number Publication date
JP2671523B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
US5290641A (en) Method of controlling operation of fuel cell power supply
US5989739A (en) Method for operating a fuel cell system
JPH08153532A (en) Controlling method for operation of fuel cell power system
KR20190016037A (en) Fuel cell load cycling to support the power grid
JPH03122971A (en) Operation control method for fuel cell power generating system
CN101326666B (en) Fuel battery system and mobile object
JP2009081052A (en) Solid oxide fuel cell power generation system and operation control method of solid oxide fuel cell power generation system
CA2414226C (en) Method for regulating the operation of fuel cell installations controlled according to heat and/or power requirement
JP4944597B2 (en) Solid oxide fuel cell power generation system and operation control method thereof
JP4627420B2 (en) Fuel cell power generation system and control method thereof
JP2001028270A (en) Fuel cell power generating device with raw fuel changeover apparatus and operation method therefor
JPH04262370A (en) Fuel cell
JPS6229868B2 (en)
JP4622244B2 (en) Operation control method of fuel cell power generator
JPS6345762A (en) Operation controller of fuel cell power generating plant
JPS63236269A (en) Control method for fuel cell
JP4176354B2 (en) Fuel and water supply control device, fuel and water supply control method, and power supply system
RU2220322C2 (en) Method of and device for electric supply of electric plasma- jet rocker engine
JPS60107268A (en) Control system for fuel cell power generation plant
JPS6345763A (en) Operation controller of fuel cell power generating plant
JPS61233979A (en) Controller of fuel cell power generating plant
JPS6345764A (en) Operating controller of fuel cell power generating plant
JPH0676846A (en) Operation control device for fuel cell power generating device
JPH02213056A (en) Fuel cell power generating plant
JPS62264566A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees