JPH03266366A - Control unit of fuel cell generating system - Google Patents

Control unit of fuel cell generating system

Info

Publication number
JPH03266366A
JPH03266366A JP2063387A JP6338790A JPH03266366A JP H03266366 A JPH03266366 A JP H03266366A JP 2063387 A JP2063387 A JP 2063387A JP 6338790 A JP6338790 A JP 6338790A JP H03266366 A JPH03266366 A JP H03266366A
Authority
JP
Japan
Prior art keywords
flow rate
gas
pressure
fuel cell
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2063387A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2063387A priority Critical patent/JPH03266366A/en
Publication of JPH03266366A publication Critical patent/JPH03266366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep a supplying gas constantly at a satisfactory pressure by determining the standard set flow rate of the supplying gas on the basis of a cell current or load, and adding a correction quantity based on the deviation between the pressure set value and detected value in the upper stream part of the starting gas to the set flow rate to perform control. CONSTITUTION:The flow rate of a supplying gas is controlled by a supplying gas flow rate regulating valve 1 controlled by a controller 12. The controller 12 is operated by comparing the detected value by a flow rate detector 2 with a set standard quantity. The set standard value is the addition of a correction flow rate (j) determined through a controller 9 from the deviation between the detected value (e) detected through a pressure detector 8 in the upper stream part from a battery of the starting gas and a set value (f) to a standard set flow rate (i) set through a function generator 10 on the basis of a cell current (h) or load. Hence, the starting gas is increased and decreased prior to the increase and decrease of the current or load, so that the starting gas can be stably supplied.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は燃料電池と改質装置とを備えて構成される燃料
電池発電システムに係わり、特に、負荷変動時等におけ
る燃料改質系の圧力の制御性を高めて、負荷追従性を向
上させようとした燃料電池発電システムの制御装置に関
する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell power generation system comprising a fuel cell and a reformer. The present invention relates to a control device for a fuel cell power generation system in which the controllability of the pressure in a reforming system is improved to improve load followability.

(従来の技術) 燃料電池発電システムは、高効率、無公害、低騒音で、
且つ負荷追従性に優れた発電システムと言われている。
(Conventional technology) Fuel cell power generation systems are highly efficient, non-polluting, and low-noise.
It is also said to be a power generation system with excellent load followability.

そして、本システムでは天然ガス、ナフサ等の原料ガス
から燃料電池での電気化学反応に必要な水素ガスを生成
する改質装置を有しており、改質装置に適切な原料ガス
を供給するために燃料改質系の代表圧力を適切に保つ制
御を行なっていた。
This system has a reformer that generates the hydrogen gas necessary for the electrochemical reaction in the fuel cell from raw material gases such as natural gas and naphtha. Control was performed to maintain an appropriate representative pressure in the fuel reforming system.

第4図は、これに係わる燃料電池発電システムの制御装
置の一従来構成例を示したものである。
FIG. 4 shows an example of a conventional configuration of a control device for a fuel cell power generation system related to this.

図において1は原料ガス流量調節弁、2は水添脱硫器な
どの前処理装置、3は改質装置、4は高温シフトコンバ
ータ、5は低温シフトコンバータ、6はスチームセパレ
ータ、7は電池燃料極燃料流量制御弁、そして8は圧力
検出器である。本従来例では、スチームセパレータ出口
の圧力を検出器8が検出し、その検出値aと設定値すと
の偏差Cに基づいて調節器9が開度指令dを発生する構
成である。本従来例は、燃料電池へ供給する燃料流量の
増加、減少に対して、セパレータの出口圧力を設定圧力
に保つ様に原料ガスを適切に供給しようとするものであ
るが、この様な構成においては、前記原料ガス流量調節
弁が前処理装置や改質装置など多くの装置を隔てた部分
の圧力を制御しようとするため、制御性が十分ではなく
必ずしも良好な安定性及び追従性が得らていなかった。
In the figure, 1 is a raw gas flow rate control valve, 2 is a pretreatment device such as a hydrodesulfurizer, 3 is a reformer, 4 is a high temperature shift converter, 5 is a low temperature shift converter, 6 is a steam separator, and 7 is a battery fuel electrode. A fuel flow control valve, and 8 a pressure detector. In this conventional example, a detector 8 detects the pressure at the outlet of the steam separator, and a regulator 9 generates an opening command d based on a deviation C between the detected value a and a set value S. In this conventional example, the raw material gas is appropriately supplied so as to maintain the separator outlet pressure at the set pressure in response to an increase or decrease in the fuel flow rate supplied to the fuel cell. In this case, since the raw material gas flow rate control valve tries to control the pressure in a part separated from many devices such as a pre-processing device and a reforming device, the controllability is not sufficient and good stability and followability cannot necessarily be obtained. It wasn't.

第5図は本発明に係わる燃料電池発電システムの制御装
置の第2の従来構成例を示したものであり、第4図と同
一の要素には同一の符号を付して有る。本従来例では、
前記第4図に対し、より制御の行ない易い改質装置上流
部分の圧力を検出器8にて検出し、その検出値eとその
設定値fとの偏差gに基づき、調節器9が原料ガス流量
調節弁1に開度指令dを与える構成である。しかしなが
ら、この様な構成の制御装置においては、圧力自体は制
御性が良好なものの、下流側の流量調節弁7が燃料電池
へ良好に燃料を供給できる揉に調節弁7の1次側圧力を
維持するには、前記改質装置上流圧力制御に高い制御性
が要求され、急瞬な負荷変化時においては、この制御性
は必ずしも満足すべきものではなかった。
FIG. 5 shows a second conventional configuration example of a control device for a fuel cell power generation system according to the present invention, and the same elements as in FIG. 4 are given the same reference numerals. In this conventional example,
4, the pressure in the upstream part of the reformer, which is easier to control, is detected by the detector 8, and based on the deviation g between the detected value e and its set value f, the regulator 9 controls the feed gas The configuration is such that an opening command d is given to the flow rate control valve 1. However, in a control device having such a configuration, although the pressure itself can be controlled well, the primary side pressure of the regulating valve 7 cannot be properly controlled by the downstream flow regulating valve 7 to properly supply fuel to the fuel cell. In order to maintain this, high controllability is required for the pressure control upstream of the reformer, and this controllability is not necessarily satisfactory when there is a sudden load change.

(発明が解決しようとする課題) 以上のように、従来の燃料電池発電プラントにおいては
急瞬な負荷変化等の場合に、燃料改質系の圧力が変動し
、燃料電池への安定な燃料供給が阻害されたり、改質装
置における改質側と燃焼質側との圧力差(以下、内外差
圧と称す)が大きく発生するなどの問題があった。本発
明は上述の様な問題を解決するためになされたものであ
り、急瞬な負荷変動に対しても、燃料改質系の圧力変動
を良好に抑制することから燃料電池へ燃料ガスを安定に
供給し、又改質装置の内外差圧の発生を良好に抑制する
燃料電池発電システムの制御装置を提供することを目的
としている。
(Problems to be Solved by the Invention) As described above, in conventional fuel cell power generation plants, the pressure in the fuel reforming system fluctuates in the event of sudden load changes, etc., resulting in a stable fuel supply to the fuel cell. There have been problems such as a large pressure difference (hereinafter referred to as internal and external pressure difference) between the reforming side and the combustion side of the reformer. The present invention was made to solve the above-mentioned problems, and it can stably supply fuel gas to the fuel cell by effectively suppressing pressure fluctuations in the fuel reforming system even in the face of sudden load fluctuations. It is an object of the present invention to provide a control device for a fuel cell power generation system that supplies fuel to the fuel cell and satisfactorily suppresses the generation of differential pressure between the inside and outside of a reformer.

[発明の構成] (課題を解決するための手段) 前記目的を達成するなめに、本発明では電池電流や負荷
指令から原料ガスの基準設定流量を求め、これに改質装
置の反応ガス上流部分の圧力設定値と検出値との偏差信
号に基づく補正流量を加算することで原料ガスの設定流
量を発生し、この設定値に追従する様に流量制御を行な
うよう構成する。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention determines a reference flow rate of the raw material gas from the battery current and load command, and uses this to determine the flow rate of the reaction gas upstream of the reformer. A set flow rate of the source gas is generated by adding a corrected flow rate based on a deviation signal between the pressure set value and the detected value, and the flow rate is controlled to follow this set value.

(作 用) 従って、本発明によれば燃料電池発電システムにて電池
電流あるいは負荷が上昇した場合に、原料ガスはより先
行的に供給量が増加されるため、燃料改質系における圧
力の低下を防ぐような作用がなされる。逆に、負荷が減
少した場合には原料ガスは先行的に絞り込まれるため、
改質系の圧力上昇を抑える作用がある。
(Function) Therefore, according to the present invention, when the cell current or load increases in the fuel cell power generation system, the supply amount of the raw material gas is increased in advance, which reduces the pressure in the fuel reforming system. An action is taken to prevent this. Conversely, when the load decreases, the raw material gas is narrowed down in advance.
It has the effect of suppressing pressure rise in the reforming system.

(実施例) 以下に本発明の実施例について図面を参照して説明する
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図は本発明による燃料電池発電システムの制御装置
の一実施例を示し、第4図、5図と同一のちのには同一
符号を付して、これらについては説明を省略する。
FIG. 1 shows an embodiment of a control device for a fuel cell power generation system according to the present invention, and the same parts as in FIGS. 4 and 5 are denoted by the same reference numerals, and the explanation thereof will be omitted.

本実施例では第5図の従来例に対し、電池電流りを基に
原料ガスの基準設定流量iを発生する関数発生器10、
及び圧力偏差信号gから補正流量jを求める調節器9を
設け、これらの信号の加算信号にと検出器11による流
量検出値Aとの偏差mから、調節器12が流量調節弁1
に開度指令dを発生する構成である。
In this embodiment, in contrast to the conventional example shown in FIG.
and a pressure deviation signal g to obtain a corrected flow rate j, and the regulator 12 calculates the corrected flow rate j from the sum signal of these signals and the deviation m between the flow rate detection value A by the detector 11.
The configuration is such that an opening degree command d is generated.

次に本実施例の作用について説明する。例えば時刻t 
からt2迄に負荷ある′いは電池電流が増加した場合を
、第2図を用いて説明する。この様な負荷増加に対し、
第5図に示した従来構成では改質装置上流部のガス圧力
に基づく閉ループ制御構成で原料ガス流量を増加させる
ため、原料ガス流量の増加はF2の様に遅く、従って圧
力の低下もP2の様に大きくなる。これに対し第1図に
示した実施例に従えば、負荷や電池電流信号りの増加に
応じて先行的に原料ガスを増加させるため、この応答は
Flに示すごとく連応性が高められ、従って上記圧力の
低下もPlに示す様に良好に抑制されることになる。
Next, the operation of this embodiment will be explained. For example, time t
The case where the load or battery current increases from t2 to t2 will be explained using FIG. In response to this increase in load,
In the conventional configuration shown in Fig. 5, the raw material gas flow rate is increased by a closed loop control configuration based on the gas pressure upstream of the reformer, so the increase in the raw material gas flow rate is slow as at F2, and therefore the pressure decrease is also as slow as at P2. It grows like that. On the other hand, according to the embodiment shown in FIG. 1, the raw material gas is increased in advance in accordance with the increase in the load and battery current signal, so this response becomes more responsive as shown in Fl, and therefore The drop in the pressure mentioned above is also well suppressed as shown by Pl.

従って本実施例によれば、先行的に原料ガスを変化させ
ることにより、燃料改質系の過渡的な圧力変動を抑える
ため、急瞬な負荷変化に対しても圧力を適切に維持し、
電池への燃料ガス供給を良好に行なうことが可能となる
Therefore, according to this embodiment, by changing the raw material gas in advance, in order to suppress transient pressure fluctuations in the fuel reforming system, the pressure can be maintained appropriately even in response to sudden load changes.
It becomes possible to efficiently supply fuel gas to the battery.

第3図は、本発明の他の実施例を示した構成図である。FIG. 3 is a block diagram showing another embodiment of the present invention.

本実施例では、第1図の実施例の原料ガス基準設定流量
1に対し進み要素あるいは遅れ要素の演算器13を付加
した構成である。ここで13は例えば(1)式や(2)
式で与えられる。
This embodiment has a configuration in which a leading element or a lagging element computing unit 13 is added to the raw material gas standard set flow rate 1 of the embodiment shown in FIG. Here, 13 is, for example, equation (1) or (2)
It is given by Eq.

1十T2S             ・・・(1)(
1+T  S)/11+T3S)     ・・・(2
)本実施例は、第1図に示した実施例に対し、より先行
的に原料ガスを変化させて、燃料改質系の圧力変動を抑
制しようとするものであるか、本実施例によっても前記
実施例と同様の作用、効果がもたらされることは明らか
である。
10T2S...(1)(
1+TS)/11+T3S)...(2
) Compared to the embodiment shown in FIG. 1, this embodiment changes the raw material gas more proactively to suppress pressure fluctuations in the fuel reforming system. It is clear that the same functions and effects as in the above embodiment can be obtained.

なお、以上の実施例においては信号りとして電池電流や
負荷を用いたが、これらの指令値をhとしても同一の作
用、効果か得られる。
In the above embodiments, the battery current and load are used as signals, but the same operation and effect can be obtained even if these command values are set to h.

[発明の効果] 以上説明したように、本発明によれば負荷変化時に先行
的に原料ガス流量を制御させるよう構成したので、燃料
改質系の圧力をいつも適切に保ち、よって燃料電池への
燃料供給を良好に維持すると同時に、改質装置での内外
差圧の発生を良好に抑制することが可能となり、プラン
トとしての負荷追従性の向上と改質装置へのストレスの
低減が達成される。
[Effects of the Invention] As explained above, according to the present invention, since the raw material gas flow rate is controlled in advance when the load changes, the pressure in the fuel reforming system is always maintained at an appropriate level, and therefore the pressure to the fuel cell is improved. At the same time as maintaining a good fuel supply, it is possible to suppress the generation of differential pressure between the inside and outside of the reformer, improving the plant's ability to follow load and reducing stress on the reformer. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料電池発電システムの制御装置
の一実施例を示す構成ブロック図、第2図は第1図の実
施例と従来例との作用の相違を示す説明図、第3図は、
本発明による燃料電池発電システムの制御装置の他の実
施例を示す構成ブロック図、第4図は燃料電池発電シス
テムの制御装置の従来例を示す構成ブロック図、第5図
は他の従来例を示す構成ブロック図である。 1・・・原料ガス流量調節弁 2・・・前処理装置    3・・・改質装置4・・・
高温シフトコンバータ 5・・・低温シフトコンバータ 6・・・七パレータ 7・・・電池燃料極燃料流量制御弁
FIG. 1 is a configuration block diagram showing an embodiment of a control device for a fuel cell power generation system according to the present invention, FIG. 2 is an explanatory diagram showing the difference in operation between the embodiment of FIG. 1 and a conventional example, and FIG. 3 teeth,
A configuration block diagram showing another embodiment of the control device for the fuel cell power generation system according to the present invention, FIG. 4 is a configuration block diagram showing a conventional example of the control device for the fuel cell power generation system, and FIG. 5 shows another example of the conventional control device. FIG. 1... Raw material gas flow rate control valve 2... Pretreatment device 3... Reformer 4...
High temperature shift converter 5...Low temperature shift converter 6...7 Palator 7...Battery fuel electrode fuel flow control valve

Claims (1)

【特許請求の範囲】[Claims] 原料ガスを改質して水素リッチな改質ガスを生成する改
質装置と、この改質装置にて得られた改質ガスを燃料ガ
スとして燃料極へ、また酸化剤ガスを酸化剤極に夫々導
入し、この時生ずる電気化学的反応により、電気エネル
ギーを発生する燃料電池を備え、前記改質装置の反応ガ
ス側の上流部分の圧力設定値と検出値との偏差に基づき
原料ガスの流量制御を行なう燃料電池発電システムにお
いて、電池電流あるいは負荷を基に原料ガスの基準設定
流量を求め、これに前記圧力偏差による補正値を与える
ことにより原料ガスの設定流量を発生し、原料ガスの流
量制御を行なうことを特徴とする燃料電池発電システム
の制御装置。
A reformer that reforms raw material gas to produce hydrogen-rich reformed gas, the reformed gas obtained by this reformer is used as fuel gas to be sent to the fuel electrode, and the oxidant gas is sent to the oxidizer electrode. The flow rate of the raw material gas is controlled based on the deviation between the pressure setting value and the detected value in the upstream part of the reaction gas side of the reformer. In a fuel cell power generation system that performs control, the standard set flow rate of the raw material gas is determined based on the cell current or load, and a correction value is given based on the pressure deviation to generate the set flow rate of the raw material gas. A control device for a fuel cell power generation system characterized by performing control.
JP2063387A 1990-03-14 1990-03-14 Control unit of fuel cell generating system Pending JPH03266366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063387A JPH03266366A (en) 1990-03-14 1990-03-14 Control unit of fuel cell generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063387A JPH03266366A (en) 1990-03-14 1990-03-14 Control unit of fuel cell generating system

Publications (1)

Publication Number Publication Date
JPH03266366A true JPH03266366A (en) 1991-11-27

Family

ID=13227839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063387A Pending JPH03266366A (en) 1990-03-14 1990-03-14 Control unit of fuel cell generating system

Country Status (1)

Country Link
JP (1) JPH03266366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096460A1 (en) * 2002-05-14 2003-11-20 Nissan Motor Co., Ltd. Fuel cell system and related startup method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096460A1 (en) * 2002-05-14 2003-11-20 Nissan Motor Co., Ltd. Fuel cell system and related startup method
CN1322621C (en) * 2002-05-14 2007-06-20 日产自动车株式会社 Fuel cell system and related startup method

Similar Documents

Publication Publication Date Title
JPS5923066B2 (en) Fuel cell power generator equipped with fuel processing means
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JPH03266366A (en) Control unit of fuel cell generating system
JPS6356673B2 (en)
JP4622244B2 (en) Operation control method of fuel cell power generator
JPS6229868B2 (en)
JPS60107268A (en) Control system for fuel cell power generation plant
JPS6318307B2 (en)
JP2695860B2 (en) Control unit for fuel cell power generation system
JP3358227B2 (en) Fuel cell power generation system
JPS61233979A (en) Controller of fuel cell power generating plant
JP3557904B2 (en) Operating method of fuel reformer and fuel cell power generation system
JPH0461466B2 (en)
JPH01144569A (en) Pressure and flow control device for fuel cell power generating system
JPS62285369A (en) Fuel cell power generation plant
JPS60107269A (en) Control system for fuel cell power generation plant
JPH03266367A (en) Fuel system control unit of fuel cell system
JPH0556628B2 (en)
JPS58133784A (en) Control system of fuel cell power generating plant
JPS63292575A (en) Fuel cell power generating system
JPS62241266A (en) Fuel cell power generating system
JPH02213056A (en) Fuel cell power generating plant
JPS6039771A (en) System for controlling interelectrode pressure of fuel cell
JPS6396872A (en) Fuel battery power generating system
JPS58133776A (en) Control system of fuel cell power generating system